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Abstract— Sampled-data circular path following control of
four wheeled mobile robots with steering angle saturation is
considered. The line-of-sight guidance algorithm is used to drive
a tracking error dynamics and sampled-data path following
control is formulated as sampled-data stabilization of a tracking
error dynamics. Both single-rate and multi-rate sampled-data
steering angle controllers are designed on the basis of the Euler
model of a tracking error dynamics. The closed-loop tracking
error dynamics given by designed controllers is represented by
a cascade system with the disturbance input induced by steering
angle saturation. Then we show that designed controllers
achieve sampled-data circular path following control in the
semiglobally practically input-to-state stable sense. Simulation
and experimental results are also given to show the effectiveness
of designed controllers.

I. INTRODUCTION

Design of control systems of wheeled robots has been

actively discussed from a wide range of applications such

as automatic driving, formation driving, and cooperative

operations ([1], [2]). In particular, trajectory tracking and

path following control of wheeled robots is very important.

Several design methods of path following controllers based

on energy shaping through immersion and invariance [3],

sliding mode path following [4], transverse feedback lin-

earization (TFL) [5] among others have been proposed for

mechanical systems including wheeled robots. A guidance

algorithm called the line-of-sight (LOS) method has been

developed for trajectory tracking control of vessels [6]. It

has been applied for straight-line and circular path following

control and formation control of surface vessels ([7], [8]).

It has been also used for path following control problems

of wheeled robots [9]. Digital computers with A/D and

D/A converters are usually used to control continuous-time

plants in modern control systems and such control systems

are called sampled-data systems ([10], [11]). Sampled-data

motion planning under multi-rate discrete-time control has

been introduced [12] and then single-rate and multi-rate

path following discrete-time controllers based on TFL has

been considered for sampled-data car-like mobile robots

[13]. The LOS guidance algorithm has been also used to

design straight-line tracking controllers for sampled-data

underactuated surface vessels [14].
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In this paper we consider sampled-data circular path fol-

lowing control of a four wheeled mobile robot with steering

angle saturation, since a combination of circular paths and

straight-lines is sometimes used to approximate a general

path and it is also used for way-point guidance [15]. We

apply the LOS guidance algorithm to design discrete-time

controllers that achieve circular path following. First, we

introduce a control model of a four wheeled mobile robot and

a desired circular path. Then we define a cross-track error

and a tracking error of the attitude of the robot by using the

LOS guidance algorithm. Here we assume that the control

input is realized through a zero-order hold. In this case,

sampled-data circular path following control is formulated

as sampled-data stabilization of a tracking error dynamics.

Then we use the Euler model of a tracking error dynamics to

design both single-rate and multi-rate sampled-data steering

angle controllers. Due to steering angle saturation, a closed-

loop tracking error dynamics given by a designed controller

is represented by a cascade system with the disturbance

input induced by steering angle saturation. Then we show

that a sampled-data closed-loop tracking error dynamics is

semiglobally practically input-to-state stable (SP-ISS). We

also compare the proposed control approach to those pre-

sented in [9] and [13]. Finally, simulation and experimental

results are given to show both the effectiveness of designed

controllers and the dependence of a length of sampling

periods to control performance.

Notation: Let N0 = {0, 1, 2, ..} and R≥0 a set of nonnega-

tive real numbers. For x = [x1 ... xn ]
T ∈ R

n let |x| =
∑n

i=1 |xi|. Let K be a class of functions α : R≥0 → R≥0

that are zero at zero and strictly increasing, and K∞ a class

of functions α ∈ K satisfying limr→∞ α(r) = ∞. Let KL
be a class of functions β: R≥0 ×R≥0 → R≥0 that satisfy

β(s, t) ∈ K for fixed t ≥ 0 and limt→∞ β(s, t) = 0 for each

fixed s ≥ 0 [16]. For simplicity of notation, we write x(t)
and x[k] to show continuous-time and discrete-time signals,

respectively and f(η1(·), η2(·)) = f(η1, η2)(·).

II. PRELIMINARY RESULTS

Consider

ξ̇ = f(ξ, u, v) (1)

where ξ ∈ Rn is the state, u ∈ Rm is the control input

realized through a zero-order hold, i.e., u(t) = u(kT ) =:
u[k] for any t ∈ [kT, (k + 1)T ), v ∈ Rnv is the external

disturbance, and T > 0 is an input sampling period. Here we

assume that f is locally Lipschitz and satisfy f(0, 0, 0) = 0.

