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Abstract— This study is concerned with observer design for
a class of Lipschitz nonlinear systems. A high-gain observer
with a straightforward structure is proposed. As opposed to
the well-known high gain observers, dynamic gains obtained
are used to reduce the effect of peaking. In addition, the
injection term of the observer is passed through a linear filter
to reduce its sensitivity to noise. It is shown that the suggested
observer is peaking free with respect to the initial conditions,
while achieving the input to state stability with respect to
measurement noise, as a HGO. The analysis of the steady-
state response also shows that the proposed observer performs
better in the presence of high-frequency noise. The simulation
results compare the performance of the proposed method with
some existing observers.

I. INTRODUCTION

High-gain observers have been widely used in the nonlin-
ear dynamical control systems literature due to their simple
structure, simplicity in tuning, and robustness to model
uncertainties. In fact, it has been demonstrated that they are
able to provide a reliable estimate even when the system’s
nonlinearity is unknown [1]. For these observers, a nonlinear
separation principle is also provided [2] which allows the
implementation of stabilizing state feedback controllers for
nonlinear systems using output feedback. One caveat is the
requirement for high observer gains which results in the so-
called peaking phenomena. Even with a stabilizing controller,
peaking can destabilize the closed loop. The large gains
also affect the region of attraction. The use of saturation
functions in the control input (see section 14.5.1 in [3])
has been proposed to avoid the problems associated with
the peaking. However, a certain pre-knowledge is required
about the system’s behaviour to choose a suitable saturation
level that saturates the estimates outside a region of interest.
An alternative approach is the use of time-varying gains as
proposed in [4]–[7] which is shown to effectively eliminate
the peaking [8]. The simultaneous use of multiple observers
has been investigated in [9], [10] where a weighted average
of the individual estimates is used to produce state estimates
with reduced peaking and improved transient behaviour.
The aforementioned methods, as well as the HGO, remain
vulnerable to measurement noise. In each case, even small
noise can have a large effect on the estimates due to the use
of large gains (see Figure 6 in [4]). To reduce the sensitivity
to noise, the combination of the HGO with the extended
Kalman filters is performed in [11]. A re-design of the HGO
observers with gains powered up to 2 is proposed in [12]
that reduces the steady-state bounds on the estimates by
increasing the relative degree between the system’s output
and the estimations. Different low-pass filters have also been

employed in [13]–[15] to achieve similar goals. Only a few
works in the literature address both the peaking and sensi-
tivity to noise. We note the method proposed in [16] where
saturation functions are used in low-power observers [12] to
avoid the peaking. As discussed above for the saturation of
control inputs, this approach requires the knowledge of the
upper-bound of the system’s states. In [17], [18], the MHGO
is combined with low-power and filtered HGOs to improve
the results. However, these observers require the tuning of a
number of parameters which can be difficult in practice.

In this manuscript, we propose an HGO observer im-
plemented with two additional subsystems. The first sub-
system is a linear filter, as suggested in [14], that reduces
the observer’s sensitivity to noise. The second subsystem
is a differential Riccati equation that determines dynamic
observer gains. The proposed observer has a simple structure
which requires no tuning, except for the choice of the initial
conditions of the observer states and a large gain parameter
that is used to arbitrarily adjust the convergence speed of the
observer.

This paper is organized as follows. Section II presents
some preliminaries on HGOs. Section III introduces the
dynamics of the observer, and investigates the convergence,
peaking, and the sensitivity to noise of the observer. In
section IV, a numerical example is used to compare the
estimations provided by the observer, a conventional HGO,
a HGO with a linear filter, and a TV HGO. Finally, we
conclude the results in section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we consider nonlinear dynamical systems
expressed in the canonical observable form [19]:

ẋ(t) = Anx(t) +Bnφ(x(t), u(t))

y(t) = Cnx(t) + v(t)
(1)

where x= [x1, . . . , xn]
T ∈ Rn is the vector of state vari-

ables, u ∈ R and y ∈ R are the system’s input and
output variables, respectively. The variable v(t) denotes the
measurement noise. It is assumed to be bounded, i.e., for
some positive µ, we have |v(t)| ≤ µ for all t ≥ 0. The
matrices An ∈ Rn×n, Bn ∈ Rn×1 and Cn ∈ R1×n are
given as follows

An =

[
0(n−1)×1 In−1

0 01×(n−1)

