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Abstract— This paper presents a deep learning based model
predictive control (MPC) algorithm for systems with unmatched
and bounded state-action dependent uncertainties of unknown
structure. We utilize a deep neural network (DNN) as an
oracle in the underlying optimization problem of learning based
MPC (LBMPC) to estimate unmatched uncertainties. Generally,
DNNs as oracle are considered difficult to employ with LBMPC
due to the technical difficulties associated with the estimation
of their coefficients in real time. We employ a dual-timescale
adaptation mechanism, where the weights of the last layer of
the neural network are updated in real time while the inner
layers are trained on a slower timescale using the training data
collected online and selectively stored in a buffer. Our results are
validated through a numerical experiment on the compression
system model of a jet engine. These results indicate that the
proposed approach is implementable in real time and carries
the theoretical guarantees of LBMPC.

I. Introduction

Machine learning and Model Predictive Control (MPC)
complement each other by compensating drawbacks of each
other and making their combination useful for safety critical
applications. We refer readers to [1], [2] for excellent surveys
on safe learning and robotics.

Learning based Model Predictive Control (LBMPC) [3]
became popular due to its improvement over linear MPC in
terms of transient response and overshoot with slight expense
in processing time [4]. Several interesting applications such
as autonomous driving [5], [6], heat, ventilation and air-
conditioning systems [7], quad-copter [4], formation control
[8], atmospheric pressure plasma jets [9], air-borne wind
energy systems [10] etc., contributed in theoretical and
practical advancements.

Due to the significant success of and progress in deep
learning techniques, this is tempting to use a neural network
as an oracle in LBMPC. However, boundedness and differ-
entiability of the oracle is required to hold the results of [3].
Even though a bounded and differentiable neural network
can be constructed, the estimation of their weights in real
time is generally difficult [11]. Since training of DNN is a
time demanding process, real time implementation of DNN
supported LBMPC is challenging.

In this article, we demonstrate that the real time imple-
mentation of neural network based oracle is not only possible

We gratefully acknowledge financial support from NSF CNS grant
1954556 and USDA-NIFA grant 2021-67021-34418.

M. V. Gasparino and G. Chowdhary are with Computer Science De-
partment, University of Illinois at Urbana Champaign (UIUC), USA.
{mvalve2,girishc}@illinois.edu

P. K. Mishra is with Chemical Engineering Department, Massachusetts
Institute of Technology (MIT), Cambridge, USA. pkmishra@mit.edu

Fig. 1: The neural network on the main loop with fixed
hidden layers is connected with MPC and transmits the
weights of output layer at time sequence (𝑇𝑘)𝑘∈Z+ to the
neural network on the training thread. This neural network
(on the training thread) transmits the weights of hidden layer
to the neural network (on the main loop) at time instants
(𝑡 𝑗 ) 𝑗∈Z+ after its 𝑗 th training.

but also computationally efficient by two time scale training.
In [12], [13], the training of the output layer and the hidden
layers are separated in which the output layer is trained online
through adaptation by considering the recently trained hidden
layers as a feature basis function and the hidden layers are
trained on a parallel machine by keeping the recently updated
weights of the output layer fixed. We refer readers to excellent
surveys on transfer learning [14], [15]. This method of two
time scale training allows us to try different methods of
training the output layer and hidden layers independently.
In addition, different architectures such as Recurrent Neural
Network and Convolutional Neural Network are also sup-
ported for the hidden layer. The theoretical guarantees mostly
depend on last activation layer and the training mechanism
of the linear output layer. The above methods [12], [13] are
limited only to those uncertainties that enter into the dynam-
ics through control channel. The present article extends the
results of [12], [13] by generalizing the class of uncertainties.
Our approach improves the performance of [3] by replacing
the L2NW estimator by a DNN. Since PyTorch is popular
for DNN implementation and CasAdi for MPC, we address
some non-trivial issues related to their interface also.

This article is organized as follows. The problem statement
is given in §II. The architecture of neural network and its
training mechanism are explained in §III. LBMPC and its
properties are presented in §IV and §V, respectively. We
validate our results in §VI and conclude in §VII.