Let v(t) = v(kT ) =: v[k] for any t ∈ [kT, (k + 1)T ).
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Then for each initial state ξ(0) and constant inputs, we

assume the existence of a unique solution ξ(t) of the system

(1) defined on some finite interval [0, t1). The difference

equations corresponding to the exact (discretized) model and

the Euler (approximate) model of the system (1) are given,

respectively by

ξ[k + 1] = F e
T (ξ, u, v)[k], (2)

ξ[k + 1] = FE
T (ξ, u, v)[k] (3)

where F e
T (ξ, u, v)[k] = ξ[k] +

∫ (k+1)T

kT
f(ξ(t), u[k], v[k])dt

and FE
T (ξ, u, v) = ξ + Tf(ξ, u, v). Here note that ξ[k] =

ξ(kT ) for the exact model (2) and T > 0 is a design

parameter that can be assigned arbitrarily. A state feedback

controller u[k] = uT (ξ[k]) that is parameterized by T > 0,

is designed on the basis of the Euler model (3). In this case,

the closed-loop systems (2) and (3) with u[k] = uT (ξ[k])
are given by

ξ[k + 1] = F i
T (ξ, uT (ξ), v)[k] (4)

for i = e and i = E, respectively. Let ‖v‖∞ =
sups∈N0

|v[s]|. If ‖v‖∞ <∞, then we write v ∈ l∞.

Definition 2.1: [17] 1) The system (4) is SP-ISS if there

exist β ∈ KL and γ ∈ K such that for any positive real

numbers (Dξ, Dv, d) there exists T ∗ > 0 such that the

solutions of the system (4) satisfy |ξ[k]| ≤ β(|ξ[0]|, kT ) +
γ(‖v‖∞) + d for any k ∈ N0, T ∈ (0, T ∗), ξ[0] ∈ Rn with

|ξ[0]| ≤ Dξ, and v ∈ l∞ with |v| ≤ Dv .

2) The system (4) with v[·] = 0 is semiglobally practically

asymptotically stable (SPAS) if there exists β ∈ KL such that

for any positive real numbers (Dξ, d), there exists T ∗ > 0
such that the solutions of the system (4) with v[·] = 0 satisfy

|ξ[k]| ≤ β(|ξ[0]|, kT ) + d for any k ∈ N0, T ∈ (0, T ∗), and

ξ[0] ∈ Rn with |ξ[0]| ≤ Dξ.

Definition 2.2: [17] Let T̂ > 0 be given and VT : Rn →
R≥0 defined for each T ∈ (0, T̂ ). The system (4) is called

Lyapunov-SP-ISS, if there exist αi ∈ K∞, i = 1, 2, 3 and

γ ∈ K such that for any positive real numbers (D1, D2, d),
there exist T ∗ and L > 0 such that α1(|ξ|) ≤ VT (ξ) ≤
α2(|ξ|), VT (F

i
T (ξ, uT (ξ), v)) − VT (ξ) ≤ T [−α3(|ξ|) +

γ(||v||∞) + d], and |VT (ξ1)− VT (ξ2)| ≤ L|ξ1 − ξ2| for any

T ∈ (0, T ∗), ξ, ξ1, ξ2 ∈ Rn with max{|ξ|, |ξ1|, |ξ2|} ≤ D1,

and v ∈ l∞ with |v| ≤ D2.

Definition 2.3: [17] uT (ξ) is locally uniformly bounded

if for any Dξ > 0, there exist T ∗ > 0 and Du > 0 such

that |uT (ξ)| ≤ Du for any T ∈ (0, T ∗) and ξ ∈ R
n with

|ξ| ≤ Dξ.

We need the following assumption [18].

A1: There exist γ1, γ2 ∈ K∞ and k, R > 0 such that

|f(ξ, u, v)| ≤ k|ξ| + γ1(|u|) + γ2(|v|) for any ξ ∈ Rn,

u ∈ Rm, v ∈ Rnv satisfying max{|ξ|, |u|, |v|} ≤ R.

