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Abstract— This paper proposes a novel approach for model-
ing and controlling nonlinear systems with varying parameters.
The approach introduces the use of a parameter-varying
Koopman operator (PVKO) in a lifted space, which provides
an efficient way to understand system behavior and design
control algorithms that account for underlying dynamics and
changing parameters. The PVKO builds on a conventional
Koopman model by incorporating local time-invariant linear
systems through interpolation within the lifted space. This
paper outlines a procedure for identifying the PVKO and
designing a model predictive control using the identified PVKO
model. Simulation results demonstrate that the proposed ap-
proach improves model accuracy and enables predictions based
on future parameter information. The feasibility and stability
of the proposed control approach are analyzed, and their
effectiveness is demonstrated through simulation.

Index Terms— Parameter-varying system, Koopman opera-
tor, Model predictive control

I. INTRODUCTION

Model predictive control (MPC) is a powerful algorithm
that has proven to be effective for controlling nonlinear
systems in various applications, including robotics and trans-
portation [1]–[3]. MPC offers several advantages, such as
the ability to handle state and input constraints and the ca-
pacity to tackle multi-input multi-output nonlinear systems.
However, nonlinear systems pose challenges in optimizing
control due to their non-convex nature, resulting in com-
putational complexity and difficulties in ensuring stability
and robustness. Additionally, unreliable models can lead to
performance degradation and system failure due to constraint
violations [4]. Therefore, obtaining accurate system models
and addressing non-convex problems are essential for effec-
tive MPC, but these tasks can be challenging in practical
applications.

Recently, data-driven Koopman operator (KO)-based sys-
tem identification has gained popularity in research. The KO
provides a linear representation of nonlinear autonomous
systems in infinite dimensions [5], which can further be
approximated in a finite number of dimensions through
data-driven approaches [6]. In this approach, user-defined
lifting functions and extended dynamic mode decomposition
(EDMD) methods are often utilized [7], [8]. Deep neural
networks also offer the capability to simultaneously identify
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Fig. 1: An illustration of the proposed parameter-varying
Koopman operator.

lifting functions as well as the KO [9]. By incorporating a
linear MPC algorithm into the linear system in the lifted
dimension, the approach can be executed to nonlinear MPC
[10]. Futhermore, robust MPC has been developed to address
model uncertainty resulting from the identification process
based on KOs [11], [12]. These findings suggest the potential
of the KO-based approach to address non-convex problems.
However, the success of data-driven identification methods
heavily depends on the quantity and quality of data, and
challenges still remain in this area.

In previous research, linear time-invariant models have
often been used to represent nonlinear systems in the lifted
space. However, in many real-world systems, the dynamics
are dependent on the operating point. For instance, the lateral
dynamics of vehicles are influenced by speed, and chemical
process models are highly affected by temperature [13], [14].
To address this issue, linear parameter varying (LPV) or
quasi-LPV models have been proposed for modeling and
designing control systems [15]–[19]. These models account
for the influence of exogenous parameters on the system
dynamics and provide a more accurate representation of
the system behavior. By considering the dependence of the
system dynamics on the operating point, LPV models enable
the design of controllers that are more robust and effective.

Motivated by recent advances in LPV systems and iden-
tification approaches [20], [21], this paper proposes a
parameter-varying KO (PVKO) for modeling and controlling
nonlinear systems with varying parameters in the lifted space.
The proposed approach is based on collecting data for each
operating point, identifying a KO for each point, and local
interpolation between the KOs is conducted following the ap-
proach in [20]. The resulting PVKO provides an accurate and
predictable model that accounts for the underlying dynamics
and varying parameters. To synthesize the control system, the
LPV-MPC approach [19] is used with the PVKO, assuming
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the predictability of future parameters. The proposed control
system addresses identification uncertainties, and recursive
feasibility and stability analysis are provided. Finally, nu-
merical simulations are conducted to verify the effectiveness
of the proposed modeling and control approaches.

The rest of this paper is structured as follows. The fol-
lowing section presents the proposed PVKO approach, and
Section 3 describes the control system design. The results of
the simulations are discussed in Section 4, and the study is
concluded in Section 5.