We let R denote the set of real numbers, N the set of non-
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negative integers and Z+ the set of positive integers. For a
given vector 𝑣 and positive (semi)-definite matrix 𝑀 ⪰ 0,
∥𝑣∥2

𝑀 is used to denote 𝑣⊤𝑀𝑣. For a given matrix 𝐴, the
trace, the largest eigenvalue and pseudo-inverse are denoted
by tr(𝐴), _max (𝐴) and 𝐴†, respectively. By notation ∥𝐴∥
and ∥𝐴∥∞, we mean the 2−norm and ∞−norm when 𝐴

is a vector; induced 2−norm and ∞−norm when 𝐴 is a
matrix, respectively. A vector or a matrix with all entries 0 is
represented by 0 and 𝐼 is the identity matrix of appropriate
dimensions. We let 𝑀 (𝑖) denote the 𝑖th column of a given
matrix 𝑀 .

II. Problem setup

Let us consider a discrete time dynamical system

𝑥𝑡+1 = 𝐴𝑥𝑡 +𝐵𝑢𝑡 + ℎ(𝑥𝑡 , 𝑢𝑡 ); 𝑡 ∈N, (1)

(1-a) 𝑥𝑡 ∈ X ⊂ R𝑑 , 𝑢𝑡 ∈ U ⊂ R𝑚; 𝑑,𝑚 ∈ Z+,
(1-b) ℎ : X×U→R𝑑 is a continuous and (possibly) nonlin-

ear function, which represents state-action dependent
unmatched uncertainty (or modeling error),

(1-c) ℎ(𝑥,𝑢) ∈W for every 𝑥 ∈ X and 𝑢 ∈ U,
(1-d) X,U and W are polytopes,
(1-e) the matrix pair (𝐴, 𝐵) is stabilizable.

The matrices 𝐴 and 𝐵 represent our domain knowledge
or prior knowledge about the system dynamics, and the
continuous function ℎ represents the unknown component
of the system dynamics1. LBMPC [3] has been developed to
improve the closed-loop performance of tube-based robust
MPC by modifying the cost function in the underlying
optimization problem. The cost function is modified by
learning (or estimating) the unknown function ℎ with the
help of data. In this article, we address issues associated
with the use of DNN as an estimator of ℎ. Our main focus
is to use DNN in such a way that it can be implemented in
real time on a hardware with limited computational power.
The general problem description of this article is as follows:

Problem Statement 1: Present a stabilizing, robust and
real-time implementable control framework for (1), which
respects physical constraints (1-a), optimizes a given perfor-
mance index, and reduces the effect of unmatched uncertain-
ties by using a trainable DNN.

III. Deep neural network

Any continuous function ℎ on a compact set X ×U can
be approximated with a desired accuracy by a multi-layer
network with number of layers 𝐿 ⩾ 2 [16, §7.1]. We can
represent ℎ(𝑥𝑡 , 𝑢𝑡 ) with the help of a neural network such
that

ℎ(𝑥,𝑢) =𝑊⊤
𝐿𝜓𝐿

[
𝑊⊤
𝐿−1𝜓𝐿−1 [· · · [𝜓1 (𝑥,𝑢)]]

]
+ Y∗ (𝑥,𝑢), (2)

where 𝑥 ∈ X and 𝑢 ∈ U. 𝜓𝑖 and 𝑊𝑖 , for 𝑖 = 1, . . . , 𝐿, are the
activation functions in the 𝑖th layer and the corresponding
ideal weights, respectively.

1For example, when a non-linear dynamics is linearized by the matrix
pair (𝐴, 𝐵) , ℎ represents the linearization error.

Fig. 2: The neural network architecture can use an arbitrary
number of layers and neurons. The input layer has the same
number of neurons as the experience data. The output layer
has as many neurons as system states. The hidden layers can
have any architecture provided suitable adjustments are made
to facilitate their training.

Let us define 𝜙∗ (𝑥,𝑢) B 𝜓𝐿
[
𝑊⊤
𝐿−1𝜓𝐿−1 [· · · [𝜓1 (𝑥,𝑢)]]

]
and 𝑊∗ B𝑊𝐿 , then

ℎ(𝑥𝑡 , 𝑢𝑡 ) =𝑊∗⊤𝜙∗ (𝑥𝑡 , 𝑢𝑡 ) + Y∗ (𝑥𝑡 , 𝑢𝑡 ), (3)

where 𝑊∗ ∈ R(𝑛𝐿+1)×𝑑 denotes the weights of the output
layer. There are 𝑛𝐿 number of neurons in the last hidden
layer. The first row of 𝑊∗ represents the bias term in the
output layer and the first element of 𝜙∗ ∈ R𝑛𝐿+1 is 1.

