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Abstract— Distributed systems are often chosen since cen-
tralized solutions are often impractical when dealing with state
estimation of complex systems due to computational complexity.
The Interlaced Extended Kalman Filter is a distributed state
observer that enables each subsystem to predict a subset of
the state space and communicate with other subsystems. How-
ever, the Interlaced Extended Kalman Filter requires precise
synchronization between subsystems, which may be unfeasible
when, for instance, the sampling rates of the subsystems vary.

To address this issue, this paper suggests an Interlaced
Extended Kalman Filter extension that enables each subsystem
to use the most recent estimate when up-to-date information
is unavailable. Adjusting the covariance matrix, which can
be done using Age of Information metrics, increases the
uncertainty in the approximation. Each subsystem’s stability
is investigated, showing that changes in the covariance matrix
do not affect the analysis.

The suggested algorithm is validated in a scenario with four
water tanks fed by two pumps, where the operating rates of the
subsystems are different but fixed. The findings demonstrate
that the proposed algorithm successfully handles the multi-
rate problem while striking a reasonable balance between
convergence rate and efficiency.

I. INTRODUCTION

The control of distributed systems aims to simplify com-
plex problems by breaking them down into simpler sub-
systems while maintaining performance [1]. However, dis-
tributed systems introduce challenges and opportunities, par-
ticularly when dealing with subsystems operating at different
sampling times [2].

An extension of the Extended Kalman Filter (EKF) known
as the Interlaced Extended Kalman Filter (IEKF) was de-
veloped to reduce the computational load of estimating
nonlinear system states [3]. IEKF functions as a distributed
architecture for EKF, applicable to systems divisible into sub-
systems. Each subsystem estimates its state using predicted
state and covariance matrix data from other subsystems.

IEKF assumes synchronized operation among subsystems,
which may not always hold due to factors like varying sensor
sampling rates or communication channel noise. This paper
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investigates the stability of IEKF when subsystems operate
at different sampling rates.

Two prominent distributed estimation algorithms are the
distributed particle filter [4] and distributed Kalman filter [5].
Distributed Particle Filters are suitable for addressing large-
scale, nonlinear, and non-Gaussian estimation challenges in
agent network applications [6]. Examples of these techniques
in asynchronous environments can be found in [7] and [8].

The Distributed Kalman Filter is commonly used for
solving linear and nonlinear distributed state estimation
problems [9], [10]. In this approach, nodes in a network
exchange information with their immediate neighbors to
improve their state estimations. Consensus-based distributed
filtering methods have also gained popularity due to their
reduced communication resource utilization [11].

In a typical sensor network, a distributed Unscented
Kalman Filter is proposed in [12]. It addresses consensus
issues using a weighted average consensus approach.

The primary contribution of this paper lies in the analysis
of IEKF convergence when subsystems operate at different
rates. The approach involves using the most recent state
estimate for other subsystems and increasing the covari-
ance matrix to account for augmented uncertainty in state
estimation. Data freshness is assessed using the Age-of-
Information (AoI) metric, which measures receiver-centric
delays. A similar strategy can be applied when dealing with
unreliable communication channels. The paper demonstrates
that this novel IEKF algorithm converges under the same
assumptions as traditional IEKF.

II. MULTIRATE INTERLACED KALMAN FILTER

In this paper, we consider a physical process that evolves
according to (1)

xk+1 = f(xk, uk) + wk
yk = h(xk, uk) + vk.

(1)

where xk ∈ Rnx is the process state, uk ∈ Rnu is the
input, yk ∈ Rny is the output, and wk ∈ Rnx , vk ∈
Rnu are the uncertainties that affect the process and the
measurement, respectively. Both the noises wk and vk are
modeled as a zero-mean Gaussian stochastic variable, having
known constant covariance matrices (i.e., wk ∼ N (0, Q) and
vk ∼ N (0, R)). The state transition and observation are non-
linear and represented by f(·) and h(·), respectively, and we
assume they are differentiable on Rnx .