]
Bn =

[
01×(n−1) 1

]T
, Cn =

[
1 01×(n−1)

] (2)
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where In shows the n × n identity matrix. The function
φ (x, u), with φ(0, 0) = 0, is assumed to be locally Lipschitz
in (x, u) for all x ∈ X ⊆ Rn, where X is a bounded set,
uniformly in u ∈ U ⊆ R. That is, the following inequality
holds for x ∈ X , u ∈ U , and a positive constant φ̄:

‖φ(x, u)− φ(x̄, u)‖ ≤ φ̄‖x− x̄‖. (3)

Note that ‖.‖ indicates the Euclidean norm throughout the
paper. Given the triangular form (1), it follows that the de-
signed observer for this system also performs as a numerical
differentiator since it provides estimates of the derivatives of
the first state variable. A conventional HGO for (1) is given
by
˙̂x(t) = Anx̂(t)+Bnφs (x̂(t), u(t))+

1

ε
Γ−1
ε K̄ (y(t)− Cx̂(t))

(4)
where Γε = diag

(
1, ε, ε2, . . . , εn−1

)
, and K̄ =

[k1, . . . , kn]
T ∈ Rn is chosen such that the matrix Ān =

An − K̄Cn is Hurwitz. If φ is globally Lipschitz, then
φs can be equal to φ. If it is locally Lipschitz, then φs
agrees with φ on the domain of interest. It is also saturated
outside this domain, i.e., we let φs = satR(φ) where R
indicates the saturation level that is chosen according to the
set in which (3) holds. For the observer (4) and the system
(1), it is shown in [1] that the following bounds hold for
x(0) ∈ X0, u ∈ U , x ∈ X , where X0 a compact set inside X ,
a small ε, and some positive constants κ1, κ2, κ3 independent
of ε:

‖xi(t)− x̂i(t)‖ ≤
κ1

εi−1
exp(−κ2

ε
t)‖x(0)− x̂(0)‖+

κ3

εi−1
µ.

(5)
In the absence of noise (µ = 0), the convergence rate of the
observer can be assigned by adjusting the design parameter ε.
Moreover, the HGO (4) is ISS with respect to measurement
noise. Equation (5) shows that the estimation error peaks to
the order of ε1−n for the nth state variable, xn. However,
it does not provide a clear assessment of the sensitivity of
the HGO to noise since the analysis only considers an upper
bound for the noise. The steady-state behaviour of a HGO
is studied in more details in [20]. It is assumed that the
measurement noise is the output of an autonomous system
that generates nv harmonics corresponding to the frequencies
ωi
δ . The system is given by:

δẇ = Sw, w ∈ R2nv

v = Pw
(6)

where the matrices S ∈ R2nv×2nv ,P ∈ R1×2nv are S :=

blkdiag(S1, . . . ,Snv ), with Si =

[
0 ωi
−ωi 0

]
, and P :=[

0 1 0 1 · · · 0 1
]
. The analysis captures the low-

pass filtering feature of an HGO leading to the bound:

lim
t→∞

sup |xi(t)− x̂i(t)| ≤
ρiδ

εi
µ (7)

for some positive constants ρi. Equation (7) shows how the
ultimate value of the estimates is affected by the relative
degree between the output measurement and the estimates
for a standard HGO. There have been several attempts

(e.g., in [12], [14], [15]) to augment the relative degree
and increase the effect of δ at steady-state. Using different
filtering methods, it can be shown that higher powers of δ can
appear in bounds such as (7) which indicate improvements
in the estimation since δ ∈ (0, 1).

III. THE FILTERED TIME-VARYING OBSERVER DESIGN

In this section, we present the proposed observer. We also
provide an analysis of the performance of the observer in the
presence of high-frequency noise. We consider the TVHGO
initially proposed in [4], [8] that is implemented using
the filtering technique proposed in [14]. The dynamics of
the resulting filtered time-varying high-gain observer (FTV
HGO) are given as follows:

˙̂x(t) =Anx̂(t) +Bnφs(x̂(t), u(t)) + ΓεG(t)z(t)

ż(t) =− 1

ε
Dz(t) +

1

ε2
ATnz(t) +

1

ε
CTn (y − Cnx̂(t))

L̇(t, ε) =− 1

ε
L(t, ε)−ATnL(t, ε)− L(t, ε)An + CTnCn

(8)
where the positive definite solution of the matrix L(t) in (8)
is explicitly expressed as [4]:

L(t, ε) = e−
1
ε te−A

T
n tL(0)e−Ant

+

∫ t

0

e−
1
ε (t−τ)e−A

T
n (t−τ)CTnCne

−An(t−τ)dτ.
(9)

and G(t) = diag(L−1(t)CTn ), x(0) = x0 ∈ X0, z(0) =
0, L(0) = In and D = 2In.