Theorem 2.1: ([17], [18]) Assume that the Euler model

(4) is Lyapunov-SP-ISS and uT (ξ) is locally uniformly

bounded. Then the exact model (4) is SP-ISS. Moreover,

if A1 is satisfied, then the closed-loop sampled-data system

(1) with u[k] = uT (ξ(kT )) for any t ∈ [kT, (k + 1)T )
and k ∈ N0 is SP-ISS, i.e., there exist β ∈ KL and

γ ∈ K such that for any positive real numbers (Dx, Dv, d)
there exists T ∗ > 0 such that the solutions of the system

ξ̇ = f(ξ(t), uT (x(kT )), v[k]) for any t ∈ [kT, (k+1)T ) and

k ∈ N0 exist and satisfy |ξ(t)| ≤ β(|ξ(0)|, t)+ γ(‖v‖∞)+d
for any t ≥ 0, T ∈ (0, T ∗), ξ(0) ∈ Rn with |ξ(0)| ≤ Dx,

and v ∈ l∞ with |v| ≤ Dv .

III. CIRCULAR PATH TRACKING CONTROL

A. Problem Formulation

Fig. 1. Circular path and related notation

Consider a four wheeled mobile robot and a designed

circular path in Fig. 1 where a robot is represented by a

triangular mark and the center and radius of a circular path

are the origin of the inertia coordinate systems O-xy and

h > 0, respectively. The dynamical model of the robot is

given by

ẋ = r cosψ, ẏ = r sinψ, ψ̇ =
r

L
tanφ (5)

if side slip is not happening ([19], [20]) where [x(t) y(t) ]
T

and ψ(t) are the position of the center of mass Ob and the

attitude (or yaw angle) of the robot in the inertia coordinate

systems O-xy, r(t) is the forward velocity in the body-fixed

coordinate systems Ob-xbyb, φ(t) is the steering angle, and

L > 0 is the distance between front and rear wheel axles. A

new coordinate systems Opp-XppYpp is chosen as in Fig. 1.

Let

e = h−
√

x2 + y2 (6)

be a cross-track error that is the minimum distance between

the position of the center of mass Ob and the circular path.

Let χ = tan−1(y/x) and

χt = χ+ π/2, (χt = χ− π/2) (7)

for a clockwise (counter-clockwise) circular motion of the

robot. We also choose a look-ahead distance ∆ > 0, which

is taken as in Fig. 1 and define a LOS angle as follows

χr = tan−1(−e/∆),
(

χr = tan−1(e/∆)
)

(8)



for a clockwise (counter-clockwise) circular motion ([6],

[7]). In the remaining of the paper, we discuss a clockwise

circular motion, only.

Let rd be a desired forward velocity and r(t) = rd for

any t ≥ 0. Then we consider the steering angle φ(t) as the

control input. Let χt + χr be a desired attitude of the robot

and ψ̃ = ψ− (χt+χr) a tracking error of the attitude. Then

we consider design of steering angle controllers that achieve

limt→∞(e(t), ψ̃(t)) = (0, 0). For this problem, we assume

B1: There exists b ∈ (0, h) such that x2(t) + y2(t) ≥ b2 for

any t ≥ 0,

B2: There exists a ∈ (0, π/2) such that |φ(t)| ≤ a for any

t ≥ 0.

Note that B1 is needed to guarantee boundedness of
˙̃
ψ and

B2 implies steering angle saturation and a restriction of the

control input given by the controller. For given a ∈ (0, π/2),
let σa(x) = a for x > a, x for |x| ≤ a, and −a for x < −a.

B. Design of Controllers

By (5)-(8), we have

ė = rd sin(ψ̃ + χr)(t), (9)

˙̃
ψ = (rd/L)[tanφ− (l1 + l2)](t) (10)

where l1 = L(x2 + y2)−1/2 sin(ψ − χ) and l2 = ∆L(∆2 +
e2)−1 cos(ψ − χ). Since

sin(ψ̃ + χr) = sinχr + [cosχr
sin ψ̃

ψ̃
+ sinχr

cos ψ̃ − 1

ψ̃
]ψ̃,

sinχr = −e(∆2 + e2)−1/2, and cosχr = ∆(∆2 + e2)−1/2,

we have

ė = −rd
e√

∆2 + e2
+Π(e, ψ̃)ψ̃ (11)

where

Π(e, ψ̃) = rd[
∆√

∆2 + e2
sin ψ̃

ψ̃
− e√

∆2 + e2
cos ψ̃ − 1

ψ̃
].