The major challenge is associated with real-time imple-
mentation of DNN because its training takes much more
time than the sampling interval of fast hardware like quad-
copter. Therefore, we address this issue with the help of
two DNN’s as shown in Fig. 1. Both DNNs have same
architecture as in Fig. 2. The DNN in the main loop is located
on the main machine and the other DNN is located on some
secondary (or remote) machine. We update the weights of the
output layer on the main machine in real time at each time
instant with the help of a weight update law while keeping
the weights of hidden layers fixed. The hidden layers are
trained on a secondary machine by using the approach [17]
in which the weights of the output layer are copied from
the main machine at the start of the training and remain
fixed during the training. Once the training of DNN on a
secondary machine is complete, new weights of hidden layers
are updated on the main machine and remain fixed until the
new set of weights are again obtained from the secondary
machine. Training details about the output layer and hidden
layers are provided in §III-A and §III-B, respectively.

Let (𝑡 𝑗 ) 𝑗∈Z+ represent an increasing time sequence of
instants when weights of hidden layers are updated on main
machine. Therefore, we get the following expression:

ℎ(𝑥𝑡 , 𝑢𝑡 ) =𝑊∗⊤𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 ) + Y 𝑗 (𝑥𝑡 , 𝑢𝑡 ), (4)

where Y 𝑗 (𝑥𝑡 , 𝑢𝑡 ) = 𝑊∗⊤ (
𝜙∗ (𝑥𝑡 , 𝑢𝑡 ) −𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )

)
+ Y∗ (𝑥𝑡 , 𝑢𝑡 ).

We can assume that
𝜙 𝑗 (𝑥,𝑢) will be bounded for each 𝑗 ,

𝑢 ∈R𝑚 and 𝑥 ∈R𝑑 due to the presence of bounded activation
layer in Fig. 2 consisting bounded neurons, i. e. sigmoidal,
tanh, etc. Since ℎ is bounded due to (1-c), we can assume
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that ideal weights 𝑊∗ in the output layer are also bounded.
We make the following assumption:

Assumption 1: There exist �̄�𝑖 > 0 for 𝑖 = 1, . . . , 𝑑, and
𝜎, Ȳ > 0 such that

𝑊∗(𝑖) ⩽ �̄�𝑖 , for 𝑖 = 1, . . . , 𝑑, and𝜙 𝑗 (𝑥,𝑢) ⩽ 𝜎 for every 𝑥 ∈ X, 𝑢 ∈ U and 𝑗 ∈N.
The above assumption is standard in literature [12], [18],
[19]. If the neural network is not minimal then the ideal
weights may not be unique. However, for the neural-adaptive
controller design only the existence of ideal weights is
assumed, which is always guaranteed when ℎ is a continuous
function on a compact set [16, §7.1]. A priori knowledge
about the bounds on the ideal weights 𝑊∗ of the output layer
is useful to avoid parameter drift phenomenon.

At 𝑡0 = 0, weights of DNN on both machines are randomly
initialized with desired bound on the output layer weights as
per the Assumption 1. Therefore, for 𝑗 ∈N, we have

ℎ̂𝑡 (𝑥𝑡 , 𝑢𝑡 )B 𝐾⊤
𝑡 𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 ) for 𝑡 ∈ {𝑡 𝑗 , 𝑡 𝑗 +1, . . . , 𝑡 𝑗+1−1}. (5)

We update 𝐾𝑡 in an unsupervised manner on main machine
while collecting the training data for the DNN on secondary
machine. In the next subsections we provide the relevant
details of the training of DNN.

A. Adaptive learning of 𝑊∗ on the main machine
For 𝑡 ∈ {𝑡 𝑗 , 𝑡 𝑗 +1, . . . , 𝑡 𝑗+1−1}, the output of DNN is given

by (5) and the bounded features are given by 𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 ) at
time 𝑡 +1 2. We get the estimated state

𝑥𝑡+1 = 𝐴𝑥𝑡 +𝐵𝑢𝑡 + ℎ̂𝑡 (𝑥𝑡 , 𝑢𝑡 ). (6)

We can compute the error 𝑥𝑡+1 = 𝑥𝑡+1 − 𝑥𝑡+1. For the online
training of the output layer, we employ the projection based
robust weight update law and refer readers to [20, Chapter
10] for other methods. For a given learning rate 0 < 𝛾 < 1,
we first modify 𝐾𝑡 by taking 𝑥𝑡+1 into account to get �̄�𝑡+1
and then project �̄�𝑡+1 to ensure its boundedness as follows:

�̄�𝑡+1 = 𝐾𝑡 −𝛾
𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )2 𝑥

⊤
𝑡+1,

𝐾
(𝑖)
𝑡+1 = Proj �̄� (𝑖)

𝑡+1 =


�̄�

(𝑖)
𝑡+1 if

�̄� (𝑖)
𝑡+1

 ⩽ �̄�𝑖
�̄�𝑖�̄� (𝑖)
𝑡+1

 �̄� (𝑖)
𝑡+1 otherwise.

(7)

The implications of (7) are discussed in §V.

B. Supervised learning of 𝜙∗ on a secondary machine
In this section, we explain the training data and the loss

function required for the supervised training of the DNN on
the secondary machine. For a given state-action pair (𝑥𝑡 , 𝑢𝑡 )
as input at time 𝑡, the label ℎ(𝑥𝑡 , 𝑢𝑡 ) is computed at time 𝑡+1
by the relation:

ℎ(𝑥𝑡 , 𝑢𝑡 ) = 𝑥𝑡+1 − 𝐴𝑥𝑡 −𝐵𝑢𝑡 . (8)

These pairs (𝑥,𝑢) and corresponding labels ℎ(𝑥,𝑢) are stored
in a training buffer until the buffer is full. In particular, a full
buffer consists of

(
(𝑥𝑖 , 𝑢𝑖), ℎ(𝑥𝑖 , 𝑢𝑖)

)
for 𝑖 = 1, . . . , 𝑝max.

2This is important for implementation to note that 𝑢𝑡 is computed at time
𝑡 but we need to use 𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 ) and ℎ̂(𝑥𝑡 , 𝑢𝑡 ) at time 𝑡 +1.

Once the buffer is full, new data is stored by replacing
some old data. Several methods are proposed in the literature
to increase the richness of the training buffer; see [21]–[23]
and references therein. We refer readers to [24] for different
methods of designing replay buffer.

Let (𝑇𝑘)𝑘∈Z+ be an increasing time sequence. At time 𝑇𝑘 ,
the weight of output layer of the primary neural network are
copied in the secondary neural network. During the training,
the output layer weights in the secondary network remain
fixed. Therefore, we are interested in finding the weights
𝑊1:𝐿−1 B 𝑊1, . . . ,𝑊𝐿−1 which minimize the following cost
for a given input (𝑥,𝑢) and label ℎ(𝑥,𝑢):

ℓ ((𝑥,𝑢),𝑊1:𝐿−1) Bℎ(𝑥,𝑢) −𝐾⊤
𝑇𝑘
𝜓𝐿

[
𝑊⊤
𝐿−1𝜓𝐿−1 [· · · [𝜓1 (𝑥,𝑢)]]

]2
.

Let 𝑀 represent the number of training samples and
D𝑘 B

(
(𝑥𝑖 , 𝑢𝑖), ℎ(𝑥𝑖 , 𝑢𝑖)

)𝑀
𝑖=1 is training data consisting 𝑀

data points randomly sampled from the buffer for the 𝑘 th

training. The following loss function is considered for the
training of DNN:

L(D𝑘 ,𝑊1:𝐿−1) =
1
𝑀

𝑀∑︁
𝑖=0
ℓ
(
(𝑥𝑖 , 𝑢𝑖),𝑊1:𝐿−1

)
.

IV. Model predictive controller
We first fix an optimization horizon 𝑁 ∈ Z+. Let 𝑥𝑟 , 𝑢𝑟

be a reference (or equilibrium) state-action pair. For given
positive definite matrices 𝑄, 𝑅 ≻ 0, 𝑃 ≻ 0 is the solution of
the following Lyapunov equation:

(𝐴+𝐵K)⊤𝑃(𝐴+𝐵K) −𝑃 = −(𝑄 +K⊤𝑅K), (9)

where K is such that 𝐴+𝐵K is Schur stable. We define the
following cost

𝜓(𝑧0:𝑁+1, 𝑣0:𝑁 ) B ∥𝑧𝑁 − 𝑥𝑟 ∥2
𝑃 +

𝑁−1∑︁
𝑖=0

∥𝑧𝑖 − 𝑥𝑟 ∥2
𝑄 + ∥𝑣𝑖 −𝑢𝑟 ∥2

𝑅 .