To reduce the computational complexity of the EKF, [3]
introduced the Interlaced Extended Kalman Filter (IEKF).
The IEKF is composed of p parallel EKF implementations,
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each estimating only a portion of the state variables and
considering the remainder as a deterministic parameter.

Assumption 1: The state vector

xki =
[
x̂
(1)
ki

; . . . ; x̂
(p)
ki

]T
(2)

can be partitioned such that each state variable x
(I)
ki

is
estimated by one and only one subsystem.

We denote by x
(i)
ki

∈ Rni the subset of state variables to
be estimated by the generic filtering station i, with nx =∑p
i=1 ni, where p is the number of stations.
Assumption 2: All the subsystems are directly connected.
These assumptions allow us to write the system equations

as p subsystems. The i− th subsystem is described by:

x
(i)
ki+1 = f (i) (xki , uki) + w

(i)
ki

y
(i)
ki

= h(i) (xki , uki) + v
(i)
ki

(3)

In this work, we assume that each subsystem operates
at a fixed rate, denoted by Si, where for every Si, the
station performs a prediction and correction cycle using the
proposed paradigm. If two stations have different operating
times, their synchronization occurs at the least common
multiple of their operating times, denoted by Sij . We define
the hyper-period S [13] as the minimum interval after
which all the subfilters are synchronized. We differentiate
the indices of the instants at which prediction and correction
cycles are performed by each filter, denoted by ki.

When two stations are not synchronized, they have old
data on a certain partition of the system state. To address this
issue, we use the Age of Information (AoI) [14] as a metric
representing the freshness of the information available at the
receiver. The AoI metric of the station i with respect to the
station j is given by

AoI
(ij)
ki

= ki −mij . (4)

where mij is the last time instant station i and station j

have been synchronized. We use AoI
(ij)
ki

to increase the
covariance matrix P

(j)
ki

when station i has old information
about the subspace observed by station j. With AoI

(ij)
ki

so
defined, the Multirate Interlaced Kalman Filter is made up
of the following equations.

x̂
(j)
ki

= x̂(j)mij
(5)

P
(j)
ki

= α
AoI

(ij)
ki

ij P (j)
mij

(6)

Compute the prediction step:

x̂
(i)
ki+1|ki = f (i)(x̂ki , uki) (7)

Q̃
(i)
ki

= Q(i) +
∑

j∈M,j ̸=i

F
(ij)
ki

P
(j)
ki
F

(ij)T

ki
(8)

P
(i)
ki+1|ki = F

(ii)
ki

P
(i)
ki
F

(ii)T

ki
+ Q̃

(i)
ki

(9)

Compute the correction step:

x̂
(i)
ki+1 = x̂

(i)
ki+1|ki +K

(i)
ki+1ν

(i)
ki+1 (10)

R̃
(i)
ki+1 = R(i) +

∑
j∈M,j ̸=i

H
(ij)
ki+1P

(j)
ki
H

(ij)T

ki+1 (11)

K
(i)
ki+1 = P

(i)
ki+1|kiH

(ii)T

ki+1 · (12)(
H

(ii)
ki+1P

(i)
ki+1|kiH

(ii)T

ki+1 + R̃
(i)
ki+1

)−1

P
(i)
ki+1 =

(
I −K

(i)
ki+1H

(ii)
ki+1

)
P

(i)
ki+1|ki (13)

where αij > 1 is an arbitrary parameter which can be
selected based on how rapidly the dynamics of the system
evolves,

ν
(i)
ki+1 = y

(i)
ki+1 − h(i)

(
x̂ki+1|ki , uk+1

)
H

(ii)
ki+1 =

∂h(i)

∂x
(i)
ki

∣∣∣∣∣
xki

=x̂ki+1|ki

, H
(ij)
ki+1 =

∂h(i)

