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Abstract— Motivated by neuromorphic computing applica-
tions, this paper considers electrical circuits comprising mem-
ristors and grounded capacitors, connected to external sources.
By using the flux-charge domain modelling approach, we
will derive an initial value problem describing the dynamic
behaviour of this circuit. Given an initial value and a fixed
input, we will show that the fluxes in this circuit converge to
an equilibrium. Furthermore, we show that when the fluxes
reach this equilibrium, we achieve voltage synchronisation, i.e.
no more currents are flowing through the circuit. These results
are emphasised in an illustration.

I. INTRODUCTION

In 1971, Chua introduced a new two-terminal element,
called the memristor [1], to complement the classical re-
sistor, capacitor, and inductor. This element postulates a
nonlinear relation between the electric charge and magnetic
flux, and behaves as a resistor with memory storage. In
2008, researchers at Hewlett-Packard were the first to claim
memristive behaviour in a material [2], i.e., behaviour that
shows similarities with that of memristors. This achievement
has furthered research activities in memristor-based circuits,
which are expected to have a broad range of applications.
For example, they play an important role in the field of
neuromorphic computing [3], [4]. Due to their ability to store
memory and their dynamic nature, they have the potential to
act as synaptic weights for the implementation of artificial
neural networks (ANN) in hardware [5].

Advances in material science have shown memristive be-
haviour in many different materials [6]. Currently, the interest
of material scientists is gradually shifting in the direction
of networks of devices exhibiting memristive behaviour [7].
However, these materials can often not be regarded as
pure networks of memristors; parts of the network might
correspond to other circuit elements such as capacitors.

Motivated by these advances in material science, and
driven by their potential for neuromorphic hardware, this
paper studies the dynamics of electrical circuits comprising
memristors and (grounded) capacitors.

The current literature on memristor-based circuits includes
studies on simple interconnections of memristors [8], [9],
studies based on simulations [10], and a study on memris-
tive port-Hamiltonian systems [11]. The works [12], [13]
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proposed to analyse memristor-based circuits in the flux-
charge rather than current-voltage domain, which has led to
an impulse in the study of circuits of memristors. Examples
range from the study of bifurcations [14] to their use in
solving optimisation problems [15]. We note that electrical
circuits with memristors are necessarily nonlinear and that
the study of nonlinear circuits has a long history [16], see
also [17] for a recent contribution.

In this paper, we focus on fundamental properties of
memristor-capacitor networks, and, motivated by the poten-
tial of memristors to act as synaptic weights for the imple-
mentation of ANNs in hardware, we study synchronisation
in such networks. Namely, for memristors to be utilised as
synaptic weights, the network needs to enable tuning of their
resistance values during the training phase of the ANN, and,
their instantaneous resistance value needs to be preserved
when the circuit is not forced by external stimuli. The latter
requires the voltage across a memristor to be zero, which
corresponds to the synchronisation of voltage potentials.

This paper considers a specific class of circuits comprising
memristors and grounded capacitors. Circuits of this class
have dynamics that can be related to the literature on
consensus networks (including dynamics on the edges) for
which synchronisation is studied regularly [18]–[20].

In particular, the present paper has the following two con-
tributions. First, we present a model for memristor networks
with grounded capacitors in the flux-charge domain, inspired
by [12], [13], and assuming that the memristors have strongly
monotone behaviour. This results in a highly structured
model which can be interpreted as a consensus network with
state-dependent weights, when viewed in terms of current
and voltages rather than fluxes and charges. However, the
model in the flux-charge domain has the advantage of only
requiring the memristor fluxes as states, thus leading to
a reduced representation. Even though this comes at the
cost of an explicit dependence on the initial condition, this
significantly simplifies analysis.

Second, we study the synchronisation properties of these
models, where synchronisation is defined in terms of the
capacitor voltages. We show that synchronisation can be
analysed in terms of the stability properties of an equilibrium
of the memristor fluxes, and we use this to prove synchro-
nisation.

The remainder of this paper is organised as follows. In
Section II, we characterise memristors and capacitors, and
formulate our problem statement. Section III presents the
framework for modelling memristor circuits with grounded
capacitors. Section IV deals with the synchronisation prop-
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iS(t)

Fig. 1. Network of memristors and grounded capacitors attached to a
source applying an input iS(t) to the circuit.

erties of such circuits, whereas Section V illustrates these
results through an example. Section VI concludes the paper.