Let us define 𝑅𝑖+1 = (𝐴 + 𝐵K)𝑅𝑖 ⊕W with 𝑅0 = {0}. For
𝑖 = 0, . . . , 𝑁 −1, we impose the following constraints:

𝑧𝑖+1 = 𝐴𝑧𝑖 +𝐵𝑣𝑖
𝑧𝑖 ∈ X ⊖ 𝑅𝑖 , 𝑣𝑖 ∈ U⊖K𝑅𝑖
𝑧𝑁 ∈ Ω⊖ 𝑅𝑁 ,

(10)

where Ω is a disturbance invariant set. At each time 𝑡, we
measure the state 𝑥𝑡 of the system (1) and solve the following
optimization problem:

min
(𝑐𝑖)𝑁−1

𝑖=0

𝜓(𝑧0:𝑁+1, 𝑣0:𝑁 )

s. t. 𝑧0 = 𝑧0 = 𝑥𝑡

𝑣𝑖 =K𝑧𝑖 + 𝑐𝑖 for 𝑖 ∈ Z[0,𝑁−1]

𝑧𝑖+1 = 𝐴𝑧𝑖 +𝐵𝑣𝑖 + ℎ̂𝑡 (𝑧𝑖 , 𝑣𝑖) for 𝑖 ∈ Z[0,𝑁−1]

Eq. (10).

(11)

By solving the above problem, we get 𝑣0 =K𝑥𝑡 + 𝑐0. We set
𝑢𝑡 = 𝑣0 and apply 𝑢𝑡 to the system (1).
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V. Properties of LBMPC
For the purpose of analysis, we define �̃�𝑡 B 𝐾𝑡 −𝑊∗,

𝑥𝑡+1 B 𝑥𝑡+1 − 𝑥𝑡+1 = ℎ̂𝑡 (𝑥𝑡 , 𝑢𝑡 ) − ℎ(𝑥𝑡 , 𝑢𝑡 ) = �̃�⊤
𝑡 𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 ) −

Y 𝑗 (𝑥𝑡 , 𝑢𝑡 ) and �̄� B
∑𝑚
𝑖=1 �̄�

2
𝑖
. We recall the following def-

inition:
Definition 1 ([25], page 117): The vector sequence

(𝑠𝑡 )𝑡 ∈N is called ` small in mean square sense if it satisfies∑𝑘+𝑁−1
𝑡=𝑘 ∥𝑠𝑡 ∥2 ⩽ 𝑁𝑐0` + 𝑐′0 for all 𝑘 ∈ Z+, a given constant

` ⩾ 0 and some 𝑁 ∈ Z+, where 𝑐0, 𝑐
′
0 ⩾ 0.

We make the following assumption:
Assumption 2: There exists Ȳ > 0 such thatY 𝑗 (𝑥,𝑢) ⩽ Ȳ for each (𝑥,𝑢) ∈ X ×U and 𝑗 ∈N.

Since ℎ is bounded due to (1-c), 𝑊∗, 𝜙 𝑗 due to Assumption 1
and 𝐾𝑡 due to (7), the above assumption is trivially satisfied.
We have the following result that says that the estimation
error 𝑥𝑡+1 = ℎ̂𝑡 (𝑥𝑡 , 𝑢𝑡 ) − ℎ(𝑥𝑡 , 𝑢𝑡 ) is small in mean square
sense.

Lemma 1: Consider the dynamical system (1), weight
update law (7). Let the assumptions 1 and 2 hold. Let us
define 𝑉𝑎 (𝐾𝑡 ) B 1

𝛾
tr(�̃�⊤

𝑡 �̃�𝑡 ). Then for all 𝑡,
(i) 𝑉𝑎 (𝐾𝑡 ) ⩽ 4

𝛾
�̄� ,

(ii) 𝑉𝑎 (𝐾𝑡+1) −𝑉𝑎 (𝐾𝑡 ) ⩽ − 1−𝛾
𝜎2 ∥𝑥𝑡+1∥2 +

Y 𝑗 (𝑥𝑡 , 𝑢𝑡 )2,
(iii) 𝑥𝑡 is Ȳ2 small in mean square sense with 𝑐0 =

𝜎2

1−𝛾 and
𝑐′0 =

4𝑐0
𝛾
�̄� as per the Definition 1.