Theorem 1: Let the trajectories of (1) be such that x ∈ X
for all u ∈ U , and let the noise satisfy |v(t)| ≤ µ ∀t ≥ 0.
For the observer (8), choose x(0) = x0 ∈ X0 ⊆ Rn, z(0) =
0, L(0) = In and D = 2In. Then, for a small enough ε
and some positive constants κ̂1, κ̂2, κ̂3, α1, α2, γ2, θ, ζ and
σ independent of ε, the estimation error obtained from the
observer satisfies

‖xi(t)− x̂i(t)‖ ≤
1

εi−1
κ̂1 exp(−α1

ε
t)‖e(0)‖+

1

εi−1
κ̂2µ+

+
1

εi−1
κ̂3(exp(−γ2

ε
t)− exp(−α2

ε
t))

(10)
and

‖x(t)− x̂(t)‖ ≤θf(t, ε)‖e(0)‖+
ζε

λmin(L(t, ε))
µ+ σg(t, ε)

(11)
for all t ≥ 0, where f(t, ε) and g(t, ε) satisfy

lim
ε→0

sup f(t, ε) = 1, lim
ε→0

sup g(t, ε) = 0, lim
t→∞

f(t, ε) = 0,
lim
t→∞

g(t, ε) = 0, and λmin(L(t, ε)) denotes the smallest
eigenvalue of the matrix L(t, ε).
Proof: Let us define the scaled estimation error as η =[
Γεe
Γεz

]
, where e = x−x̂ is the vector of state estimation error.

Considering the properties ΓεAnΓ−1
ε = 1

εAn,ΓεA
T
nΓ−1

ε =
εATn ,ΓεG(t)Γ−1

ε = G(t),ΓεC
T
nCnΓ−1

ε = CTnCn,ΓεC
T
n =

CTn ,ΓεDΓ−1
ε = D,ΓεBn = εn−1Bn, and using (1) and (8)

we can write

η̇ =
1

ε
M(t)η + εn−1B̄ +

1

ε
C̄v(t) (12)
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where

M(t) =

[
An −εΓεG(t)
CTnCn −D +ATn

]
, B̄ =

[
Bn∆φ(x, x̂, u)

0n×1

]
∆φ(x, x̂, u) = φ(x, u)− φs(x̂, u), C̄ =

[
0n×1

CTn

]
From this point forward, unless otherwise specified, we
will use L (or L(t)) to denote L(t, ε) for simplicity. We
denote the steady-state solution of (8) (i.e., L̇(t) = 0)
L∞. We also denote by x̂∞(t), z∞(t) the trajectories of
system (8) for the same initial conditions and by replacing
G with G∞ (and L̇ = 0). One can write η = η1 + η2

where η1 =

[
Γε(x− x̂∞)

Γεz∞

]
, and η2 =

[
Γε(x̂∞ − x̂)
Γε(z − z∞)

]
.

Let gi show the ith element of the vector L−1
∞ CT

for i = 1, . . . , n. As discussed in [8], one gets from
(8) that L∞An − CTnCn = − 1

εL∞ − ATnL∞, which
yields L∞(An − L−1

∞ CTnCn)L−1
∞ = − 1

ε In − ATn . Let
the notation Ξ(.) denote the characteristic polynomial,
then, following the properties of similar matrices we get
Ξ(An − L−1

∞ CTnCn) = Ξ(− 1
ε In − ATn ). One has that

Ξ(− 1
ε In − A

T
n ) = (s + 1

ε )n = sn +
∑n
i=1

Cni
εi s

n−i where
Cni =

(
n
i

)
= n!

i!(n−i)! . Similarly, we can easily show that
Ξ(An − L−1

∞ CTnCn) = sn +
∑n
i=1 gis

n−i. As a result, we
get gi =

Cni
εi , which shows the diagonal elements of the

matrix G∞. Next, one has

M∞ =

[
An −C̃
CTnCn −D +ATn

]
(13)

where C̃ = diag[Cni ] for i = 1, . . . , n. To find the eigenvalues
of M∞, we use the equation M∞X = sX where X =
[ξ1, . . . , ξn, ξn+1, . . . , ξ2n]