∂x
(j)
ki

∣∣∣∣∣
xki

=x̂ki+1|ki

F
(ii)
ki

=
∂f (i)

∂x
(i)
ki

∣∣∣∣∣
xk=x̂k

, F
(ij)
ki

=
∂f (i)

∂x
(j)
ki

∣∣∣∣∣
xki

=x̂ki

Definition 2.1: Let eki|ki−1 and eki denote the error in
the predicted and filtered state respectively of the subsystem
i, that is:

e
(i)
ki+1|ki = x

(i)
ki+1 − x̂

(i)
ki+1|ki (14)

e
(i)
ki+1 = x

(i)
ki+1 − x̂

(i)
ki+1 (15)

Because F (i) ∈ C1 and h(i) ∈ C1, it may be written as

h(i)(xk)−h(i)(x̂k|k−1) = H
(ii)
k (xk−x̂k|k−1)+ϕ

(i)
h (xk, x̂k|k−1)

(16)

f (i)(xk)− f (i)(x̂k) = F
(ii)
k (xk − x̂k) + ϕ

(i)
f (xk, x̂k) (17)

where ϕ
(i)
h (xk, x̂k|k−1) and ϕ

(i)
f (xk, x̂k) are the remainder

terms of the functions h and f , respectively. They are
denoted in the rest of the paper as ϕ(i)h (x, x̂) and ϕ(i)h (x, x̂),
respectively.

The predicted state error in Eq. (14) can be rewritten as

e
(i)
ki+1|ki = F

(ii)
ki

eki + w
(i)
ki

+ ϕ
(i)
f (xki , x̂ki) (18)

The filtered state error in Eq. (15) can be rewritten as

e
(i)
ki+1 = F̃

(ii)
ki+1e

(i)
ki

+ n
(i)
ki+1 + l

(i)
ki+1 (19)

where

F̃
(ii)
ki+1 = [I −K

(i)
ki+1H

(i)
ki+1]F

(ii)
ki

n
(i)
ki+1 = [I −K

(i)
ki+1H

(ii)
ki+1]w

(i)
ki

+K
(i)
ki+1v

(i)
ki+1

l
(i)
ki+1 = [I −K

(i)
ki+1H

(ii)
ki+1]ϕ

(i)
f (xki , x̂ki) +K

(i)
ki+1ϕ

(i)+

h (x, x̂)

ϕ
(i)+

h (x, x̂) = ϕ
(i)
h (xki+1, x̂ki+1|ki)

III. STABILITY ANALYSIS

We assume that k = ki is the time when the subfilter i
estimates its state.
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Assumption 3: We assume the following upper and lower
bounds:

p(i)I ≤P (i)
k+1 ≤ p(i)I (20)

q(i)I ≤P (i)
k+1|k ≤ q(i)I (21)

r1I ≤ R(i), q1I ≤ Q(i) (22)

p(j)I ≤P (j)
k+1 ≤ p(j)I (23)

h(i)I ≤||H(ii)
k+1|| ≤ h

(i)
I (24)

||F (ii)
k || ≤ f

(i)
(25)

f (j) ≤ ||F (ij)
k || (26)

h(j)I ≤||H(ij)
k+1|| (27)

Assumption 4: We assume that the noise processes are
bounded in ∞-norm, i.e.

||w(i)
k || ≤ w(i), ||v(i)k || ≤ v(i) (28)

Lemma 1: If the conditions given in Assumption 3 holds
then an upper bound of the norm of the Kalman gain matrix
is given by

||K(i)
k+1|| ≤

q(i)h
(i)

q(i)h(i)
2

+ r1 +
∑
j∈M,j ̸=i p

(j)h(j)
2 = κ̃ (29)

Lemma 2: If the conditions given in Assumption 3 holds
and assuming that F is nonsingular for all k ≥ 0 then there
exist a real number 0 < γ(i) < 1 such that