Proof: (Proof of Lemma 1)

(i) Since 𝑉𝑎 (𝐾𝑡 ) = 1
𝛾

tr(�̃�⊤
𝑡 �̃�𝑡 ) = 1

𝛾

∑𝑚
𝑖=1

𝐾 (𝑖)
𝑡 −𝑊∗(𝑖)

2
⩽

2
𝛾

∑𝑚
𝑖=1

𝐾 (𝑖)
𝑡

2
+
𝑊∗(𝑖)2

⩽ 4
𝛾

∑𝑚
𝑖=1 �̄�

2
𝑖
= 4
𝛾
�̄� .

(ii) By substituting �̃�𝑡+1 = �̄�𝑡+1 − 𝑊∗ + 𝐾𝑡+1 − �̄�𝑡+1 in
𝑉𝑎 (𝐾𝑡+1) and defining 𝛼𝑡 B (𝐾𝑡+1 − �̄�𝑡+1)⊤ (𝐾𝑡+1 −
�̄�𝑡+1) + 2(𝐾𝑡+1 − �̄�𝑡+1)⊤ (�̄�𝑡+1 − 𝑊∗) = −(𝐾𝑡+1 −
�̄�𝑡+1)⊤ (𝐾𝑡+1 − �̄�𝑡+1) + 2(𝐾𝑡+1 − �̄�𝑡+1)⊤ (𝐾𝑡+1 − 𝑊∗),
we get

𝑉𝑎 (𝐾𝑡+1) =
1
𝛾

tr(�̃�⊤
𝑡+1�̃�𝑡+1)

=
1
𝛾

tr
(
(�̄�𝑡+1 −𝑊∗)⊤ (�̄�𝑡+1 −𝑊∗)

)
+ 1
𝛾

tr (𝛼𝑡 ) .

One important property of the projection is the following
[25, (4.61)]:

(𝑊∗(𝑖) −𝐾 (𝑖)
𝑡 )⊤ (�̄� (𝑖)

𝑡 −𝐾 (𝑖)
𝑡 ) ⩽ 0 for each 𝑖 = 1, . . . ,𝑚.

(12)
Since (𝐾 (𝑖)

𝑡+1− �̄�
(𝑖)
𝑡+1)

⊤ (𝐾 (𝑖)
𝑡+1−𝑊

∗) ⩽ 0 due to (12), we can
ensure tr(𝛼𝑡 ) ⩽ 0. Therefore,

𝑉𝑎 (𝐾𝑡+1) ⩽
1
𝛾

tr
(
(�̄�𝑡+1 −𝑊∗)⊤ (�̄�𝑡+1 −𝑊∗)

)
=𝑉𝑎 (𝐾𝑡 ) +

𝛾𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )2 tr
(
𝑥𝑡+1𝑥

⊤
𝑡+1

)
− 1𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )2

× tr
(
�̃�⊤
𝑡 𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )𝑥⊤𝑡+1 + 𝑥𝑡+1𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )⊤�̃�𝑡

)
.

By substituting �̃�⊤
𝑡 𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 ) = 𝑥𝑡+1 + Y 𝑗 (𝑥𝑡 , 𝑢𝑡 ) in the

above inequality, we get

𝑉𝑎 (𝐾𝑡+1) ⩽ 𝑉𝑎 (𝐾𝑡 ) +
1𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )2

(
𝛾 ∥𝑥𝑡+1∥2 −2tr(𝑥𝑡+1

+ Y 𝑗 (𝑥𝑡 ))𝑥⊤𝑡+1

)
=𝑉𝑎 (𝐾𝑡 ) +

1𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )2

(
𝛾 ∥𝑥𝑡+1∥2 −2𝑥⊤𝑡+1 (𝑥𝑡+1

+ Y 𝑗 (𝑥𝑡 , 𝑢𝑡 ))
)

=𝑉𝑎 (𝐾𝑡 ) +
1𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )2

(
(𝛾−2) ∥𝑥𝑡+1∥2

−2𝑥⊤𝑡+1Y 𝑗 (𝑥𝑡 , 𝑢𝑡 )
)

⩽ 𝑉𝑎 (𝐾𝑡 ) +
1𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )2

(
(𝛾−1) ∥𝑥𝑡+1∥2 +

Y 𝑗 (𝑥𝑡 , 𝑢𝑡 )2
)

=𝑉𝑎 (𝐾𝑡 ) −
1−𝛾𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )2 ∥𝑥𝑡+1∥2 +