T , along with (13) to write

ξ2 − Cn1 ξn+1 =sξ1 (14a)
ξ3 − Cn2 ξn+2 =sξ2 (14b)

...
ξn−1 − Cnn−2ξ2n−2 =sξn−2 (14c)
ξn − Cnn−1ξ2n−1 =sξn−1 (14d)

−Cnnξ2n =sξn (14e)
ξ1 − 2ξn+1 =sξn+1 (14f)

ξn+1 − 2ξn+2 =sξn+2 (14g)
...

ξ2n−2 − 2ξ2n−1 =sξ2n−1 (14h)
ξ2n−1 − 2ξ2n =sξ2n (14i)

Using (14e), and given that Cnn = 1, we get ξ2n = −sξn.
Substituting in (14i) gives ξ2n−1 = −s(s + 2)ξn. One can
recursively use (14h) to (14g) to obtain

ξn+1 = −s(s+ 2)n−1ξn (15)

Also, from (15) and (14f) we have

ξ1 = −s(s+ 2)nξn (16)

Now, one can employ (14d) to get

ξn−1 =
1

s
[1 + Cnn−1(s(s+ 2))]ξn

Similarly, from (14c) one has

ξn−2 =
1

s
[
1

s
(1 + Cnn−1(s(s+ 2))) + Cnn−2(s(s+ 2)2)]ξn

Using the rest of the equations recursively down to (14b)
yields

ξ2 = [
1

sn−2
+

n−2∑
i=1

Cnn−i
(s+ 2)i

sn−i−2
]ξn (17)

Finally, we can substitute (15), (16), and (17) in (14a), and
multiply by sn−2

ξn
to get

1+Cn1 sn−1(s+2)n−1 +sn(s+2)n+

n−2∑
i=1

Cnn−isi(s+ 2)i = 0

which is equivalent to [s(s+ 2) + 1]n = (s+ 1)2n = 0. This
shows the characteristic polynomial of M∞ and shows that
the eigenvalues of this matrix are placed at −1. Therefore,
we can claim the existence of a positive definite matrix P1

such that MT
∞P1 + P1M∞ = −I2n. Let p̄1 and p

1
denote

the largest and the smallest eigenvalues of P1 (which are
independent of ε), respectively. Since η1 satisfies (12) for
M∞ and ∆φ(x, x̂∞, u), we can pose V1 = ηT1 P1η1 as a
Lyapunov candidate and use ‖∆φ(x, x̂∞, u)‖ ≤ φ̄ε1−n‖η1‖
to write

V̇1 = −1

ε
‖η1‖2 + 2εn−1B̄TP1η1 +

2

ε
C̄TP1η1v(t)

≤ −2α1

ε
V1 +

2
√
p̄1

ε

√
V1‖v(t)‖

where α1 > 0 satisfies 1
p̄1
− 2εφ̄ ≥ 2α1 for a small

enough ε. Then, by choosing W1 =
√
V1, we can write

Ẇ1 ≤ −α1

ε W1 +
√
p̄1
ε ‖v(t)‖ away from the origin. By using

the comparison principle, we get

W1(η1(t)) ≤ exp(−α1

ε
t)W1(η1(0))

+

√
p̄1

ε

∫ t

0

exp(−α1

ε
(t− τ))|v(τ)|dτ

≤ exp(−α1

ε
t)W1(η1(0)) +

√
p̄1

α1
µ.

(18)

Taking into account the fact that x̂∞(0) = x̂(0) and η1(0) =
η(0), we get

‖η1(t)‖ ≤
√
p̄1

p
1

exp(−α1

ε
t)‖η(0)‖+

1

α1

√
p̄1

p
1

µ. (19)

For η2, we can use (8) to obtain

η̇2 =
1

ε
M∞η2+εn−1

[
Bn∆φ(x̂∞, x̂, u)

0n×1

]
+

[
Γ2
ε(G∞ −G(t))z(t)

0n×1

]
.

