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Distributed Zone Allocation and Preservation in Multiagent Systems*

Deniz Kurtoglul, Tansel Yucelen!, Dzung Tran?, David Casbeer2, and Eloy Garcia?

Abstract— This paper studies the zone allocation and preser-
vation problem in multiagent systems. Specifically, a new state
transformation method predicated on a diffeomorphic map is
first proposed to make the solution to this problem feasible.
Building upon the transformed multiagent system, a new
distributed adaptive control protocol is then presented to ensure
that an agent approaches a command available to the leader
agent(s) when this command enters its zone and otherwise
the same agent maintains proximity to this command while
preserving its own zone. In addition to the presented system-
theoretical results, two illustrative numerical examples are also
given to demonstrate the efficacy of the overall architecture.

I. INTRODUCTION
A. Literature Review

Multiagent systems involve groups of agents that fulfill
certain collective goals through interacting with each other.
Given the potential of these systems across a wide spectrum
of civilian and military applications, their significance has
notably increased over the last two decades. This growing
interest has spurred advancements in distributed control
protocols, which are designed to facilitate local interactions
among agents. Referenced in seminal works [1]-[4], these
protocols employ graph theory to create scalable solutions
suitable for even substantially large groups of agents. The
reliability of these protocols is also ensured as they are
predicated on system-theoretical principles.

Typical distributed control problems involve consensus
and bipartite consensus in the leaderless setting (e.g., see
[5], [6]), and pinning, containment, and formation in the
leader-follower setting (e.g., see [7]-[9]). The common
characteristic among these problems is the assumption that
agents operate without being subject to specific state con-
straints. Consequently, they are not directly applicable to
the zone allocation and preservation problem. In particular,
zone allocation involves assigning specific zones (i.e., state
constraints) to each agent, while zone preservation focuses
on ensuring that each agent remains within their designated
zone throughout the pursuit of a collective goal. A wide spec-
trum of applications from surveillance and reconnaissance
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to traffic management and precision agriculture necessitates
addressing the zone allocation and preservation problem.

In the literature, there are notable contributions to address
the state constraints problem in multiagent systems. For
example, barrier functions are utilized by [10], the pro-
jection method is applied in [11], and state transformation
techniques are employed by [12], [13] to address these
constraints in the leaderless setting. However, the operational
requirements of certain applications necessitate the leader-
follower setting (particularly those involving autonomous
mobile robots). In this context, for example, barrier functions
are utilized by [14], the projection method is applied in
[15], and state transformation strategies are employed in
[16], [17] to manage state constraints. While the enforcement
of state constraints is important for addressing the zone
allocation and preservation problem, the methodologies in
[14], [16], [17] presuppose the origin is contained within
the state limits. This assumption limits their applicability
for scenarios where, for example, a zone strictly within
the positive quadrant needs to be assigned to an agent.
Therefore, among these contributions, only the approach by
[15] and its extensions [18], [19], which do not make this
assumption, may be related to the findings of this paper and
their relevance is discussed in the next subsection.

B. Contribution

In this paper, we focus on the zone allocation and
preservation problem in a leader-following setting, where a
bounded time-varying command having a bounded time rate
of change is available to the leader agent(s). Specifically,
each agent needs to stay at their user-defined heterogeneous
zones at all times. As opposed to the methodologies in [14],
[16], [17], these zones do not have to contain the origin'.
Furthermore, a zone of an agent can be intersecting with or
disjoint from a zone of any other agent. To this end, a new
state transformation method predicated on a monotonically
increasing aligned diffeomorphic (mia-diffeomorphic) map is
first proposed to make the solution to this problem feasible.

Building upon the transformed multiagent system, a new
distributed adaptive control protocol is then presented. In
particular, this protocol ensures that an agent approaches a
command available to the leader agent(s) when this command
enters its zone and otherwise the same agent maintains prox-
imity to this command while preserving its own zone. Here,
the adaptive feature of this protocol facilitates operation
without the knowledge of an upper bound for the time rate of

I'The result documented in Section III-A of this paper, which is predicated
on Definition 2 below, may facilitate the extension of the methodologies in
[16], [17] to address the zone allocation and preservation problem.



change of the command. In addition to the presented system-
theoretical results, two illustrative numerical examples are
also given to demonstrate the efficacy of the overall archi-
tecture. Finally, although the scope and methodology of the
approach by [15] and its extensions [18], [19] differ from
those of this paper, they may offer a potential solution for
the zone allocation and preservation problem. Nonetheless,
their applicability is not limited only to constant command(s)
but also may necessitate additional assumptions beyond those
made in this paper (e.g., Assumption 3 of [15], Assumption
2 of [18], and Assumption 2 of [19]).