II. PROBLEM FORMULATION

In this section, we make the first steps in providing a
mathematical framework for studying memristor-capacitor
networks and we introduce the problem studied in this paper.

A. Memristors and capacitors networks

We consider electrical circuits with N nodes and B =
BM + BE + BC branches consisting of memristors and
grounded capacitors, connected to external sources. Here,
BM branches represent memristors which are connected to
each other in an arbitrary manner to form a connected net-
work of N−1 nodes. Then, BE edges correspond to sources,
each connecting two (distinct) nodes from the memristor
network. Finally, a grounded capacitor is connected, to each
of those BC = N − 1 nodes, with the ground node labelled
as N . For an example, see Figure 1.

Let iM (t) ∈ RBM and vM (t) ∈ RBM capture the currents
through and the voltages across the memristors. Denoting
the corresponding vectors of charges by qM (t) and fluxes
by φM (t), we have

d
dtqM (t) = iM (t), d

dtφM (t) = vM (t). (1)

We consider flux-controlled memristors described by

qM (t) = g(φM (t)) (2)

where g : RBM → RBM is a vector-valued function that
collects the (scalar) constitutive relations gj of the individual
memristors. In addition, we assume the functions gj to be
strongly monotone, i.e.,

(g(φM )− g(φ′
M ))⊤(φM − φ′

M )

≥ (φM − φ′
M )⊤A(φM − φ′

M ) (3)

holds for all φM , φ′
M ∈ RBM . Here, A is a diagonal positive

definite matrix.
Remark 1: We observe that, using (1), (2) can be equiva-

lently modeled as the dynamical system

iM (t) =
∂g(φM (t))

∂φM
vM (t), d

dtφM (t) = vM (t). (4)

This can be regarded as a model of state-dependent resistors
with the entries of ∂g(φM )

∂φM
representing state-dependent

conductance values. Then, (3) implies that these conductance
values are positive, hence, our memristors are guaranteed to
be passive, see [1, Theorem 6].

Next, we define iC(t) ∈ RBC and vC(t) ∈ RBC as the
vectors of currents through and voltages across the capac-
itors, respectively. Consecutively, we define qC(t) as the
vector of charges at the capacitor branches, which satisfies

d
dtqC(t) = iC(t).

Now, as in [21, Chapter 2.3.1], we model the capacitors as

qC(t) = CvC(t). (5)

Here, C is a diagonal matrix containing the capacitance
values of the different capacitors and hence is a positive
definite matrix. Time-differentiation of the above leads to

iC(t) = C d
dtvC(t). (6)

Then, going back to the full circuit, we characterise
our circuit through the incidence matrix D ∈ RN×B and
the corresponding graph G(D). Here, every column of D
corresponds to a branch in G(D) and reads ek − eℓ for a
branch {k, ℓ} oriented from k to ℓ. Consequently, we have
that 1⊤D = 0. Now, we split the incidence matrix D into
the incidence matrices D̄M ∈ RN×BM , D̄C ∈ RN×BC , and
D̄E ∈ RN×BE corresponding to the memristors, capacitors
and external sources, respectively. We assume that the inci-
dence matrix D is ordered as D =

(
D̄M D̄C D̄E

)
. Then,

denoting the currents associated with the external sources by
iE(t) ∈ RBE , Kirchhoff’s current law reads

D̄M iM (t) + D̄CiC(t) + D̄EiE(t) = 0. (KCL)

On the other hand, Kirchhoff’s voltage law can be stated as

∃p(t) ∈ RN s.t.

vC(t)
vM (t)
vE(t)

 =

D̄⊤
C

D̄⊤
M

D̄⊤
E

 p(t), (KVL)

and thus guarantees the existence of a vector of voltage
potentials at the nodes p(t) ∈ RN . Here, vE(t) ∈ RBE

denotes the vector of voltages associated with the external
sources. In fact, we will consider current sources providing
a vector of currents iS(t) and denote the corresponding
voltages as vS(t). It follows that

iE(t) = −iS(t), vE(t) = vS(t). (7)

B. Problem statement

To obtain a general model for our class of circuits compris-
ing memristors and grounded capacitors, we will combine
(KCL), (KVL) with the dynamics of the memristors (2)
and capacitors (5). By the assumption that all capacitors
are connected to the ground node and the memristors and
external sources are not, we can write the incidence matrices
as

D̄M =

(
DM

0

)
, D̄C =

(
I

−1⊤

)
, D̄E =

(
DE

0

)
(8)
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where the graph G(DM ) is connected.
After deriving the model description, we will study the

behaviour of φM and vC when no external source is applied
to the circuit, i.e. when iS(t) = 0 for all time t ∈ R. More
precisely, we will show that φM converges to an equilibrium
implying that the circuit achieves voltage synchronisation.