(20)

Since G∞ − G(t) is diagonal, the expression Γ2
ε(G∞ −

G(t))z(t) is equivalent to Γε(G∞−G(t))Γε(z(t)−z∞(t))+
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Γε(G∞ −G(t))Γεz∞(t). From the definition of η2 we have
‖Γε(z(t)− z∞(t))‖ ≤ ‖η2‖. Also, it follows from (19) that

‖Γεz∞(t)‖ ≤
√
p̄1

p
1

exp(−α1

ε
t)‖η(0)‖+

1

α1

√
p̄1

p
1

µ

,c1(t) ≤ c̄1.
(21)

where c̄1 =
√

p̄1
p
1

‖η(0)‖ + 1
α1

√
p̄1
p
1

µ. Using a Lyapunov

candidate V2 = ηT2 P1η2 and the equation ‖∆φ(x̂∞, x̂, u)‖ ≤
φ̄ε1−n‖η2‖, we have

V̇2 ≤ −
1

ε
‖η2‖2 + 2φ̄p̄1‖η2‖2

+ 2‖ηT2 P1‖‖Γε(G∞ −G(t))‖(‖η2‖+ c̄1)

We use the abbreviated form ‖ΓG‖ for ‖Γε(G∞ − G(t))‖.
Then, we can write

V̇2 ≤ −
1

ε
(2α1 − 2ε‖ΓG‖)V2 + 2c̄1

√
p̄1‖ΓG‖

√
V2 (22)

From equations (8) and (9), we can see that L(t) ≤ L(0),
implying that G(t) ≥ G(0) and thus we can derive ‖ΓG‖ ≤
‖Γε(G∞−G(0))‖. Using the fact that G(0) = diag(CTn ), we
can rewrite this as ‖ΓG‖ ≤ ‖diag([

Cn1
ε − 1,

Cn2
ε , . . . ,

Cnn
ε ]T )‖.

Furthermore, from equation (9), we can infer that the conver-
gence rate of G(t) is proportional to 1

ε , and, as t approaches
infinity, ‖ΓG‖ becomes zero. So, for some positive constants
γ1, γ2 we have ‖ΓG‖ ≤ γ1

ε exp(−γ2ε t). Now, let T =

−
ε ln(

α1
γ1

)

γ2
. Then, define W2 =

√
V2 and employ (22) to

obtain Ẇ2 ≤ −α2

ε W2 + γ1
ε c̄1
√
p̄1 exp(−γ2ε t) ∀t ≥ T and

some positive constant α2 satisfying 0 < α2 < α1. Note
that T → 0 as ε→ 0. Now, by using the comparison lemma,
with η2(0) = W2(0) = 0, we get

W2(t) ≤ γ1

ε
c̄1
√
p̄1

∫ t

0

exp(−α2

ε
(t− τ)) exp(−γ2

ε
τ)dτ

=
γ1c̄1
√
p̄1

α2 − γ2
(exp(−γ2

ε
t)− exp(−α2

ε
t)).

(23)
One can consider ‖ei(t)‖ ≤ 1

εi−1 (‖η1(t)‖ + ‖η2(t)‖) and
employ (19) and (23) to write

‖ei(t)‖ ≤
1

εi−1

√
p̄1

p
1

exp(−α1

ε
t)‖e(0)‖+

1

εi−1

1

α1

√
p̄1

p
1

µ+

+
1

εi−1

γ1c̄1
α2 − γ2

√
p̄1

p
1

(exp(−γ2

ε
t)− exp(−α2

ε
t))

(24)
The first result of the theorem follows by choosing κ̂1 =√

p̄1
p
1

, κ̂2 = 1
α1

√
p̄1
p
1

, κ̂3 = γ1c̄1
α2−γ2

√
p̄1
p
1

. This, completes the
first part of the proof. To obtain (11), we define ẽ = Le, and
use (1) and (8) to get

˙̃e = −1

ε
ẽ−ATn ẽ+ CTnCne+ LBn∆φ − LGΓεz. (25)

Note that Γε and G are both diagonal and we have ΓεG =
GΓε. One can pose the Lyapunov candidate V = ẽT ẽ for

(25) to obtain

V̇ = −2

ε
‖ẽ‖2−ẽT (An +ATn )ẽ

+ 2ẽT (CTnCne+ LBn∆φ − LGΓεz).
(26)