II. MATHEMATICAL PRELIMINARIES
A. Notation

In this paper, the sets of real number numbers, positive
real numbers, and nonnegative real numbers are respectively
denoted as R, R, and @4_; the sets of n x m real matrices,
n X n positive-definite real matrices, and n X n nonnegative-
definite real matrices are respectively denoted as R"™*™,
RT”, and Kixn; and vector of all zeros and all ones are
respectively denoted as 0,, and 1,. Furthermore, we use
()T for transpose, (-)~! for inverse, | - | for absolute value,
||, for 1-norm, ||-||, for 2-norm, and “£” for equality
by definition. For a vector a = [ay,as,...,a,]|T, we also
use Sgn(a) = [sgn(a1),...,sgn(a,)]T and Tanh(a) =
[tanh(ay),...,tanh(a,)]T, where sgn(-) and tanh(-) re-
spectively denote signum and tangent hyperbolic functions.

The graph-theoretical notation utilized in this paper is now
introduced. Specifically, an undirected graph is represented
by G, which is characterized by the node set Vg = {1,...,n}
and the edge set &g C Vg x Vg with an edge (i,j) €
&g indicating that nodes ¢ and j are neighbors (i ~ j
signifies neighboring relation herein). A graph G is also
considered connected when a finite path gi; ...77 exists
with 4,1 ~ i and kK = 1,..., L between any two distinct
nodes. Furthermore, the degree matrix for G is defined as
D(G) £ diag(d), where d = [dy,...,d,]" and d; being the
number of the neighbors of node i. The adjacency matrix
for G is also defined as A(G) € R™*", where [A(G)],; =1
when (i, j) € & and [A(G)];; = 0 otherwise. The Laplacian
matrix for G is now defined as £(G) = D(G)—.A(G). Finally,
let K = diag (k). k = [ky,...,kn]". k; € Ry, and assume
that at least one k; is nonzero. Then, F(G) = L(G) + K €
Rixn holds for a fixed, connected, and undirected G [3,
Lemma 3.3], where we consider such a G in this paper.

B. Diffeomorphism

A diffeomorphic map ¢(z) is an isomorphic relationship
between smooth manifolds, where its definition is now given.

Definition 1. A map ¢ : S — 7T between two differen-
tiable manifolds S and 7 is called a diffeomorphic map if
it is a bijection and both ¢(z) and its inverse ¢! : T — S
are continuously differentiable.

Some examples to diffeomorphic maps include ¢(x) =
3z +2 with § = (0,1) and 7 = (2,5), ¢(z) = atanh(x)
with § = (—1,1) and 7 = R [20], and rotation of the

plane with S € R? and 7 € R2. Yet, we need to define a
new diffeomorphic map ¢(z) for the results presented in this
paper. For this purpose, let z; € S; be the state of an agent ¢,
where S; = (z;,%;) C R such that 2, < Z;. Let also 7; = R
for all agents. We are now ready to give the next definition.

Definition 2. A map ¢; : S; — R between two dif-
ferentiable manifolds S; and R is called a monotonically
increasing aligned diffeomorphic (mia-diffeomorphic) map
if it satisfies the following conditions:

i) ¢;(z;) is a diffeomorphic map.

ii) ¢;(z;) 1is monotonically increasing subject to
limg, . ¢}(7;) = oo, and limg, .z, ¢}(w;) = oo,

where ¢} £ d¢; /dz;.

iii) ¢z<xz> =x; over x; € U; C S;.

The last item in Definition 2 means that ¢;(x;) aligns
with the identity line (i.e., the line having a unity slope
and no bias) over x; € U;. One can readily obtain a mia-
diffeomorphic map by constructing a composite function,
which is discussed in the next remark.