F̃
(ii)T

k+1 P
(i)−1

k+1 F̃
(ii)
k+1 ≤

(
1− γ(i)

)
P

(i)−1

k (30)
Lemma 3: Let the assumptions 3 hold and there are pos-

itive numbers κf , κh > 0 such that the nonlinear functions
ϕ
(i)
f , ϕ

(i)
h in Eq. 19 are bounded via Eq. 34 and Eq. 33 for∣∣∣∣∣∣e(i)k ∣∣∣∣∣∣ ≤ ϵ(i)

′
. Then there are positive real numbers ϵ(i)

′
,

κ
(i)
nonl > 0 such that

l
(i)T

k+1P
(i)−1

k+1

(
2F̃

(ii)
k+1e

(i)
k + l

(i)
k+1

)
≤ κ

(i)
nonl

∣∣∣∣∣∣e(i)k ∣∣∣∣∣∣3 +D(κ̃)

(31)
is fulfilled for ||e(i)k || ≤ ϵ(i)

′
.

Theorem 1: Assume that the bounds given in Assump-
tion 3 are fulfilled. Assume further that there exist an ϵ such
that

||e(i)k|k|| ≤ ϵ(i) (32)

which implies ||x(i)k − x̂
(i)
k+1|k|| ≤ ϵ

(i)
1 (ϵ(i)) where

ϵ
(i)
1 (ϵ(i)) = aϵ(i) + b. Moreover, assume that

||ϕ(i)h (xk+1, x̂k+1|k)|| ≤ φ
(i)
h ||x(i)k+1 − x̂

(i)
k+1|k||

2 (33)

and

||ϕ(i)f (xk+1, x̂k+1)|| ≤ φ
(i)
f ||x(i)k+1 − x̂

(i)
k+1||

2 (34)

holds for ||x(i)k+1 − x̂
(i)
k+1|k|| ≤ ϵ

(i)
1 (ϵ(i)) = ϵ

(i)
1 and ||x(i)k+1 −

x̂
(i)
k+1|k|| ≤ ϵ

(i)
1 (ϵ(i)) = ϵ

(i)
1 , respectively.

Then there exists an ϵ(i) > 0 such that the solution of the
error model in Eq. 18 is:

1) Locally exponential stable if the initial error satisfies
||e(i)0 || ≤ ϵ(i) and w(i) = v(i) = 0.

2) Bounded by∣∣∣∣∣∣e(i)k+1

∣∣∣∣∣∣2 ≤ p(i)

p(i)

(
1 + ξ(i)

)k+1 ∣∣∣∣∣∣e(i)0

∣∣∣∣∣∣2 − p(i)

ξ(i)
ρ(i)(κ̃)

(35)
if the initial error satisfies ||e(i)0 || ≤ ϵ(i), and κ̃ is the
upper bound of the Kalman gain.

This theorem demonstrates the stability property of the
IEKF even at different sampling times. The result of this
theorem demonstrates how the increase in the covariance
matrix P (j)

ki
exploiting the concept of the Age-of-Information

does not affect the stability analysis. However, as described
in [15], the increase of P (j)

ki
leads to a decrease in the Kalman

gain matrix K(i)
ki+1, causing a slow convergence rate.

Furthermore, the steady state value of the error depends
on the second part of the equation and therefore on ρ(i)(κ̃)
and ξ(i) = ξ(i)(κ̃).

IV. CASE STUDY AND RESULTS

Let us consider the discretization of the four tanks model
whose dynamical evolution is described in [16]. Differently
from [16], we consider the output of the system as


ẋ1,k+1

ẋ2,k+1

ẋ3,k+1

ẋ4,k+1

 =


c1(
√
2gxk,3 −

√
2gxk,1) + c2uk,1 + wk,1

c3(
√
2gxk,4 −

√
2gxk,2) + c4uk,2 + wk,2

−c5
√

2gxk,3 + c6uk,2 + wk,3
−c7

√
2gxk,4 + c8uk,1 + wk,4


[
y1,k
y2,k

]
=

[
x1,k − x3,k + v1,k
x2,k − x4,k + v2,k

]
.