At this point, it is required to discuss the upperbound of the
term CTnCne + LBn∆φ − LGΓεz. For ‖CTnCne‖ we have
Cne = e1, where e1 is the first element of the vector e,
whose bound is given in (24) by letting i = 1. Next, we
let ε → 0. As a result, L(t) ≈ L∞ and G(t) ≈ G∞. First,
we have ‖L∞Bn∆φ‖ ≤ ‖BTnL∞‖‖∆φ‖ ≤ φ̄‖BTnL∞‖‖e‖.
Let lij denote the elements of L∞. Also, it is clear that
BTnL∞ corresponds to the last row of L∞. We can use
1
εL∞+L∞An+ATnL∞ = CTnCn to write 1

ε l11 = 1, 1
ε l12 +

l11 = 0, 1
ε l13 + l12 = 0, . . . . Solving these equations for

l1i, we get l1i = −(−ε)i. Similar calculations for l2i and
l3i can be performed to obtain l2i = (−1)iεi+1(i), l3i =

(−1)i+1( i(i+1)
2 )εi+2. One can continue the calculations to

show that ln1 is the dominant term in the last row of L∞,
and it is proportional to εn. On the other hand, from (24),
‖e‖ is proportional to ε1−n. Therefore, φ̄‖BTnL∞‖‖e‖ is
proportional to ε and vanishes as ε → 0. For Γεz, we use
the definition of η to write ‖Γεz‖ ≤ ‖η‖ ≤ ‖η1‖ + ‖η2‖.
This, along with (19), √p

1
‖η2‖ ≤ W2, ‖η(0)‖ ≤ ‖e(0)‖,

and (23) shows that ‖Γεz‖ is bounded by the right hand side
of (24) for i = 1. For ‖L∞G∞‖, previous deductions on gi
and lij can be used to show that the first row of L∞G∞
is (−1)i+1Cn1 . More generally, all the elements in the ith
row of L∞G∞ are proportional to εi−1. Hence, the first row
is dominant in L∞G∞, and the norm of this matrix is a
constant independent on ε. Recalling the above arguments,
and using (23), (24), and ‖η(0)‖ ≤ ‖e(0)‖, we can write:

‖CTnCne+ LBn∆φ − LGΓεz‖ ≤
k̃1e
−α1

ε t‖e(0)‖+ k̃2µ+ k̃3e
− γ2ε t , k̃(t)

for some positive constants k̃1, k̃2, k̃3 independent of
ε, ‖e(0)‖ and µ. If one chooses ε < ε∗ such that ε∗‖An +
ATn‖ ≤ 2(1 − β1) is satisfied for a positive β1, then we
can define W =

√
V and use V = ‖ẽ‖2 to write (26) as

Ẇ ≤ −β1

ε W + k̃(t). Upon integration, and by employing
λmin(L(t, ε))‖e‖ ≤W ≤ ‖e‖, we obtain

‖e‖ ≤ 1

λmin(L(t, ε))
[e−

β1
ε t‖e(0)‖+

k̃1ε

β1 − α1
‖e(0)‖(e−

α1
ε t − e−

β1
ε t)

+
k̃2ε

β1
(1− e−

β1
ε t)µ+

k̃3ε

β1 − γ2
(e−

γ2
ε t − e−

β1
ε t)]

(27)

One can briefly write (27) as

‖e‖ ≤ θ

λmin(L(t, ε))
‖e(0)‖e−

β1
ε t +

ζε

λmin(L(t, ε))
µ

+
σε

λmin(L(t, ε))
e−

γ2
ε t

(28)

where θ, ζ and σ are some positive constants. Next, we need
to investigate λmin(L(t, ε)) as discussed in [6]. From (9) we
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have:

λmin(L(t, ε)) ≥ e− 1
ε tλmin(e−A

T
n te−Ant) (29)

+λmin(

∫ t

0

e−
1
ε (t−τ)e−A

T
n (t−τ)CTnCne

−An(t−τ)dτ).