Remark 1. For a given S; = (z;,%;), let U; = (z; +
8i, Ty — 6;) with &; € (0, (Z; — x;)/2). One can then obtain
a mia-diffeomorphic map ¢; : S; — R using a line and an
inverse hyperbolic tangent through the composite function

filzi), xi € (&, 2;+0i/ki) V(T —0i/ ki, Ti),
Ty, Zi Gu’iv
i(Xi)= 1
Pilz) g1i(xs), @i € [z; + 0;/ ki, z; + 04, W

92i(x3), ®; € [T; — 0;,T; — 0;/Kil,

where f;(z;) £ & 'atanh(&y(z; — &) + &oin &1 =
2/(Z; — x;), Coi = (Ti+2;)/2, g1 = moi + muzi +
Moix? + maixd, go; £ my; + msiw; + mexs + mray,
and k; > 1. In (1), g1;(x;) and go;(x;) are active over
the transition area, where m;; € R, [ = 0,...,7, are
determined through solving the boundary expressions given
by guilz; + di/ki) = filz; + 0i/Ki), g1,(z; + 6i/ki) =
filz + 6i/ki), guilz; + 6;) = z; + 6i, gy(z; +0;) = 1,
92i(ZTi — 0i) = Ty — 84, G5;(Ti — 0i) = 1, goi(Ti — 6/ ki) =
fz(ffz — (Si/lii), and géz(.’fl — 57,/’%) = fl/({fl — 52//{7,) with
g1 = dgi;/dw;, gh, = dgoi/dxi, and f] = dfi/da;.
Note that these expressions make ¢;(x;) continuous and
continuously differentiable. Figure 1 illustrates the resulting
mia-diffeomorphic map ¢;(z;) given by (1).

III. PROBLEM DEFINITION

We focus on a multiagent system with n agents that
exchange information over a fixed, connected, and undirected
graph G. A subset of these agents referred to as leader
agent(s) has access to a bounded time-varying command ¢(t)
having a bounded time rate of change, whereas those without
access are referred to as follower agent(s). Mathematically
speaking, the single-integrator dynamics of agent i, ¢ =
1,...,n, has the form given by

Cbi (t) = U; (t), Z; (0) = Z;0, (2)
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Fig. 1. A mia-diffeomorphic map is constructed as a composite function

using a line and an inverse hyperbolic tangent, where the yellow highlighted
region denotes the transition area (z; = 0, ; = 5, §; = 0.5, and x; = 2).

where x;(t) and w;(t) respectively represent the state and
control signal of this agent. At this point, we are ready to
define the zone allocation and preservation problem.

Definition 3. Given a user-defined heterogeneous zone
S; = (z;,%;) C R, z; < &y, for agent i, ¢« = 1,...,n,
the zone allocation and preservation problem is to determine
u;(t) € R such that the following conditions hold:

i) lim¢_yo0 (zi(t) — c(t))= 0 when c(t) € U;.

ii) x;(t) € Sq; when c¢(t) € Sq; or c(t) ¢ S;, where Sq; =
Si \ UY; is a disjoint set and the state x;(¢) belongs to
either the left side or the right side of this set whichever
is closer to the command c(t).

Remark 2. Definition 3 implies that the state of each
agent remains within its user-defined heterogeneous zone at
all times. It also implies that the state of an agent does not
move to an arbitrary point within its zone. Instead, it either
approaches the command when ¢(t) € U; and otherwise it
maintains proximity to the command (see Figure 2a), where
“proximity” here is explicitly defined by the second item in
Definition 3.

Remark 3. While we consider a one-dimensional setting
for the system-theoretical results presented in this paper, they
can be applied to multiple dimensions for agent dynamics
having the form &/ (t) = u](t) with j being the dimension
index. We refer to Section V for two illustrative numerical
examples in a two-dimensional setting (see also Figure 2b

on an interpretation of Definition 3 in such a setting).
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Fig. 2. Demonstration of Definition 3 for two agents depicted in

both a) one-dimensional and b) two-dimensional settings, where the gray
highlighted regions denote Sq;. The blue and yellow dots respectively
represent the states x1(¢) and x2(t). The command c(t) stays in Sz in
this demonstration that yields z2(t) = c(t).

For the solvability of the problem defined in Definition 3,
the following assumption is necessary.

Assumption 1. Initial conditions of the states of all agents
satisfy x;9 € S;.

As the zone allocation and preservation problem is defined,
the rest of this section first focuses on a new state transfor-
mation method and then presents a new proposed distributed
adaptive control protocol.