Y 𝑗 (𝑥𝑡 , 𝑢𝑡 )2𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )2

⩽ 𝑉𝑎 (𝐾𝑡 ) −
1−𝛾
𝜎2 ∥𝑥𝑡+1∥2 +

Y 𝑗 (𝑥𝑡 , 𝑢𝑡 )2
,

where the last inequality is due to 1 ⩽
𝜙 𝑗 (𝑥𝑡 , 𝑢𝑡 )2

⩽ 𝜎2.
Therefore,

𝑉𝑎 (𝐾𝑡+1) −𝑉𝑎 (𝐾𝑡 ) ⩽ −1−𝛾
𝜎2 ∥𝑥𝑡+1∥2 +

Y 𝑗 (𝑥𝑡 , 𝑢𝑡 )2
.

(iii) Consider Lemma 1-(ii) to get
1−𝛾
𝜎2 ∥𝑥𝑡+1∥2 ⩽ −𝑉𝑎 (𝐾𝑡+1) +𝑉𝑎 (𝐾𝑡 ) +

Y 𝑗 (𝑥𝑡 , 𝑢𝑡 )2

⩽ −𝑉𝑎 (𝐾𝑡+1) +𝑉𝑎 (𝐾𝑡 ) + Ȳ2.

By summing from 𝑡 = 𝑘 to 𝑘 +𝑁 − 1 in both sides, we
get

1−𝛾
𝜎2

𝑘+𝑁−1∑︁
𝑡=𝑘

∥𝑥𝑡+1∥2 ⩽ 𝑉𝑎 (𝐾𝑘) +𝑁Ȳ2,

⩽
4
𝛾
�̄� +𝑁Ȳ2.

Therefore, 𝑥𝑡 is Ȳ2 small in mean square sense with 𝑐0 =
𝜎2

1−𝛾 and 𝑐′0 =
4𝑐0
𝛾
�̄� as per the Definition 1.

We recall the following definition:
Definition 2 ([26]): A system is robust asymptotically sta-

ble around 𝑥𝑟 if there exists a class-KL function 𝛽 and for
every Y > 0 there exists 𝛿 > 0 such that ∥ℎ(𝑥𝑡 , 𝑢𝑡 )∥ ⩽ 𝛿 =⇒
∥𝑥𝑡 − 𝑥𝑟 ∥ ⩽ 𝛽(∥𝑥𝑡 − 𝑥𝑟 ∥ , 𝑡) + Y for all 𝑡.

Theorem 1 (Recursive feasibility and stability): The con-
trol law of LBMPC (11) is robust asymptotically stable
with respect to the disturbances. The closed-loop system (1)
under LBMPC (11) is input-to-state stable. The optimization
problem (11) is recursively feasible.

Proof: Since ℎ̂𝑡 is a continuous and uniformly bounded
function due to the construction, the result follows from [3,
Theorem 2]. The second result is a direct implication of [27,
Lemma 3.5]. The recursive feasibility of (11) is due to [3,
Theorem 1]. In particular, if (𝑐0, 𝑐1, . . . , 𝑐𝑁−1) is an optimizer
of (11) at some time 𝑡 then (𝑐1, . . . , 𝑐𝑁−1,0) will be a feasible
solution at time 𝑡 +1.
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VI. Numerical experiment
We consider the compression system of a jet engine, which

exhibits instabilities due to rotating stall and surge. The
Moore-Greitzer compressor model is given by the following
nonlinear dynamics:

¤𝑧 = −𝑦+ 𝑧𝑐 +1+ 3
2
𝑧− 1

2
𝑧3

¤𝑦 = 1
𝛽2

(
𝑧+1− 𝑟

√
𝑧
)
,

(13)

where 𝑧 is mass flow, 𝑦 is pressure rise, 𝛽 > 0 is a constant
and 𝑟 is the throttle opening. Similar to [3], we assume that
𝑟 is controlled by a second order actuation with transfer
function 𝑟 (𝑠) = 𝜔2

𝑛

𝑠2+2Z 𝜔𝑛𝑠+𝜔2
𝑛
𝑢(𝑠), where 𝑢 is the input. Our

simulation parameters are 𝛽 = 1, 𝑧𝑐 = 0, Z = 1√
2
,𝜔𝑛 = 10

√
10.