Let T > 0 be an input sampling period and the steering

angle control realized through a zero-order hold, i.e.,

φ(t) = φ(kT ) =: φ[k]

for any t ∈ [kT, (k + 1)T ). Then the Euler model corre-

sponding to the tracking error dynamics (10) and (11) is

given by

ρe = (1− T
rd√

∆2 + e2
)e+ TΠ(e, ψ̃)ψ̃, (12)

ρψ̃ = ψ̃ + T (rd/L)[tanφ− (l1 + l2)] (13)

where (e, ψ̃) = (e, ψ̃)[k] and (ρe, ρψ̃) = (e, ψ̃)[k + 1] for

simplicity of notation.

From the Euler model (12) and (13), we set

φ[k] = σa(φsf [k]) (14)

where a > 0 is the maximal steering angle of a front wheel

and

φsf [k] = tan−1
(

−c′ψ̃ + l1 + l2

)

[k] (15)

with arbitrary c′ > 0. Then the closed-loop Euler model is

given by (12) and

ρψ̃ = (1− Tc)ψ̃ + Tv (16)

where c = (rd/L)c
′ > 0 and

v[k] = (rd/L)[tanσa(φsf )− tanφsf ][k]. (17)

Remark 3.1: The closed-loop Euler model (12) and (16)

is equivalent to (12) and

ρψ̃ = ψ̃ + T [(rd/L)u+ v] (18)

with u[k] = −c′ψ̃[k]. Since v = (rd/L)[tanσa(φsf )+c
′ψ̃−

l1 − l2], |l1| ≤ L/b, and |l2| ≤ L/∆, we have |v[k]| < ∞
for any k ∈ N0 and hence v ∈ l∞. It is obvious that φ[k] =
σa(φsf [k]) is locally uniformly bounded.

Lemma 3.1: Assume B1 and B2. Then the closed-loop

Euler model (12) and (16) is Lyapnnov-SP-ISS.

Proof. Let (D1, D2, d) be arbitrary positive real numbers

and (emax, ψ̃max) arbitrary positive real numbers satisfying

e2max + ψ̃2
max ≤ D2

1 . Let T ∗ > 0 be such that

T ∗ = min {∆/rd, 1/c} (19)

and T ∈ (0, T ∗) arbitrary. Then we have 1 − Trd(∆
2 +

e2)−1/2, 1− Tc ∈ (0, 1).
Let (e, ψ̃, v) be such that |e| ≤ emax, |ψ̃| ≤ ψ̃max,

‖v‖∞ ≤ D2, and let V (e) = |e|, W (ψ̃) = κ|ψ̃| for

the closed-loop Euler model (12) and (16) where κ is a

positive real number which is assigned later. Then we have

W (ρψ̃)−W (ψ̃) ≤ −Tκc|ψ̃|+ Tκ|v| and

V (ρe)− V (e) ≤ −T rd√
∆2 + e2

|e|+ T
∣

∣

∣
Π(e, ψ̃)

∣

∣

∣
|ψ̃|

≤ −T rd
√

∆2 + e2max

|e|+ T
∣

∣

∣
Π(e, ψ̃)

∣

∣

∣
|ψ̃|.

Since

∣

∣

∣
Π(e, ψ̃)

∣

∣

∣
≤ 2rd, we obtain

V (ρe)− V (e) ≤ −T rd
√

∆2 + e2max

|e|+ 2Trd|ψ̃|.

Let ξ = [ e ψ̃ ]
T

, ξi = [ ei ψ̃i ]
T

, i = 1, 2, and

U(ξ) = V (e) + W (ψ̃). Then we have min{1, κ}|ξ| ≤
U(ξ) ≤ max{1, κ}|ξ|, |U(ξ1) − U(ξ2)| ≤ max{1, κ}[|e1 −
e2|+

∣

∣

∣
ψ̃1 − ψ̃2

∣

∣

∣
] = max{1, κ}|ξ1 − ξ2|, and

U(ρξ)− U(ξ) ≤ −T
{

rd
√

∆2 + e2max

|e|+ |ψ̃|
}

−T (κc− 1− 2rd)|ψ̃|+ Tκ|v|.

By choosing κ > (2rd + 1)/c, we obtain

U(ρξ)− U(ξ)

T
≤ −min{ rd

√

∆2 + e2max

, 1}|ξ|+ κ|v|.

Hence by Definition 2.2, the closed-loop Euler model (12)

and (16) is Lyapunov-SP-ISS.

Remark 3.2: Note that T ∗ > 0 given by (19) depends on

the choice of V (e) = |e| and W (ψ̃) = |ψ̃|, in the proof of



Lemma 3.1. If we set V (e) = e2 and W (ψ̃) = ψ̃2, then we

can find another T ∗ > 0, that is larger than (19).