A. State Transformation

We now introduce a state transformation to convert the
constrained state x;(t) € S; to an unconstrained counterpart
z;(t) € R. For this purpose, consider a mia-diffeomorphic
map ¢; : S; — R given in Definition 2. Consider also z;(t) £
oi(x;(t)) that yields

for each agent. Next, let the control signal be
ui(t) = (96i(xi(t)/dwi(t)) vi(t) )
with v;(t) € R being the virtual control signal, which yields
Zi(t) = vi(t),  2i(0) = ¢i(2:(0)). Q)

Remark 4. The above state transformation and control
signal selection yield to the following observations:

-1

i) (5) represents an unconstrained single-integrator dy-
namics of agent ¢, ¢ = 1,...,n.

i) From Definition 2, the term (0¢; (sci(t))/axi(t))_l in
(4) vanishes at the boundary 9S; of the user-defined
heterogeneous zones for each agent. Hence, if v;(¢) is
bounded, then lim,, (a5, wi(t) = 0.

iii) From Definition 2, z;(t) = z;(t) over z;(t) € U;.

The second and third observations in Remark 4 play a

key role in addressing the problem in Definition 3, where
we refer to Theorem 2 in Section IV on this point.

B. Distributed Adaptive Control Protocol

We now introduce the proposed distributed adaptive con-
trol protocol. For this purpose, consider the virtual control

signal of agent 7, ¢ = 1,...,n, given by
0i(t) == (- (z(t) = 25(0) + ki(z(t) — (1))
~Bu(t)sen (3o (0) = 25 (1) + kil (6) = 1)),

(6)

where a; € Ry and f;(t) is the adaptive term updated
according to

Bi(t) =i

D (zilt) — 2(1) + ki(z(t) — @) (D
i~
with 7; € R4. In (6) and (7), k; = 1 for leader agents and
otherwise k; = 0.

Remark 5. In (6), if one replaces Bz(t) with a constant,
then that constant must be chosen to be equal to or larger



than an upper bound for the time rate of change of the
command (e.g., see [9], [21]). Hence, the purpose of the
adaptive term (7) is to enable the operation of the proposed
protocol without prior knowledge of such an upper bound.

To address the problem in Definition 3, the next section
shows that the error signals

ei(t) = zi(t) — c(t), ®

of each agent asymptotically approach zero in the uncon-
strained domain. For the actual constrained domain involving
the heterogeneous zones of each agent, it corresponds to an
agent approaching a command when this command enters
its zone and otherwise the same agent maintains proximity
to this command while preserving its zone.

IV. SYSTEM-THEORETICAL ANALYSIS

We are now ready to present the system-theoretical analy-
sis of the proposed architecture. To this end, by adding and
subtracting ¢(t) in (6), and using (5), the time derivative of
this error e;(t) yields

éa(t) = —os (Do (et) = (1) + hies())

~Bi0sen (Yo (eslt) = (1) + kiea()) 1),
61(0) = €50- (9)
Next, let e(t) % ler(t),....en(®)]T, A =
diag([alv s >O‘n]T)v B(t) = diag([ﬂl (t)v s 7ﬂn(t>]T)’

F(G) £ L(G) + K € R*™ with £(G) being the Laplacian
matrix for a fixed, connected, and undirected graph G, and
K = diag (k) with k = [ki, ..., k,]". The compact form of
(9) can then be written as

é(t) = —AFe(t) — B(t)Sgn(Fe(t)) — 1,¢(t).

The following two theorems present the main contributions
of this paper.

(10)

Theorem 1. Consider the transformed multiagent system
consisting of n agents over a fixed, connected, and undirected
graph G with dynamics given by (5) subject to Assumption
1. Then, the virtual control signals given by (6) and (7) yield
lim;_, €;(t) = 0 for all agents.