Definition 1: Consider the electrical circuit defined
through (KCL), (KVL), with memristors (2), capacitors (5),
and sources (7). This circuit is said to achieve voltage
synchronisation if, for all solutions corresponding to iS(t) =
0 for all t ∈ R, we have that

lim
t→∞

vC(t) = α1 for some α ∈ R.

III. FLUX-CHARGE ANALYSIS OF MEMRISTOR
CAPACITOR NETWORKS

Inspired by [12], [13], we will derive a modelling and
analysis framework for our memristor-capacitor circuit in the
domain of charges and fluxes. As memristors are described
by a relation between charges and fluxes, this modelling
approach will turn out to be more convenient than the usual
approach on the basis of voltages and currents. Differences
between the two approaches are highlighted in Remark 4.

As a first step, we lift Kirchhoff’s laws to the domain of
charges and fluxes. For any t ∈ R, time integration of (KCL)
over the interval [0, t] leads to

D̄M (qM (t)− qM (0)) + D̄C(qC(t)− qC(0))

= D̄E(qS(t)− qS(0)). (9)

To derive this result, we used (7) and we defined

qS(t)− qS(0) =

∫ t

0

iS(τ)dτ

as the supplied charge. By substitution of (8) in (9) we obtain

DM (qM (t)− qM (0)) + (qC(t)− qC(0))

= DE(qS(t)− qS(0)) (10)

and
1⊤(qC(t)− qC(0)) = 0

which should hold for all t ∈ R. We note that the second
equation is nothing more than Kirchhoff’s current law at the
ground node which is always satisfied when (10) holds. This
can be observed by multiplying (10) from the left by 1⊤ and
by recalling that 1⊤D = 0. By utilising the definitions of
the memristors and capacitors in the circuit, i.e. by using (2)
and (5), we can rewrite (10) as

DM

(
g(φM (t))− g(φM (0))

)
+ C(vC(t)− vC(0))

= DE(qS(t)− qS(0)). (11)

We will simplify notation by omitting the arguments and
write φ = φM (t), φ0 = φM (0) for the fluxes across
the memristors. Following similar notation for the other
variables, (11) leads to

DM (g(φ)− g(φ0)) + C(vC − vC,0)

= DE(qS − qS,0). (12)

Next, we will turn our attention to (KVL). We recall that
D⊤1 = 0, hence the vector of voltage potentials p satisfying
(KVL) is not unique, i.e. p̃(t) = p(t) + α1 satisfies (KVL)
for any α ∈ R. Without loss of generality, we assume the
potential at the ground node to equal 0, giving the vector

p(t) =

(
p̄(t)
0

)
.

By substitution of (7), (8), and the above in (KVL), we obtain

∃p̄ ∈ RN−1 s.t.

vC
vM
vS

 =

 I
D⊤

M

D⊤
E

 p̄, (13)

where, for sake of simplicity, we omitted the arguments. We
note that the first row of this equation can be used to rewrite
the second and third row as(

vM
vS

)
=

(
D⊤

M

D⊤
E

)
vC . (14)

By combining the above with (1) we obtain
d
dtφ = D⊤

MvC . (15)

Then, by substitution of (12) in (15), we obtain that a
memristor-capacitor network can be described by

d
dtφ = −D⊤

MC−1DM (g(φ)− g(φ0)) +D⊤
MvC,0

+D⊤
MC−1DE(qS − qS,0), φ(0) = φ0. (16)

Remark 2: We note that the vector field in (16) depends
on the initial condition φ0. In fact, (16) represents an initial
value problem of the form

d
dtx = f(x, x0), x(0) = x0.

Because of this structure, we will see later that properties of
(16) depend on the initial condition φ0.

Remark 3: We note that a modelling approach on the basis
of voltages and currents, instead of an initial value problem
in φ, leads to a differential equation in both vC and φ. Recall
that the memristors described by (2) can be equivalently
modelled as (4). Then, substitution of (14) in (4) gives

iM =
∂g(φ)

∂φ
D⊤

MvC ,
d
dtφ = D⊤

MvC . (17)

Next, by combining (KCL) with (7) and (8), we observe that

DM iM + iC −DEiS = 0

Substitution of the above in (17), together with the dynamics
of the capacitors given in (6), leads to

C d
dtvC = −DM

∂g(φ)

∂φ
D⊤

MvC +DEiS ,

d
dtφ = D⊤

MvC .