Remark 3.3: The tracking error dynamics corresponding

to the Euler model (12) and (16) (or (18)) is given by (11)

and
˙̃
ψ = (rd/L)u(t)+v(t) with u = −c′ψ̃. Let f(ξ, u, v) =

[−rde(∆2 + e2)−1/2 +Π(e, ψ̃)ψ̃ (rd/L)u+ v ]
T

. Then

we have |f(ξ, u, v)| ≤ rd max{1/∆, 2}|ξ|+ (rd/L)|u|+ |v|
and hence the assumption A1 is satisfied.

Finally, for the sampled-data robot and its exact model,

let

φ(t) = σa(φsf (kT )) (20)

for any t ∈ [kT, (k + 1)T ) be the steering angle control

input where φsf (kT ) is given by (15) with [k] replaced by

(kT ). Then by Theorem 2.1, Remarks 3.1, 3.3, and Lemma

3.1, we have the following result.

Theorem 3.1: Consider the tracking error dynamics (9)

and (10), and assume B1 and B2. Then the closed-loop exact

model of (9) and (10) with (14) is SP-ISS. Moreover, the

closed-loop sampled-data system (9) and (10) with (20) is

SP-ISS.

Now we assume that only the sampled observation

y(j) = ξ(jTm) = [ e ψ̃ ]
T
(jTm) (21)

is available for control where Tm > 0 is a fixed measurement

sampling period and satisfies Tm = qT for some integer

q ≥ 1. Note that (21) with Tm = qT and q ≥ 1 reflects the

fact that position measurement given by GPS, motion capture

systems, and cameras needs more time than generation and

transmission of control inputs. In this case, we must estimate

the states at input sampling times t = kT to apply the

designed controller (14). Then by [21] and [22], we estimate

the states by

ξc[k + 1] =















ξ[k + 1], k + 1 = jq,
FE
T (ξc, σa(φsf (ξc)))[k]

with the initialization

ξc[jq] = ξ[jq], otherwise
(22)

and construct the control input

u[k] = σa(φsf (ξc[k])) (23)

where φsf (ξc[k]) and FE
T (ξc, σa(φsf (ξc)))[k] are given by

(14) and (12), (13) with ξ = [ e ψ̃ ]
T

replaced by ξc,

respectively. Then by [21] with Lemma 3.1 and Remarks

3.1 and 3.3, we have the following result.

Theorem 3.2: Consider the tracking error dynamics (9)

and (10), and assume B1 and B2. Then the closed-loop exact

model of (9) and (10) with (21)-(23) is SP-ISS. Moreover,

the closed-loop sampled-data system (9) and (10) with (21)-

(23) is SP-ISS.

Remark 3.4: 1) In [9], design of circular path follow-

ing controllers has been discussed for continuous-time two

wheeled mobile robots without input saturation by the LOS

guidance algorithm. Then uniformly globally asymptotic

stability and locally exponential stability of the closed-loop

system has been shown by applying the stability theory

of cascade systems [23]. Similar to [9], we can design a

continuous-time controller

φ(t) = σa(φsf (t)) (24)

where φsf (t) is given by (15) with [k] replaced by (t). Then

the closed-loop system (11) and (10) with (24) is given by

ė = −rde(∆2 + e2)−
1

2 +Π(e, ψ̃)ψ̃,
˙̃
ψ = −cψ̃ + v (25)

where v(t) is given by (17) with [k] replace by (t). By

introducing V (e) = ln
√

1 + (e2/∆2) and W (ψ̃) = |ψ̃| as

Lyapunov candidates, we can show that a cascade system

(25) is integral input-to-state stable (iISS) that is slightly

weaker stability than ISS ([24], [25]). Although the designed

controller (20) coincides with emulation of (24), the pro-

posed controller (20) can guarantee SP-ISS of the sampled-

data closed-loop system (9), (10) and (20) by applying the

nonlinear sampled-data control theory based on the Euler

model.

2) In [13], both single-rate and multi-rate digital con-

trollers for car-like mobile robots without input saturation

are designed by extending TFL to sampled-data systems.

Since TFL must satisfy some relative degree condition,

T -dependent dummy output and dynamic extension are

needed for design of single-rate controllers. For multi-rate

controllers, we also have a restriction between T and Tm.