Proof. Consider the energy function

Zﬂ

where 3;(t) = B;(t) — ¢ with ¢ being the upper bound of the
time derivative of the command ¢(t). The time-derivative of
(11) satisfies

V() =

V() = leT]—"e—F (11)

—eT(t)FAFe(t) - T( t)FB(t)Sgn(Fe(t))

Zﬁz )Bi(t)

Note that —eT(t)]-'B(t)Sgn(]-'e(t)) in (12) can be written in

et () F1,e(t) 12)

the form given by
—eT () FB(t )Sgn(}'e( )

SO BEICEE!

inj

)+ kies(t)] (13)
and —eT(¢)F1,¢é(¢) in (12) can be upper bounded as
—eT () F1,6(t) < e () F)é

_Z‘Z et

=1 i~y

) + kies ()] (14)

Using (13) and (14) in (12) and B (t) = Bi(t), one can obtain

V() < —e" () FAFe(t) ZB»(t)\Z@i(t)—ej(t»

i~
+hieq(t ‘+Z‘Z

1=1 i~y

2 AA)

—i—kel()’

_ej

<= (OFAFelt) - (32 A0) [l lt) - i)

i

e ()] += 3 BB, (15)

Vi
Adding and subtracting ¢(¢) to (7), using the resulting
expression in (15), and since FAF € RZ’_X", we arrive

V() < —eT(t)FAFe(t) <0 (16)

Hence, the pair (e;(t), 5;(t)) is bounded for all agents. From
[22, Theorem 2], it can now be concluded that the right-
hand side of (16) approaches zero asymptotically, where this
implies that lim;_, ., e;(t) = 0 for all agents. [ ]
Note that the above theorem extends beyond the scope of
problem addressed in this paper, which offers applicability to
unconstrained distributed control problems within a leader-
follower framework. Building upon the results of Theorem 1,
the next theorem shows that the proposed overall architecture
solves the problem in Definition 3.
Theorem 2. Consider a multiagent system consisting of
n agents over a fixed, connected, and undirected graph G
with dynamics given by (2) subject to Assumption 1. Then,
the proposed overall architecture given by (4), (6), and (7)
solves the problem in Definition 3.
Proof. Over the unconstrained domain z;(¢) € R repre-
sented by (5), it is proven in Theorem 1 that each agent
asymptotically follows the command c(t). Over the con-
strained domain z;(t) € S; represented by (2), we are now
ready to show what this implies:
i) If c(t) € U; for agent 1, then limy_, (mz ): 0
since lim;_, €;(t) = 0 by Theorem 1 and zi(t) =
x;(t) over z;(t) € U; by Definition 2.

ii) If c(t) € Sq; or c(t) ¢ S; for agent i, then x;(t) € Sq;.
The former case, when c¢(t) € Sg;, holds since the



state x;(t) of this agent must enter Sg; owing to the
fact that the term (0¢;(z; (t))/azi(t))fl in its control
signal (4) is unity at the boundary OU;. The latter
case, when c(t) ¢ S;, also holds since its virtual
control signal (6) is bounded by Theorem 1 and the
term (8¢i(xi(t))/8xi(t))_l in its control signal (4)
vanishes at the boundary 9S; of its zone by Definition
2, which together yields lim,, 4)—as, wi(t) = 0 (i.e.,
the state x;(¢) of this agent cannot leave S;). Finally,
since Sy; is a disjoint set, this further implies for the
latter case that the state x;(¢) of this agent practically
stops moving at either the left side or the right side of
this set, whichever is closer to the command ¢(t) (i.e.,
x;(t) maintains proximity to ¢(t) when c(t) € S;).
This shows that the proposed overall architecture given by
(4), (6), and (7) solves the problem in Definition 3. |
Remark 6. While the state z;(t) of agent ¢ can follow the
command c(t) to some extent when ¢(t) € Sq; and ¢(t) stays
close to the boundary 0U;, this may not hold when ¢(t) € Sq;
and c(t) stays close to the boundary OS;. This issue can
practically be addressed through enlarging the domain U;
(e.g., through decreasing J; in Remark 1).

V. ILLUSTRATIVE NUMERICAL EXAMPLES

We now provide two illustrative numerical examples to
demonstrate the efficacy of the overall architecture. Before
presenting these examples, we would like to state the fol-
lowing remark.

Remark 7. We would like to highlight two observations
that need to be considered in the practical applications of
the proposed architecture. First, it is common practice to
approximate sgn(z) in (6) with tanh(pz) with p € R, being
a large constant to avoid the chattering phenomenon in the
control signals of each agent. Second, the adaptive term of
each agent given by (7) can take large numbers since its right
hand side is always a nonnegative quantity. To mitigate this
situation, a leakage term can be introduced as follows

éi(t) = % Z(zi(t) — 2()) + ki(z:(t) — c(t) |~ 0iBi(t)

i~ g

a7)

with o; € R being sufficiently small. Despite these mod-
ifications, the efficacy of the proposed architecture remains
sufficiently close to its original one.