Considering the observability of the pair (An, Cn), we have

λmin

(∫ t

0

e−
1
ε (t−τ)e−A

T
n (t−τ)CTnCne

−An(t−τ)dτ

)
≥ p(ε)

(30)
where p(ε) > 0 is a polynomial in ε. We can also write
λmin(e−A

T
n te−Ant) ≥ e−t. Therefore, from (29) and (30)

we have λmin(L(t, ε)) ≥ p(ε)+e−t(
1
ε+1). Next, we consider

the function f(t, ε) =
exp(− β1ε t)

p(ε)+exp(−t( 1
ε+1))

. It is clear that, since
since p(ε) > 0, f(t, ε)→ 0 as t→∞. Taking the derivative
of f(t) with respect to time, we obtain df(t)

dt = 0 at tm =
ln(

ε+1−β1
β1p(ε)

)

1+ 1
ε

. Note that, by definition, β1 is the largest constant
satisfying β1 ≤ 1 − ε

2‖An + ATn‖. So, β1 → 1 as ε → 0.
Using this fact, along with the obtained equation for tm, we
can calculate sup ‖f(t, ε)‖ as

lim
ε→0

sup f(t, ε) = lim
ε→0

exp(
−β1 ln(

ε+1−β1
β1p(ε)

)

ε+1 )

p(ε) + exp(− ln( ε+1−β1

β1p(ε)
))

= 1

Similar arguments can be used to show that the function
exp(− γ2ε t)
λmin(L(t,ε)) converges to zero as t → ∞, and remains
bounded as ε→ 0. Therefore, we can conclude that g(t, ε) =
ε exp(− γ2ε t)
λmin(L(t,ε)) → 0 as t→∞ or ε→ 0. This, along with (28)
completes the proof.

Remark 1: One can compare (5) with (11) to observe that,
in the absence of noise, the estimation error of the proposed
observer converges to zero without exhibiting unbounded
overshoot, regardless of the value of ε chosen.
In the following, we analyze the steady state behaviour of
the proposed observer. Using the ideas from [20], it is shown
that the use of linear filter improves the estimates. The next
theorem summarizes the result of the analysis.

Theorem 2: Consider system (1) and the observer (8) in
the linear case, that is, φ(x, u) = φs(x, u) = Φx where
Φ ∈ R1×n is the vector of coefficients, with |Φ| ≤ φ̄. Let
the assumptions of Theorem 1 be satisfied. Let the noise be
generated by the system (6). Then, there exists some δ∗(ε)
and ρi > 0 such that, for all positive δ ≤ δ∗(ε) we have

lim
t→∞

sup |xi(t)− x̂i(t)| ≤
ρiδ

i+1

ε2i
µ. (31)

Proof: It was demonstrated in the proof of Theorem 1 that,
since η2 converges to zero, the trajectories of the observer
(8) converge to the states of the following observer at steady-
state:

˙̂x∞(t) =Anx̂∞(t) +BnΦx̂∞(t) + ΓεG∞z∞(t)

ż∞(t) =− 1

ε
Dz∞(t) +

1

ε2
ATnz∞(t)

+
1

ε
CTn (y(t)− Cnx̂∞(t))

0 =− 1

ε
L∞ −ATnL∞ − L∞An + CTnCn

where G∞ = diag(L−1
∞ CTn ), D = 2In. We define the change

of coordinates η̄ = η1 − Πw. We can then re-express the
dynamics as

˙̄η = M̃η̄ + M̃Πw + C̃Pw − 1

δ
ΠSw (32)

where M̃ = 1
εM∞+εn−1

[
BnΦΓ−1

ε

0

]
, C̃= 1

ε

[
0
CTn

]
. If we can

find Π(δ) that satisfies the Sylvester equation ΠS = δ(M̃Π+
C̃P), then the system (32) can be transformed to the simple
form ˙̄η = M̃η̄. On the other hand, for a sufficiently small ε,
we have that M̃ ≈ 1

εM∞, which was shown to be Hurwitz.
As a result, η̄ converges to zero, such that η1(ss) = Πw at
steady-state. Since the eigenvalues of M̃ are negative and
those of S are on the imaginary axis, the solution of the
Sylvester equation is unique. In addition, one can check that
the solution is given by:

Π(δ) =

+∞∑
k=1

δkΠ̄k, Π̄k = M̃k−1C̃PS−k. (33)

Therefore, we can write:

η1(ss) = δC̃PS−1w+δ2M̃C̃PS−2w+δ3M̃2C̃PS−3w+. . .
(34)

The ith element of 1
εi−1 η1(ss) represents the ith estimation

error at steady-state. Given that the first n row of C̃ are zero,
it follows that the first term of (34) does not affect the steady
state values of the error terms, ei. For i = 1, the norm of the
first row of M̃C̃ is C

n
1

ε2 . Since δ ∈ (0, 1), then δ2M̃C̃PS−2w
is the dominant term in the first row of η1(ss) in (34). Thus,
we obtain the bound ‖e1(ss)‖ ≤ ρ1δ

2

ε2 µ for some positive ρ1

and some δ ≤ δ∗ such that

‖(δ∗)2M̃C̃PS−2w + (δ∗)3M̃2C̃PS−3w + . . . ‖
≤ ρ1‖(δ∗)2M̃C̃‖‖w‖.