The system is shown in Fig. 1. We have two different
subsystems, where the first has the task of estimating state
variables x(1)k = [x1,k;x4,k], corresponding respectively to
the heights of Tank 1 and Tank 4 and can measure u1,k
and y(1)k = [y1,k], while the second has the task of estimate
x
(2)
k = [x2,k;x3,k], corresponding respectively to the heights

of Tank 2 and Tank 3 and can measure u2,k and y(2)k = [y2,k].

Fig. 1. Interconnection of the four tanks

We choose the desired output as yd,1,k = 20 + 0.2 ·∫
sgn(sin(k))dk and yd,2,k = 20 + 0.01 · k.
A straightforward proportional-integrative rule with the

formula

uk = Kp(yd − yk) +
Ki(yd − yk)

s
,
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has been chosen as the control law for this system, where
Kp is the proportional controller gain and Ki the integrative
control gain.

Fig. 2. Temporal evolution of the height of the four tanks

As shown in Fig. 2, the tank height oscillates due to the
triangular input: this fact forces the linearisation point to
change each instant, proving its effectiveness.

In this work two different simulations have been con-
sidered. All the simulations have as parameters R

(i)
k =

10−3 · Inxi
, R(j)

k = 10−3 · Inxj
, Q(i)

k = 10−3 · Inyi
and

Q
(j)
k = 10−3 · Inyj

.
In Fig. 3 and in Fig. 4, we consider the two subsystems that

have S1 = 0.2 sec and S2 = 0.5 sec as sampling rates, but
the time interval of the simulation is 800 seconds. In Fig. 3,
the norm of error is rapidly decreasing and after around 200
seconds the two subsystems are steady-state. In Fig 4 the
norm of the Kalman gain for the two subsystems is depicted.
Both sub-filters exhibit an oscillating nature due to the small
sampling time and the difference in the sampling frequencies
between the two systems.

Fig. 3. Temporal evolution of the error of the two subsystems when S1 =
0.2 sec, S2 = 0.5 sec and αij = 1.2

In Fig. 5 and Fig. 4, the simulation has parameters S1 =
0.2 sec, S2 = 5 sec and αij = 1.2. In this case, the absolute
value of the error (in Fig. 5) is much larger than in the
previous case. The same observation is true for steady-state
values. For the Kalman gains in Fig. 6, the second subsystem
(the slower one) has the same trends as in the previous case,
with greater values and fewer oscillations.

V. CONCLUSIONS AND FUTURE WORKS

The paper describes stability analysis for the IEKF al-
gorithms when each subsystem has a different but fixed

Fig. 4. Temporal evolution of the Kalman gains for the subsystems when
S1 = 0.2 sec, S2 = 0.5 sec and αij = 1.2

Fig. 5. Temporal evolution of the error of the two subsystems when S1 =
0.2 sec, S2 = 5 sec and αij = 1.2

sampling rate. Each subsystem estimates a partition of state
space considering the information exchanged (i.e., states and
covariance matrices) with the other subsystems. The stabil-
ity analysis demonstrates that the error is bound for each
subsystem, even when the covariance matrix is increased,
considering the oldness of the corresponding data.

APPENDIX I
PROOF OF LEMMA 1

Proof: The symbols σ(·) and σ(·) denote the largest
and smallest singular value, respectively.