Notation: The notation In×m and 0n×m denote that n×m
identity and zero matrices, respectively. The Minkowski sum
and Pontryagin set difference of two sets X,Y ⊂ Rn are
denoted as X ⊕ Y and X ⊖ Y, respectively. Additionally,
Conv{·} represents the convex hull formed by the vertices
within {·}.

II. PARAMETER-VARYING KOOPMAN OPERATOR

Consider the discrete-time nonlinear system defined by:

xk+1 = f(xk,uk), (1)

where xk ∈ X ⊂ Rn and uk ∈ U ⊂ Rm denote the state
and input vectors, respectively, and the subscript k indicates
the time index. Let Ψ(xk,uk) ∈ G : Rn+m → Rq+m be an
observation function that maps the state and input vectors to
the lifted space. The observation function can be defined as
follows:

Ψ(xk,uk) =
[
ψ1(xk), ψ2(xk), · · · , ψq(xk),u

⊤
k

]⊤
, (2)

where ψi : Rn → R is the i-th component of the observation
function. Then, the lifted state vector can be expressed as
follows:

yk = Ψx(xk) =
[
ψ1(xk), ψ2(xk), · · · , ψq(xk)

]⊤
, (3)

where yk ∈ Rq is the lifted state vector. The KO K : G → G
can represent the lifted system in the linear form:

K(Ψ(xk,uk)) = Ψ(xk+1,uk+1), (4)

which can be approximated in a finite-dimensional space
higher than n (typically q ≫ n) using data. Since this
approximation is data-driven, a large amount of data is
required, and it is necessary to reduce the dimensions q to a
manageable level from a control perspective.

In this paper, we focus on a nonlinear system with
exogenous parameters defined as follows:

xk+1 = f(xk,uk, pk), (5)

where pk ∈ P ⊂ R is a bounded parameter that introduces
uncertainty into the system. To address this, we propose a
new approach for modeling the system as a LPV model in
a lifted space. Our approach involves using a PVKO Kpk

:
G → G defined as:

Kpk
(Ψ(xk,uk)) = Ψ(f(xk,uk, pk),uk+1) (6)

= Ψ(xk+1,uk+1), (7)

where Kpk
depends on the parameter.

To identify the PVKO, we use an EDMD-based approach,
which involves collecting data from the state and input
variables of the system at each working point and using
the data to identify the KO for each point. We then use an
interpolation-based modeling method to find the PVKO. Let

X(i) = [x1,x2, . . . ,xM−1] ∈ Rn×(M−1),

X+(i) = [x2,x3, . . . ,xM ] ∈ Rn×(M−1),

U(i) = [u1,u2, . . . ,uM−1] ∈ Rm×(M−1),

(8)

denote the collected state and input data at the i-th working
point, where M is the number of data points. We then lift
the collected data using a lifting function to obtain:

Y(i) = [y1,y2, . . . ,yM−1] ∈ Rq×(M−1),

Y+(i) = [y2,y3, . . . ,yM ] ∈ Rq×(M−1).
(9)

Using the collected data, we can establish the following
relations:

Y+(i) = A(pi)Y(i) +B(pi)U(i),

X(i) = CY(i),
(10)

where pi represents the parameter at the i-th working point
and C is the output matrix. We can then find the state matrix
by minimizing the following problems:

min
A(pi),B(pi)

||Y+(i)− (A(pi)Y(i) +B(pi)U(i))||F ,

min
C

||X(i)− CY(i)||F ,
(11)

where ||·||F represents the Frobenius norm. We can solve
these problems analytically using the pseudo-inverse of the
matrix

[
Y(i) U(i)

]⊤
as follows:[

A(pi) B(pi)
]
= Y+(i)

[
Y(i)
U(i)

]†
,

C = X(i)Y(i)†,

(12)

where † indicates the Moore–Penrose inverse. To find the
pseudo-inverse matrix, we can use the singular value de-
composition to decompose

[
Y(i) U(i)

]⊤
as follows:[

Y(i)
U(i)

]
= UΣV ⊤. (13)

Then, we can approximate A(pi) and B(pi) as follows:[
A(pi) B(pi)

]
≈ Y+(i)V Σ−1U⊤

= Y+(i)V Σ−1
[
UA UB

]
,

(14)

now we can obtain A(pi) ≈ Y+(i)V Σ−1UA and B(pi) ≈
Y+(i)V Σ−1UB .