For i = 2, the second row of C̃ and M̃C̃ are zero, and
the norm of the second row of M̃2C̃ is C

n
2

ε3 . So, we can
write ‖e2(ss)‖ ≤ ρ2δ

3

ε4 µ. Similarly, for i = 3 the third row
of C̃, M̃C̃, M̃2C̃ are zero and the norm of the third row
of M̃3C̃ is C

n
3

ε4 . So, we get ‖e3(ss)‖ ≤ ρ3δ
4

ε6 µ. The proof
follows similar steps for i = 4, . . . , n to obtain (31).

Remark 2: Comparing (31) with (7) shows that the
steady-state bound is multiplied by ( δε )i which provides an
improvement as long as δ < ε.

Remark 3: The extension of the results of Theorem 2
to the nonlinear setting is straightforward by following the
methodology of [20].

IV. SIMULATION STUDY

We consider a single-link flexible-joint robot arm [14],
[21] to illustrate the performance of the proposed observer.
We perform a coordinate change to describe the single-link
robot arm dynamics in the canonical form (1) with n = 4
and
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Fig. 1. Estimation error of x4 for ε = 0.005

φ(x) =
k̄

J1J2N
u+

k̄

J2N
(
k̄

J1N
− k̄

J2
)x1

− k̄

J2N
(
F2

J2
+
F1N

J1
)x2 − (

k̄

J2N
(1 +

F1F2N

J1k̄
) +

k̄

J2
)x3

−(
F1

J1
+
F2

J2
)x4 +

mgd

J2
(x3 sin(x1) + x2

2 cos(x1))

− k̄mgd
J2

2N
(cos(x1)− F1J2N

J1k̄
x2 sin(x1))

(35)
where the physical parameters are chosen as F1 = 0.1, F2 =
0.15, J1 = 0.15, J2 = 0.2, k̄ = 0.4, N = 2, m = 0.8, g =
9.81 and, d = 0.6. A stabilizing state-feedback controller is
proposed for (35). It is given by

u = satR

{
mgdJ1

J2N
− J1J2N

k̄
[(L4c1 + L2c3

k̄

J2
)x1

+(L3c2 + L2c3
F2

J2
+ Lc4

k̄

J2
)x2 + (L2c3 + Lc4

F2

J2
)x3

+Lc4x4 + L2c3
mgd

J2
(cos(x1)− 1)]− Lc4

mgd

J2
x2sin(x1)

}
where c1 = 4, c2 = 7.91, c3 = 6.026, c4 = 1.716,
L = 3 and, R = 200. The initial conditions for the system
(35) are

[
0.5 0 −22.6618 16.2464

]T
. The measurement

noise is chosen as v(t) = 0.002 sin(3000t). For the proposed
observer (8) and the time-varying HGO proposed in [4], we
only need to choose x̂(0) = 0, ε = 0.005. We choose the
same parameters for the standard HGO and place the poles
at −1. Figure 1 compares the estimation error of x4 using
the proposed observer, a standard HGO, the filtered HGO
proposed in [14], and a TVHGO. As expected, the observer
significantly reduces the sensitivity to noise on the estimates,
similar to the FHGO of [14]. Moreover, while the standard
HGO and the FHGO peak to 4×105 and 105, the overshoot
of the proposed observer is significantly smaller, reaching
100 at tm ≈ 0.1s. One may achieve a faster convergence as
well as a reduced overshoot by increasing the observer gain.
However, as mentioned in remark 2, the reduced sensitivity
to noise is lost if ε is chosen smaller than 1

3000 .
V. CONCLUSIONS

This study proposed a nonlinear observer that achieves
the benefits of an HGO with reduced sensitivity to noise and

improved transient response . The observer incorporates two
subsystems. The first subsystem filters the estimation error,
while the second subsystem is used to produce a dynamic
observer gain. It was shown that the proposed observer
improves the transient performance of the standard HGO.
The observer’s convergence speed can be adjusted using a
single large gain parameter. Future work will focus on the
design of an observer with dynamic gains that depends on
the output error.
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