(18)

Note that the matrix DM
∂g(φ)
∂φ D⊤

M can be viewed as a
state-dependent Laplacian, such that (18) can be regarded
as a consensus network with state-dependent weights. In
other words, (18) represents a network dynamical system
with dynamics on both the nodes (capacitors) and edges
(memristors), as studied in, e.g., [19], [20].
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Remark 4: We observe that (16) and (18) give equivalent
model descriptions of networks of memristors with grounded
capacitors, each with their advantages and disadvantages.
Even though (18) has a clear interpretation as a consensus
network with state-dependent Laplacian, it turns out that
the asymptotic behaviour of φ is difficult to analyse. We
will show that the latter can conveniently be done using
(16), which has the additional advantage that it is a reduced
description as it only has the memristor fluxes as state
variables. The observation that (16) provides a reduced-order
model compared with (18) is in agreement with similar
results shown in [12].

IV. SYNCHRONISATION

In this section, we will study under which conditions our
memristor-capacitor circuit achieves voltage synchronisation.
To do so, we will show that, for an initial condition φ0, the
solution φ to the initial value problem (16) converges to an
equilibrium, which in turn implies voltage synchronisation
of the circuit. Throughout this section we will assume the
graph G(DM ) to be connected, hence ker(D⊤

M ) = span1.
Lemma 1: Consider (16) for some given φ0 ∈ RBM , qS−

qS,0 = q̄S ∈ RBE , and vC,0 ∈ RBC . Assume that there exist
φ̄ ∈ RBM such that

1) φ̄ is an equilibrium point of (16), i.e.,

−D⊤
MC−1DM (g(φ̄)− g(φ0))

+D⊤
MC−1DE q̄S +D⊤

MvC,0 = 0. (19)

2) the solution φ to the initial value problem (16) satisfies

lim
t→∞

φ(t) = φ̄. (20)

Then, we have that

lim
t→∞

vC(t) = α1 with α =
1⊤CvC,0

1⊤C1
. (21)

Proof: Let φ̄ be such that (19) and (20) are satisfied.
Then, by substitution of (19) in (16), we can write the
dynamics of φ in terms of φ̄ as

d
dtφ = −D⊤

MC−1DM (g(φ)− g(φ̄)). (22)

Next, by combining the above with (15) we obtain

D⊤
MvC = −D⊤

MC−1DM (g(φ)− g(φ̄)).

Taking the limit on both sides of the equation leads
to limt→∞ D⊤

MvC(t) = 0, due to our assumption that
(20) holds. Since kerD⊤

M = span1, we have that
limt→∞ vC(t) = α1 for some α ∈ R. Then, since all
capacitors are connected to the ground node, Kirchhoff’s
current law gives that 1⊤iC(t) = 0 for all t ∈ R, and
hence, by (6), d

dt1
⊤CvC(t) = 0 for all t ∈ R. It follows

that 1⊤CvC(t) = 1⊤CvC,0 for all t ∈ R, consequently
when the circuit achieves voltage synchronisation we have
that α1⊤C1 = 1⊤CvC,0 implying the desired result (21).

Lemma 1 shows that convergence of the solution φ of (16)
towards an equilibrium φ̄ implies voltage synchronisation of
the circuit. We are left to show that such an equilibrium φ̄ of

(16) exists. Note that, by the structure of (16), d
dtφ ∈ imD⊤

M ,
implying that, for all t ≥ 0, φ satisfies

φ(t) ∈ {φ |φ− φ0 ∈ imD⊤
M}. (23)

This motivates for searching an equilibrium φ̄ in the above
set. To do so, we will introduce some new notation.

Assume qS − qS,0 = q̄S ∈ RBE , φ0 ∈ RBM , and vC,0 ∈
RBC are given. Then, an equilibrium φ̄ of (16) is such that
(19) is satisfied. We observe that (19) can be rewritten as

− C−1DM (g(φ̄)− g(φ0))

+ C−1DE q̄S + vC,0 ∈ span1, (24)

since ker(DM ) = span 1. Furthermore, since any solution φ
of (16) satisfies (23), for some ξ ∈ RBC , we can write

φ̄ = D⊤
MC−1ξ + φ0. (25)

By substitution of the above in (24), we obtain

− C−1DM (g(D⊤
MC−1ξ + φ0)− g(φ0))

+ C−1DE q̄S + vC,0 ∈ span1. (26)