Two examples are now ready to be given in a two-
dimensional setting. To this end, subscripts “x” and “y” are
added to the related signals to clarify the distinction between
the two axes. In the first example, let the first agent have
access to the command given by ¢, (t) = 1.75sin(0.05¢) + 2
and ¢y (t) = 1.75co0s(0.05t) + 2 over ¢t € [0,120]. Here,
the user-defined zones S; = [Z,;, Txi, gyi,fcyi] of each
agent are chosen as S; = [2,4,2,4], S; = [2,4,0,2],
S; = [0,2,0,2], &4 = [0,2,2,4]. In addition, the initial
conditions (z;(0), y;(0)) of agents are respectively chosen
(3,3), (3,1), (1,1), and (1,3) to satisfy Assumption 1.
We also use the mia-diffeomorphic map given by (1) with
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Fig. 3. Closed-loop multiagent response with the proposed architecture,
where solid blue, orange, yellow, and purple lines respectively indicate
agents 1, 2, 3, and 4, and the black dashed line indicates the command.
The circle and the square markers respectively represent the initial position
and the final position.
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Fig. 4. Control histories of the proposed architecture, where the top and
bottom figures respectively show the control signal for each agent along the
x-axis and the y-axis.

0; = 0.3 and x; = 3 for all agents. Finally, we choose
a; = 1 for (6), v; = 1 and o; = 0.01 for (17) in view
of Remark 7, and use tanh(pz) with p = 50 instead of
sgn(x) also in view of Remark 7. Figure 3 shows the closed-
loop multiagent system response, whereas Figure 4 shows the
corresponding control histories. From these figures, it is clear
that all agents approach the command when this command
is in their zones and otherwise they maintain proximity to
this command while preserving their zones.

In the second example, let the first agent have access
to the command given by c¢(t) = 2sin(0.05¢) + 2 and
cy(t) = t/20 over t € [0,120]. Here, the user-defined
zones S; = [gxi,im—,gyi, Zy;| of each agent are chosen as
S = 10,3,2,6], S2 = [0,3,0,5], S5 = [1,4,2,6], Sy =
[2,4,0,5]. In addition, the initial conditions (2x;(0), zy;(0))
of agents are respectively chosen (1,3), (2,1), (2.5,4), and
(3,2) to satisfy Assumption 1. All the remaining parameters
are chosen identical to the first example. Figure 5 shows the
individual closed-loop multiagent system responses, whereas
Figure 6 shows the corresponding control histories. Once
again, from these figures, it is clear that all agents approach
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Fig. 5. Individual closed-loop agent responses with the proposed architec-
ture, where solid blue, orange, yellow, and purple lines respectively indicate
agents 1, 2, 3, and 4, and the black dashed line indicates the command. The
circle and the square markers respectively represent the initial position and
the final position.
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Fig. 6. Control histories of the proposed architecture, where the top and
bottom figures respectively show the control signal for each agent along the
x-axis and the y-axis.

the command when this command is in their zones and
otherwise they maintain proximity to this command while
preserving their zones.

VI. CONCLUSION

The zone allocation and preservation problem in multia-
gent systems (see Definition 3) was addressed in this paper.
Predicated on a mia-diffeomorphic map (see Definition 2),
a new state transformation was first used to convert the
constrained states of agents, resulting from user-defined
heterogeneous zones, to their unconstrained counterpart (see
Section III-A). Subsequently, a new distributed adaptive con-
trol protocol was proposed within a leader-follower setting
(see Section III-B). Notably, it was shown in Theorems 1
and 2 (see Section IV) that the overall architecture solves the
zone allocation and preservation problem. This was achieved
by ensuring an agent approaches a command available to the
leader agents(s) when this command enters its zone and oth-
erwise the same agent maintains proximity to this command
while preserving its own zone. Two illustrative numerical
examples were also provided (see Section V) to showcase
the efficacy of this architecture. Future research can include,

first, extensions of the overall framework to agents having
high-order dynamics, and second, agents that are subject to
exogenous disturbances and/or system uncertainties.
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