For a system with l ∈ N working points, we can obtain
l different (A(pi), B(pi)) matrices. The PVKO can then be
obtained by interpolating these matrices as follows:

A(pk) = α1(pk)A(p
1) + α2(pk)A(p

2) + · · ·+ αl(pk)A(p
l),

B(pk) = α1(pk)B(p1) + α2(pk)B(p2) + · · ·+ αl(pk)B(pl),
(15)

where α1(pk), α2(pk), . . . , αl(pk) are weighting coefficients
that depend on the parameter pk. Once we have future pa-
rameter information, we can predict the future system matrix
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using the identified PVKO (A(pk), B(pk)). This approach
allows us to use LPV-MPC [19].

Remark 1: A subsequent identification procedure is re-
quired to determine the functional form of the weighting
coefficients. In this paper, we use the simplest interpolation
technique, linear interpolation, which is cost-effective and
can provide adequate results for many applications.

III. PVKO-BASED MODEL PREDICTIVE CONTROL

Assumption 1: We assumed that the uncertainty of the
model approximation, wk, is unknown and bounded, i.e.,
wk = yk+1 − (A(pk)yk +B(pk)uk) ∈ W ⊂ Rq .

We propose a method for synthesizing the LPV-MPC algo-
rithm on the lifted space, named PVKO-MPC, based on the
identified PVKO. The LPV system with bounded uncertainty
wk (as stated in Assumption 1) can be represented in the
lifted space as follows:

yk+1 = A(pk)yk +B(pk)uk +wk,

s.t. yk ∈ Y,
uk ∈ U,
wk ∈ W.

(16)

Let the nominal system of (16) be represented as:

ȳk+1 = A(pk)ȳk +B(pk)ūk, (17)

where ūk and ȳk are the nominal input and state vectors that
correspond to the system without uncertainty. The control
input of the system (16) is then designed as follows:

uk = ūk +K(yk − ȳk), (18)

where the second term in (18) is the auxiliary state feedback
control that compensates for the error.

Definition 1 (Robust positively invariant set): A set Ω is
a robust positively invariant (RPI) set of the system ek+1 =
(A(pk)+B(pk)K)ek+wk, if (A(pk)+B(pk)K)ek+wk ∈
Ω for all ek ∈ Ω, pk ∈ P, and wk ∈ W.

Definition 2 (Quadratic stability): The system yk+1 =
Ac(pk)yk is quadratically stable if there exists P > 0 such
that Ac(pk)

⊤PAc(pk)−P ≤ −Q−K⊤RK for all pk ∈ P,
where Ac(pk) = A(pk) +B(pk)K.

A. Unceratinty compensation and RPI set calculation
Let the error vector be described by ek = yk − ȳk. The

error system can be represented using (16)-(18) as follows:

ek+1 = A(pk)(yk − ȳk) +B(pk)(uk − ūk) +wk

= (A(pk) +B(pk)K)ek +wk

= Ac(pk)ek +wk.

(19)

Assumption 2: The system (19) is quadratically stable.
Under the Assumption 2, the state feedback controller that

minimizes the worst-case cost can be obtained by solving the
following semidefinite programming problem:

min
P,K

tr(P )

s.t. Ac(pi)⊤PAc(pi)− P ≤ −Q−K⊤RK,

for i = 1, 2, . . . , l,
(20)

where Q,R are weight matrices. We can transform the
optimization problem (20) into the following problem using
the Schur complement as follows:[

P −Q−K⊤RK Ac(pi)⊤

Ac(pi) P−1

]
≥ 0, for i = 1, 2, . . . , l.

(21)
Then, by performing a congruence transformation with S =
P−1 and introducing Y = KS [22], we can transform the
problem into the following form:

max
S,Y

tr(S)

s.t.
S SA(pi)⊤ + Y ⊤B⊤ SQ1/2 Y ⊤R1/2

A(pi)S +BY S 0q×q 0q×m

Q1/2S 0q×q Iq×q 0q×m

R1/2Y 0m×q 0m×q Im×m


≥ 0, for i = 1, 2, . . . , l.