Compare to [13] our design of controllers based on the

LOS guidance algorithm and the Euler model is simple and

intuitive.

3) Note that four wheeled mobile robots with steering angle

saturation are more general than wheeled mobile robots in

[9] and [13].

4) Since we must consider inter-sample behavior of nonlinear

sampled-data systems, it is very hard (or sometimes impos-

sible) to guarantee global control performance under mild

conditions. But in some practical control systems, behavior

of sampled-data control systems is restricted in some region.

Hence we propose the semi-global results from a practical

point of view. For details, see [11].

IV. SIMULATION AND EXPERIMENTAL RESULTS

We apply the designed single-rate controllers (20) and the

multi-rate controllers (21)-(23) to the four wheeled mobile

robot “LIMO” developed by Agilex Robotics Co Ltd. Its

detailed physical image and English manual are given in

[26]. For this robot, L = 0.2 [m] and the steering angle is

saturated by |φ| ≤ 28 [deg], (|φ| ≤ 0.49 [rad]). Its position

and attitude of the robot are measured by a ceiling camera

and an inertial measurement unit (IMU) equipped in the

robot, respectively. Let h = 1 [m], ∆ = 0.25 [m], and

rd = 0.2 [m/s]. By simulation and experimental results, we

show control performance of the designed controllers and its

dependence on a length of input and measurement sampling

periods.

First we consider the single-rate controllers (20) with

T = Tm = 0.1 and 0.5 [sec]. Let c′ = 1.0 and

(x(0), y(0), ψ(0)) = (1, 2, π) the initial position and attitude

of the robot. Then Figs. 2 and 3 are the experimental results
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Fig. 2. Trajectories of the robot given by the single-rate controller (20)
with c′ = 1 for T = 0.1 (red line) and T = 0.5 (blue line)
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Fig. 3. Time responses of φ(t) given by the single-rate controller (20)
with c′ = 1 for T = 0.1 (red line) and T = 0.5 (blue line)

of the trajectories (x(t), y(t)) of the robot and the time

response of the steering angle control input φ(t) where

red and blue lines correspond to input sampling periods

T = 0.1 and 0.5 [sec], respectively. Fig. 3 shows no steering

saturation except for t ∈ (0, 2] and hence Figs. 2 and 3 show

that the designed controller achieves sampled-data circular

path following for both T = 0.1 and 0.5 [sec] in the SPAS

sense.

Let c′ = 10 under the same initial position and attitude

of the robot. Then the experimental results of (x(t), y(t))
and the time responses of φ(t) are given in Figs. 4 and 5,

respectively. Fig. 5 shows the steering angle saturation that is

happening continuously and repeatably for both T = 0.1 and

0.5 [sec]. In this case the designed single-rate controller (20)

with c′ = 10 achieves sampled-data circular path following

in the SP-ISS sense, only. Moreover, we see that offset,

which corresponds to error between the robot and the desired

circular path, becomes bigger when a length of sampling

period becomes longer.

As mentioned in Remark 3.2, although T ∗ > 0 given by

(19) in the proof of Lemma 3.1 depends on a choice of

Lyapunov functions, we expect that T ∗ becomes smaller for

larger c′ > 0 by (19) and control performance of the designed

single-rate controllers, which is given by Figs. 2-5, is valid.

We also give a comparison of simulation and experimental

results of the trajectories for c′ = 10 and T = 0.5 (Fig. 6),

where the red solid line and the triangular marks are the
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Fig. 4. Trajectories of the robot given by the single-rate controller (20)
with c′ = 10 for T = 0.1 (red solid line) and T = 0.5 (blue solid line)
and the desired circular path (black broken line)
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Fig. 5. Trajectories of LIMO given by the single-rate controller (20) with
c′ = 10 for T = 0.1 (red line) and T = 0.5 (blue line)

experimental result of the trajectory and attitude of the robot

at every 6 [sec], the blue solid line is the simulation result of

the trajectory, and the black broken line is the desired circular

path. Fig. 6 shows that the experimental result is close to the

simulation one, although offset of the experimental result is

slightly larger than that of the simulation one.

Finally we consider the multi-rate controllers (21)-(23)

with (T, Tm) = (0.1, 1). Let c′ = 10 under the same initial

position and attitude of the robot. Then Figs. 7 and 8 show

the experimental results of (x(t), y(t)) and the time response

of φ(t) given by the multi-rate controller (21)-(23) with

(T, Tm) = (0.1, 1) and the single-rate controller (20) with

T = Tm = 1 where the red and blue lines correspond to

the multi-rate and single-rate controllers, respectively and

the black broken line is the desired circular path. By Fig.