σ(K
(i)
k+1) ≤ σ

(
P

(i)
k+1|kH

(ii)T

k+1

)
(
σ
(
H

(ii)
k+1P

(i)
k+1|kH

(ii)T

k+1 + R̃
(i)
k+1

))−1

The matrices in the second factor are positive definite,
so the singular values are the eigenvalues. Applying the
Rayleigh-Ritz characterization [17]

σ(K
(i)
k+1) ≤ σ

(
P

(i)
k+1|kH

(ii)T

k+1

)
(
σ
(
H

(ii)
k+1P

(i)
k+1|kH

(ii)T

k+1

)
+ σ

(
R̃

(i)
k+1

))−1

Thus,
||K(i)

k+1|| ≤
q(i)σ(H

(ii)T

k+1 )

q(i)σ2(H
(ii)T

k+1 ) + σ(R̃
(i)
k+1)

(36)

≤ q(i)h
(i)

q(i)h(i)
2

+ r1 +
∑
j∈M,j ̸=i p

(j)h(j)
2
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Fig. 6. Temporal evolution of the Kalman gains for the subsystems when
S1 = 0.2 sec, S2 = 5 sec and αij = 1.2

APPENDIX II
PROOF OF LEMMA 2

Proof: We start considering Eq. 13 that can be rewritten
using Eq. 12

P
(i)
k+1 =

(
I −K

(i)
k+1H

(ii)
k+1

)
P

(i)
k+1|k

(
I −K

(i)
k+1H

(ii)
k+1

)T
+

+K
(i)
k+1R̃

(i)
k+1K

(i)T

k+1 (37)

The equation can be re-written exploiting Eq. 9

P
(i)
k+1 = F̃

(ii)
k+1P

(i)
k F̃

(ii)T

k+1 +K
(i)
k+1R̃

(i)
k+1K

(i)T

k+1+

+
(
I −K

(i)
k+1H

(ii)
k+1

)
Q̃

(i)
k

(
I −K

(i)
k+1H

(ii)
k+1

)T
After some arrangements of terms, and multiplying from

left and right with F̃ (ii)−1

k+1 and F̃ (ii)−T

k+1 , it gives

F̃
(ii)−1

k+1 P
(i)
k+1F̃

(ii)−T

k+1 = P
(i)
k + F

(ii)−1

k Q̃
(i)
k F

(ii)−T

k +

+ F̃
(ii)−1

k+1 K
(i)
k+1R̃

(i)
k+1K

(i)T

k+1 F̃
(ii)−T

k+1

Taking the inverse of both sides, and since R̃(i)
k+1 > 0 the

following inequality holds

F̃
(ii)T

k+1 P
(i)
k+1F̃

(ii)
k+1 ≤

(
1 +

q1 +
∑
j∈M,j ̸=i p

(j)f (j)
2

p(i)f
(i)

)−1

P
(i)−1

k

(38)

Setting 1 − γ(i) =

(
1 +

q1 +
∑
j∈M,j ̸=i p

(j)f (j)
2

p(i)f
(i)

)−1

demonstrates the lemma.

APPENDIX III
PROOF OF LEMMA 3

Proof: From Eq. 13, we can write∣∣∣∣∣∣(I −K
(i)
ki+1H

(ii)
ki+1

)∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣P (i)
ki+1|kiP

(i)−1

ki+1

∣∣∣∣∣∣ ≤ p(i)

q(i)
(39)

∣∣∣∣∣∣F̃ (ii)
k+1

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣[I −K
(i)
k+1H

(i)
k+1]F

(ii)
k

∣∣∣∣∣∣ ≤ p(i)f
(i)

q(i)

(40)

Therefore, from Eq. 19 we yield∣∣∣∣∣∣l(i)k+1

∣∣∣∣∣∣ ≤ p(i)

q(i)

∣∣∣∣∣∣ϕ(i)f (xk, x̂k)
∣∣∣∣∣∣+ κ̃

∣∣∣∣∣∣ϕ(i)+h (x, x̂)
∣∣∣∣∣∣ (41)

Using Eq. 18, we obtain∣∣∣∣∣∣e(i)k+1|k

∣∣∣∣∣∣ ≤ f
(i)
∣∣∣∣∣∣e(i)k ∣∣∣∣∣∣+ w(i) + φ

(i)
f

∣∣∣∣∣∣e(i)k ∣∣∣∣∣∣2 (42)