(22)
The problem (22) can be solved by convex optimization
software, YALMIP [23]. Once the state feedback gain K
is obtained, the Assumption 2 is satisfied, and then the RPI
set S of the error system (19) can be calculated as follows:

S = W⊕ Conv{Ac(pi)W,∀i ∈ {1, 2, . . . , l}}
⊕ Conv{Ac(pi)Ac(pj)W,∀i, j ∈ {1, 2, . . . , l}}
⊕ · · · .

(23)

B. Robust MPC strategy

The nominal control input can be computed using the
following MPC problem with the RPI set:

min
ȳ(·),ū(·)

N−1∑
k=0

(||ȳk|t||2Q+||ūk|t||2R) + ||ȳN |t||2P , (24)

s.t. ȳ0|t = Ψx(x0|t),

ȳk+1|t = A(pk|t)ȳk|t +B(pk|t)ūk|t,

k = 0, · · · , N − 1,

Cȳk|t ∈ X⊖ CS, k = 0, · · · , N − 1,

ūk|t ∈ U⊖ CKS, k = 0, · · · , N − 1,

ȳN |t ∈ Yf ⊖ S,

(25)

where N is the prediction horizon, Q, R, and P penalize
the state, input, and terminal state, respectively, the subscript
(·)k|t represents the value at time t+ k predicted at time t,
and Yf is the terminal set.

Definition 3 (Maximal positively invariant set): A set
Ω∞ ⊂ Y is a maximal positively invariant set (MPI) set of
the system yk+1 = Ac(pk)yk +wk if Ω∞ is invariant and
all RPI sets are contained.

In MPC design, the state feedback gain K, obtained from
(22) and its corresponding P matrix, can be used to establish
recursive feasibility and stability through a terminal set and
cost [24]. The terminal set is obtained by implementing the
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terminal control input strategy ūN |t = KȳN |t. The set is
designed to ensure the satisfaction of the following condition:

yN |t ∈ Yf ⇒ yN+1|t ∈ Yf , ∀t ∈ N+, CYf ⊂ X. (26)

The MPI set is often chosen as the terminal set, but in
practice, the RPI set can be used if the nominal system (17)
is stable.

C. Recursive feasibility and stability analysis
Assumption 3: At the initial time, a feasible solution ex-

ists for the nominal PVKO-MPC problem.
Assumption 4: The model parameter pk is known over the

prediction horizon.
Assumption 5: The stage cost and terminal cost are posi-

tive definite functions, i.e., they are strictly positive and only
equal to zero at the origin.

Theorem 1: Assume that Assumptions 3 and 4 hold. Then,
for any time t, a feasible solution to the PVKO-MPC problem
(24) always exists.

Proof: Let the initial time be t, and let the feasible op-
timal control sequence and the corresponding state sequence
be as follows:

Ū∗
t = [ū∗

0|t, ū
∗
1|t, . . . , ū

∗
N−1|t],

Ȳ ∗
t = [ȳ∗

0|t, ȳ
∗
1|t, . . . , ȳ

∗
N |t].

(27)

At the next time t + 1, we can obtain the pre-
dicted state sequence with the control law Ūt+1 =
[ū∗

1|t, ū
∗
2|t, . . . , ū

∗
N−1|t,Kȳ∗

N |t] as Ȳt+1 = [ȳ∗
1|t, ȳ

∗
2|t, . . . ,

ȳ∗
N |t, A

c(pN−1|t+1)ȳ
∗
N |t]. Under the Assumption 3, the

terminal state ȳ∗
N |t at time t satisfies the terminal con-

straints. Then under the condition of the terminal set (26),
Ac(pN−1|t+1)ȳ

∗
N |t also satisfies the terminal constraints. As

a result, the MPC problem (24) is recursively feasible due
to the above recursion.

Theorem 2: Suppose that Assumptions 3 to 5 hold, the
system (17) is asymptotically stable under the solution to
the MPC problem (24).