Now, we define

f(ξ) := C−1DM

(
g(D⊤

MC−1ξ + φ0)− g(φ0)
)

and
γ := C−1DE q̄S + vC,0. (27)

Using this new notation (26) reads

−f(ξ) + γ ∈ span1. (28)

We can now state the following Lemma.
Lemma 2: For each γ ∈ RBC there exists a unique ξ ∈

ker 1⊤ satisfying (28).
Proof: Consider the set S = ker1⊤. We can show,

following [22, Chapter 2], that f is strongly monotone on S.
Let ξ, ξ′ ∈ S, then we have that

(f(ξ)− f(ξ′))⊤(ξ − ξ′)

=
(
C−1DM (g(φ̄)− g(φ̄′))

)⊤
(ξ − ξ′). (29)

Here, φ̄ and φ̄′ are such that (25) and

φ̄′ = D⊤
MC−1ξ′ + φ0 (30)

are satisfied, respectively. By working out the first bracket
in the right-hand side of (29), we obtain

(f(ξ)− f(ξ′))⊤(ξ − ξ′) = (g(φ̄)− g(φ̄′))⊤(φ̄− φ̄′),

whose right-hand side can be bounded using (3) to give

(f(ξ)− f(ξ′))⊤(ξ − ξ′) ≥ (φ̄− φ̄′)⊤A(φ̄− φ̄′).

Then, substitution of (25) and (30) in the above leads to

(f(ξ)− f(ξ′))⊤(ξ − ξ′)

≥ (ξ − ξ′)⊤C−1DMAD⊤
MC−1(ξ − ξ′). (31)

Since A is a positive definite matrix the right-hand side of the
above is positive if ξ− ξ′ is such that D⊤

MC−1(ξ− ξ′) ̸= 0.
By using a contradiction argument, we will show that this
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is the case for all ξ, ξ′ ∈ S. To establish a contradiction, let
ξ, ξ′ ∈ S with ξ ̸= ξ′ be such that D⊤

MC−1(ξ − ξ′) = 0,
then C−1(ξ− ξ′) = α1 for some α ∈ R since kerD⊤

M = 1.
It follows that (ξ − ξ′) = αC1. However, as ξ, ξ′ ∈ S, we
have that 0 = 1⊤(ξ − ξ′) = α1⊤C1 implying that α = 0.
We conclude that the right-hand side of (31) is positive for
all ξ, ξ′ ∈ S with ξ ̸= ξ′. In fact, one can show that there
exists β > 0 such that, for all ξ, ξ′ ∈ S,

(f(ξ)− f(ξ′))⊤(ξ − ξ′) ≥ β|ξ − ξ′|2,

i.e., f is strongly monotone on S. The value of β can be com-
puted using quadratic programming, e.g. [23, Chapter 16].

Now, strong monotonicity of f on S and the fact that
span1 = S⊥ imply that (28) has a unique (on S) solution
ξ, see [22, Theorem 2F.9 on p. 111].
Lemma 2 now enables us to state the following result.

Theorem 3: Consider (16) for some given φ0 ∈ RBM ,
qS−qS,0 = q̄S , and vC,0 ∈ RBC . Then, there exists a unique
φ̄ of the form (25) such that (19) holds.

Proof: By (27), we can compute γ. Then, by Lemma 2
there exists a unique ξ ∈ ker 1⊤ satisfying (28). Then, φ̄
given as (25) has the desired properties, as follows from the
definition of f .

The above result shows the existence of an equilibrium φ̄
of (16). Now, we discuss the asymptotic behaviour of the
solution φ to (16).

Lemma 4: Let φ0 ∈ RBM , qS − qS,0 = q̄S ∈ RBE , and
vC,0 ∈ RBC be given and assume φ̄ such that (19) holds.
Then, the solution φ to the initial value problem (16) satisfies

lim
t→∞

φ(t) = φ̄.

Proof: We define the Lyapunov function candidate V :
RBM → R as

V (φ) =

BM∑
j=1

∫ φj

φ̄j

gj(θj)− gj(φ̄j)dθj . (32)

It is easy to see that V (φ̄) = 0 and it follows from (3) that
V (φ) > 0 for all φ ∈ RBM \{φ̄}. In addition, we can show
that it is a strongly convex function. We first observe that, by
definition, (32) is continuously differentiable and its structure
implies that the row vector of partial derivatives reads

∂V (φ)

∂φ
= (g(φ)− g(φ̄))⊤. (33)

Then, for all φ,φ′ ∈ RBM , we obtain(
∂V (φ)

∂φ
− ∂V (φ′)

∂φ

)
(φ− φ′) ≥ (φ− φ′)⊤A(φ− φ′).