Choosing ϵ(i)
′

for
∣∣∣∣∣∣e(i)k ∣∣∣∣∣∣ ≤ ϵ(i)

′
, and after some algebraic

manipulations, we obtain∣∣∣∣∣∣l(i)Tk+1P
(i)−1

k+1

(
2F̃

(ii)
k+1e

(i)
k + l

(i)
k+1

)∣∣∣∣∣∣ ≤ κ
(i)
nonl

∣∣∣∣∣∣e(i)k ∣∣∣∣∣∣3 +D1(κ̃)

(43)

where κ(i)nonl =
(
A1κ̃

2 +B1κ̃+ C1

)
,

A1 =
φ
(i)2
h

p(i)

(
φ
(i)4
f ϵ(i)

′5
+ 4φ

(i)3
f f

(i)
ϵ(i)

′4
+ 2φ

(i)2
f ϵ(i)

′3
×(

2φ
(i)
f w(i) + 3f

(i)2
)
+ 4φ

(i)
f f

(i)
ϵ(i)

′2
(
3φ

(i)
f w(i)+

+ f
(i)2
)
+ φ

(i)2
h ϵ(i)

′
(
6φ

(i)2
f w(i) + 12φ

(i)
f f

(i)2
w(i)+

+ f
(i)4
)
+ +4φ

(i)2
h f

(i)
w(i)

(
3φ

(i)
f w(i) + f

(i)2
))

,

B1 = 2φ
(i)
f φ

(i)
h

p(i)

p(i)q(i)

[
φ
(i)2
f ϵ(i)

′3
+ 2φ

(i)
f f

(i)
ϵ(i)

′2
×(

1 + φ
(i)
f

)
+ ϵ(i)

′
(
2φ

(i)
f f

(i)2
+ f

(i)2
+ 3φ

(i)
f w(i)

)
+

+f
(i)
(
f
(i)2

+ 3w(i)
)]
,

C1 = 2φ
(i)
f

p(i)2

p(i)q(i)2

(
f
(i)

+ ϵ(i)
′
)
,

and

D = κ̃2φ
(i)2
h w(i)2 1

p(i)

(
w(i)

(
4φ

(i)
f ϵ(i)

′2
+ w(i)

)
+

+2f
(i)
ϵ(i)

′
(
3f

(i)
ϵ(i)

′
+ 2
))

+ κ̃φ
(i)
f φ

(i)
h w(i) p(i)

p(i)q(i)
ϵ(i)

′
×(

f
(i)2

ϵ(i)
′
+ w(i)ϵ(i)

′
+ 2f

(i)
w(i)

)
APPENDIX IV

PROOF OF THEOREM 1
Proof: Let V (i) : Rni → Rni be a positive function

defined by
V (i)(e

(i)
k ) = e

(i)T

k P
(i)−1

k e
(i)
k (44)

such that from Eq. 20
1

p(i)
||e(i)k ||2 ≤ V (i)(e

(i)
k ) ≤ 1

p(i)
||e(i)k ||2 (45)

∆V := e
(i)T

k+1P
(i)−1

k+1 e
(i)
k+1 − e

(i)T

k P
(i)−1

k e
(i)
k (46)

= e
(i)T

k

(
F̃

(ii)T

k+1 P
(i)−1

k+1 F̃
(ii)
k+1 − P

(i)−1

k

)
e
(i)
k +

+ n
(i)T

k+1P
(i)−1

k+1 n
(i)
k+1 + l

(i)T

k+1P
(i)−1

k+1

(
2F̃

(ii)
k+1e

(i)
k + l

(i)
k+1

)
+ 2n

(i)T

k+1P
(i)−1

k+1

(
F̃

(ii)
k+1e

(i)
k + l

(i)
k+1

)
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Applying Lemma 2 and Lemma 3, ∆V can be written as

∆V ≤ −γ(i)V (e
(i)
k ) + κ

(i)
nonl

∣∣∣∣∣∣e(i)k ∣∣∣∣∣∣3 +D(κ̃) (47)

+ n
(i)T

k+1P
(i)−1

k+1 n
(i)
k+1 + 2n

(i)T

k+1P
(i)−1

k+1

(
F̃

(ii)
k+1e

(i)
k + l

(i)
k+1

)
for
∣∣∣∣∣∣e(i)k ∣∣∣∣∣∣ ≤ ϵ(i)

′
.