7 and 8, we can see that the multi-rate controller (21)-

(23) with (T, Tm) = (0.1, 1) achieves much better control

performance than the single-rate controller (20) with T =
Tm = 1. Furthermore, Figs. 4 and 7 show that the multi-

rate controller (21)-(23) with (T, Tm) = (0.1, 1) attains the

control performance recovery of the single-rate controller

(20) with T = Tm = 0.1.

Videos of the experimental results are also uploaded in

https://www.youtube.com/channel/UCkaqL9f5

osPsci8SP9zN7OQ.
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Fig. 6. Trajectories and the attitudes at every 6 [sec] of the robot:
Simulation (blue solid line) and experimental (red solid line and triangular
marks) results
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Fig. 7. Trajectories of the robot given by the multi-rate controller (21)-(23)
with c′ = 10, (T, Tm) = (0.1, 1) (red line) and the single-rate controller
(20) with T = 1 (blue line)

V. CONCLUSION

In this paper, we have considered the sampled-data circular

path following control of four wheeled mobile robots with

steering angle saturation. We have designed both single-rate

and multi-rate circular path following controllers based on

the Euler model of the tracking error dynamics and shown

that the closed-loop sampled-data tracking error dynamics

is SP-ISS. Moreover, we have illustrated the effectiveness

of the designed controllers by simulation and experimental

results.
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[11] D. S. Laila, D. Nešić, and A. Astolfi, “Sampled-data control of
nonlinear systems,” Advanced Topics in Control Systems Theory, vol.
328, pp. 91–137, 2005.

[12] S. Monaco and D. Normand-Cyrot, “An introduction to motion plan-
ning under multirate digital control,” Proceeding of the 1992 IEEE

Conference on Decision and Control, pp. 1780–1785, 1992.
[13] M. Elobaid, M. Mattioni, S. Monaco, and D. Normand-Cyrot, “Digital

path following for a car-like robot,” IFAC PapaersOnLine, vol. 54,
no. 21, pp. 174–179, 2021.

[14] H. Katayama and H. Aoki, “Straight-line trajectory tracking control
for sampled-data underactuated ships,” IEEE Transactions on Control

Systems Technology, vol. 22, pp. 1638–1645, 2014.
[15] T. I. Fossen, Marine control systems : guidance, navigation and control

of ships, rigs and underwater vehicles. Marine cybernetics, 2002.
[16] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
[17] D. Nesic and D. Laila, “A note on input-to-state stabilization for

nonlinear sampled-data systems,” IEEE Transactions on Automatic

Control, vol. 47, no. 7, pp. 1153–1158, 2002.
[18] D. Nesic, A. R. Teel, and E. D. Sontag, “Formulas relating kl sta-

bility estimates of discrete-time and sampled-data nonlinear systems,”
Systems and Control Letters, vol. 38, pp. 49–60, 1999.

[19] P. Mellodge and P. Kachroo, Model abstraction in dynamical systems

: application to mobile robot control, ser. Lecture notes in control and
information sciences. Springer, 2008.

[20] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction

to Robotic Manipulation. CRC Press, 12 2017.
[21] X. Liu, H. J. Marquez, and Y. Lin, “Input-to-state stabilization for

nonlinear dual-rate sampled-data systems via approximate discrete-
time model,” Automatica, vol. 44, no. 12, pp. 3157–3161, 2008.

[22] I. G. Polushin and H. J. Marquez, “Multirate versions of sampled-
data stabilization of nonlinear systems,” Automatica, vol. 40, no. 6,
pp. 1035–1041, 2004.

[23] A. Lorı́a and E. Panteley, “Cascaded nonlinear time-varying systems:
Analysis and design,” Advanced topics in control systems theory, vol.
311, pp. 23–64, 2005.

[24] A. Chaillet and D. Angeli, “Integral input to state stable systems in
cascade,” Systems and Control Letters, vol. 57, pp. 519–527, 2008.

[25] D. Angeli, E. Sontag, and Y. Wang, “A characterization of integral
input-to-state stability,” IEEE Transactions on Automatic Control,
vol. 45, pp. 1082–1097, 2000.

[26] “Limo usage and development manual.” [Online]. Available:
https://cir.nii.ac.jp/crid/1361137043769898240