Here, we have used (3) to obtain the inequality. As A is
positive definite, it follows from [24, Theorem 2.1.9] that V
is strongly convex. This, together with V (φ̄) = 0 and the
fact that V (φ) > 0 on RBM \{φ̄} shows that V is positive
definite and radially unbounded. Next, we will evaluate V
along the solution φ to the initial value problem (16). To do
so, note that a direct computation, using (33) and (22), gives

d
dtV (φ) = −

(
g(φ)− g(φ̄)

)⊤
D⊤

MC−1DM (g(φ)− g(φ̄)).

iS(t)

Fig. 2. Circuit consisting of three memristors and three grounded
capacitors, attached to a source applying an input iS(t) to the circuit.

We observe that d
dtV (φ) is negative definite relative to φ ∈

RBM \{φ̄}. To show this, we note that d
dtV (φ) = 0 implies

DM (g(φ)− g(φ̄)) = 0, (34)

since C is a positive definite matrix by definition. Substi-
tution of (34) in (22) leads to d

dtφ = 0, hence φ is an
equilibrium. However, by Theorem 3 there only exists a
unique equilibrium φ̄ of (16) satisfying (23), hence φ = φ̄.
Finally, Lyapunov’s stability theorem [25, Theorem 4.2 on
p. 124] implies that the trajectory φ converges to φ̄.

Now, we can derive the final result.
Theorem 5: Consider (16) for some given φ0 ∈ RBM ,

qS − qS,0 = q̄S ∈ RBE , and vC,0 ∈ RBC , then

lim
t→∞

vC(t) =

(
1⊤CvC,0

1⊤C1

)
1. (35)

Proof: By Theorem 3 there exists φ̄ such that (19)
holds. Lemma 4 implies that the solution φ to (16) satisfies
(20). Finally, Lemma 1 gives the desired result (35).

Theorem 5 shows that, for each initial value, our circuit
achieves voltage synchronisation.

V. ILLUSTRATION

In the previous section, we saw that, for each initial value,
the fluxes in our circuit converge to an equilibrium, implying
voltage synchronisation. In this section, we will demonstrate
these results by providing simulation results for the simple
circuit depicted in Figure 2.

We assume that the functions gj in (2) are given by

gj(φj) = 2φj − 1
2 log(φ

2
j + 1) + φj arctan(φj)

for each j ∈ {1, 2, 3}, and we let C = 2I . We assume the
input q̄S = 0 and the initial condition v⊤C,0 =

(
0 5 1

)
.

Then, the solution φ to (16) and accompanying vC from
(11) are plotted for two different initial conditions φ⊤

0 =(
−1 −1 −1

)
and φ⊤

0 =
(
0 3 −2

)
in Figure 3 and

4, respectively. We observe that for both initial conditions
φ0 we achieve voltage synchronisation, and although the
fluxes converge to different equilibria, in both cases the
voltages converge to the value two. This is in agreement
with the result in Theorem 5. In addition, as a consequence,
we note that, different initial conditions lead to different
resistance values of the memristors. This has relevance when
considering memristors to act as synaptic weights in ANNs
as it shows a way to tune the resistance values of the
memristors.
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Fig. 3. Curves of φ(t) and vC(t) for the circuit depicted in Figure 2
corresponding to the initial conditions φ0 =

(
−1 −1 −1

)⊤, vC,0 =(
0 5 1

)⊤, and the input q̄s = 0.
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Fig. 4. Curves of φ(t) and vC(t) for the circuit depicted in Figure 2
corresponding to the initial condition φ0 =

(
0 3 −2

)⊤, vC,0 =(
0 5 1

)⊤, and the input q̄s = 0.

VI. CONCLUSIONS

In this paper, we have applied the flux-charge domain
modelling approach to derive a modelling framework de-
scribing circuits of memristors connected to grounded ca-
pacitors. This framework was utilised to show voltage syn-
chronisation in this type of circuit. These results provide a
first step in creating a better understanding of the dynamical
behaviour of memristor-capacitor circuits.

Future research will be devoted to studying how the
instantaneous resistance value of the memristors can be in-
fluenced by external stimili. In addition, we want to study the
(synchronisation) properties of a broader class of memristor-
based circuits and their use in neuromorphic computing
applications.
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