We have the following constraints:

𝑧 ∈ [0,1] 𝑦 ∈ [1.1875,2.1875]
𝑟 ∈ [0.1547,2.1547] ¤𝑟 ∈ [−20,20]
𝑢 ∈ [0.1547,2.1547]

(14)

The state 𝑥 of the system is represented by
𝑥 =

[
𝑧 𝑦 𝑟 ¤𝑟

]⊤ ∈ R4. The nonlinear model
(13) is linearized around the equilibrium point
𝑥𝑒 =

[
0.5 1.6875 1.1547 0

]⊤ and discretized with
sampling time 𝑇 = 0.05 seconds. We chose 𝑇 = 0.05
to make it slightly larger than the solver time in one
optimization problem corresponding to linear MPC for its
online implementation. We use a learning rate of 0.001 to
train the deep neural network in parallel.

We employed CasADI for the symbolic representation
of the underlying optimization problem of MPC (11). This
symbolic representation is done offline and therefore, helpful
in online implementation of MPC by updating only the
measured state. Since PyTorch has inbuilt tools for the
training of neural networks, we want to use it along with
CasADI. We design a neural network on main machine with
the help of CasADI and that on the secondary machine by
PyTorch.

Another difficulty is associated with the computation of
terminal set Ω and reachable sets 𝑅𝑖’s. The computation of
𝑅𝑖 is very hard for large 𝑖. MATLAB based tools like MPT
are not available in python for polytopic manipulation. The
python library pytope has very limited capability and is under
development. Therefore, we followed the approach of [28].
Let the set X ⊖W, X and U be given by

X ⊖W B {𝑥 ∈ R𝑑 | 𝐹𝑝𝑥 ⩽ ℎ𝑝}
X B {𝑥 ∈ R𝑑 | 𝐹𝑥𝑥 ⩽ ℎ𝑥}
UB {𝑥 ∈ R𝑚 | 𝐹𝑢𝑥 ⩽ ℎ𝑢},

where 𝐹𝑝 , 𝐹𝑥 , 𝐹𝑢 are suitable matrices and ℎ𝑝 , ℎ𝑥 , ℎ𝑢 are
suitable vectors required to provide the half-space represen-
tations of above sets. The set Ω and 𝑅𝑖 are approximated in
[28].

We are interested in comparing our proposed approach
with the state-of-the-art [3], which employs L2NW as an

Fig. 3: Proposed approach and [3] both have faster transient
response than that of linear MPC but the proposed approach
has smaller overshoot than that of [3].

Fig. 4: Proposed approach and [3] both have faster transient
response than that of linear MPC but the proposed approach
has smaller overshoot than that of [3].

estimator. We implemented L2NW with the help of CasADI
in terms of symbolic variables. One of the inputs for L2NW
is a data buffer of fixed size, used as function parameters
to learn the uncertainties. In an online implementation, this
data buffer is empty at the beginning and its size increases
with time. Therefore, we initialize a fixed size buffer in such
a way that default values do not affect the outcome of the
L2NW estimator. Our simulation parameters are same as in
[3] except the sampling time 𝑇 . Figures 3 and 4 demonstrate
that the proposed approach has faster transient response than
that of linear MPC and smaller overshoot than that of [3].
It is demonstrated in Fig. 5 that the proposed approach and
linear MPC both have comparable solver time but that in [3]
is larger than the sampling time at the beginning.

Only drawback in [3] is the use of L2NW estimator, which
makes the underlying optimization problem of LBMPC com-
putationally demanding and therefore hard to implement on
a small machines. Since the approach [3] gives choice to
use any estimator, authors used linear estimators in [4], [28]
instead of L2NW estimator. Our approach of using DNN
as an estimator is not only computationally less demanding
due to the parallel processing but surprisingly the underlying
optimization problems have similar solver time as linear
MPC (Fig. 5). Therefore, the proposed approach can be
implemented on small machines.
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Fig. 5: Solver time in both linear MPC and proposed ap-
proach is smaller than that of [3].

VII. Conclusion

This article demonstrates that DNN can be used in the
framework of LBMPC by dual time scale training and using
bounded neurons in the last activation layer. The proposed
approach is able to provide a faster solution because a DNN
can be trained on a separate machine. Since LBMPC allows
any estimator as an oracle, different DNN architectures can
be investigated for different class of problems by following
the proposed approach. Some interesting extensions may be
possible along the lines of vision based navigation [29],
stochastic MPC [30], [31] and Bayesian Neural Network [32].
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