As done in [18], choosing ϵ(i) = min(ϵ(i)
′
, γ(i)

ψ(i)p(i)κnonl
)

gives for
∣∣∣∣∣∣e(i)k ∣∣∣∣∣∣ ≤ ϵ(i) with ψ(i) > 1

κ
(i)
nonl

∣∣∣∣∣∣e(i)k ∣∣∣∣∣∣3 ≤ γ(i)

ψ(i)
V (e

(i)
k ) (48)

Considering the term n
(i)T

k+1P
(i)−1

k+1 n
(i)
k+1 (see also [18]), the

Eq. 39 and that ||w(i)
k || ≤ w(i) and ||v(i)k || ≤ v(i), the

following can be stated∣∣∣∣∣∣n(i)Tk+1P
(i)−1

k+1 n
(i)
k+1

∣∣∣∣∣∣ ≤ 1

p(i)

(
p(i)

q(i)
w(i) + κ̃v(i)

)2

(49)

The same approach can be exploited for∣∣∣∣∣∣2n(i)Tk+1P
(i)−1

k+1

(
F̃

(ii)
k+1e

(i)
k + l

(i)
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p(i)

[
2
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q(i)
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(50)

+κ̃v]
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Adding the two terms, we obtain∣∣∣∣∣∣n(i)Tk+1P

(i)−1

k+1 n
(i)
k+1
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where

A2 =
v(i)

p(i)

(
φ
(i)2
f φ

(i)
h ϵ(i)

′4
+ 2φ

(i)
f φ

(i)
h f

(i)
ϵ(i)

′3
+

+ φ
(i)
h f

(i)2
ϵ(i)

′2
+ φ

(i)
f φ

(i)
h w(i)ϵ(i)

′2
+

+2φ
(i)
h f

(i)
w(i)ϵ(i)

′
+ v(i) + φ

(i)
h w(i)

)
B2 =

p(i)

p(i)q(i)

(
2φ

(i)2
f φ

(i)
h ϵ(i)

′4
+ 4φ

(i)
f φ

(i)
h f

(i)
ϵ(i)

′3
+

+ φ
(i)
h v(i)ϵ(i)

′2
+ 2φ

(i)
h f

(i)2
ϵ(i)

′2
+ 2φ

(i)
f φ

(i)
h w(i)ϵ(i)

′2
+

+f
(i)
v(i)ϵ(i)

′
+ 4φ

(i)
f f

(i)
w(i)ϵ(i)

′
+ φ

(i)
f w(i)2 + 2w(i)v(i)

)
C2 =

p(i)2

p(i)q(i)2

(
φ
(i)
f ϵ(i)

′2
+ 2f

(i)
ϵ(i)

′
+ w(i)2

)
Therefore,

∆V ≤ γ(i)(1− ψ(i))

ψ(i)
V (e

(i)
k ) + ρ(i)(κ̃) (52)

where

ρ(i)(κ̃) = A2κ̃
2 +B2κ̃+ C2 +D1

Since 0 < γ(i) < 1 and ψ(i) > 1,

ξ(i) =
γ(i)(1− ψ(i))

ψ(i)
∈ (−1, 0) (53)

it implies∣∣∣∣∣∣e(i)k+1

∣∣∣∣∣∣2 ≤ p(i)

p(i)

(
1 + ξ(i)

)k+1 ∣∣∣∣∣∣e(i)0
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