Proof: Let Jt be a Lyapunov function defined as
follows:

Jt =

N−1∑
k=0

(||ȳk|t||2Q+||ūk|t||2R) + ||ȳN |t||2P . (28)

Let J∗
t be the optimal cost at time t, which can be computed

by (27), and also let Ĵt+1 be the cost at time t + 1, which
can be computed by Ūt+1 and Ȳt+1 as follows:

Ĵt+1 =

N−1∑
k=0

(||ȳ∗
k|t||

2
Q+||ū∗

k|t||
2
R)︸ ︷︷ ︸

=J∗
t −||ȳ∗

N|t||
2
P

− (||ȳ∗
0|t||

2
Q+||ū∗

0|t||
2
R)︸ ︷︷ ︸

≥0 (Assumption 5)

+ (||ȳ∗
N |t||

2
Q+||Kȳ∗

N |t||
2
R) + ||ȳN |t+1||2P

≤ J∗
t − ||ȳ∗

N |t||
2
P+||ȳ∗

N |t||
2
Q+||ȳ∗

N |t||
2
K⊤RK

+ ||ȳ∗
N |t||

2
Ac⊤PAc

≤ J∗
t + ||ȳ∗

N |t||
2
Ac⊤PAc−P+Q+K⊤RK︸ ︷︷ ︸

≤0 (Assumption 2)

≤ J∗
t , (29)
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where Ac = Ac(pN−1|t+1). As J∗
t+1 ≤ Ĵt+1, we can obtain

J∗
t+1 ≤ J∗

t . Thus, with the proposed controller (24), the
nominal system (17) converges to zero as t→ ∞.

IV. SIMULATION RESULTS

The performance of the modeling accuracy and control
system was verified through two simulations.

A. Prediction Performance

The prediction performance of the proposed PVKO ap-
proach is evaluated using the Lorenz model, which is defined
by the following set of equations:

ẋ = 10(y − x),

ẏ = px− y − xz,

ż = xy − z,

(30)

where p is a time-varying parameter defined as p(t) =
25 +

∑20
i=1 ai sin(fit), where

∑20
i=1 ai = 5 and ai > 0.

The value of fi is selected from a uniform distribution from
0 to 10. The proposed PVKO approach is applied using
50 thin-plate radial basis functions for the lifting functions,
with three working points, p = 20, 25, 30. The simulation
data with a 50 s duration and a 0.01 s sampling time are
used for each working point’s KO modeling, while 150 s of
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TABLE I: Parameters of controllers

Symbol Value Symbol Value Symbol Value

N 50 Ts 0.01 [p, p] [1, 5]

Q diag([1, 1]) R 0.1 [u, u] [−3, 3]

K
[−0.2036,−0.3152, 0.0117, 5.3363 · 10−5,−0.0062,

0.0489,−0.0147,−4.3624 · 10−5, 0.0035]

simulation data were used for conventional (time-invariant)
KO modeling. The prediction is performed for 2 s, and the
resulting trajectory and parameter over time are shown in
Figs. 2 and 3.

To evaluate the quantitative performance and the effects
of the order of lifting function, a Monte-Carlo simulation
was conducted. For each order, 500 prediction simulations
with a 200-step prediction (2 seconds) were conducted, and
the prediction accuracy was computed using the root mean
square error (RMSE) as follows:

RMSE = 100

√∑
k||x̂k − xk||22√∑

k||xk||22
, (31)

where x̂k is a predicted state vector. As shown in Fig. 4, the
proposed PVKO approach outperforms the time-invariant KO
for the parameter-varying Lorenz model simulation.

B. Control Performance

The performance of the PVKO-MPC is evaluated using
the Van der Pol oscillator model with a time-varying model,
given by:

ẋ = 2y,

ẏ = −0.8x+ p(y − 2x2y) + u,
(32)

where the control input u and the time-varying parameter p
are subject to a random walk model and are constrained to
specific value ranges. The proposed PVKO model is identi-
fied by using the polynomial function as a lifting functions,
given by Ψ = [x, y, xy, x2, y2, x2y, xy2, x3, y3]⊤, resulting
in a dimension of 9. For the PVKO modeling, five working
points with p = 1, 2, 3, 4, 5 are used. A 1000 s simulation
data with 0.01 s sampling time were used for each working
point’s KO modeling, while 5000 s simulation data were
used for conventional KO modeling. Linear interpolation is

used to construct a complete PVKO model. We compared
the performance of the PVKO-MPC algorithm with the KO-
MPC [10] and nonlinear MPC (NMPC) algorithms. It’s
worth noting that only the NMPC algorithm utilizes full
knowledge of the model. The PVKO-MPC algorithm is
compared with the KO-MPC and nonlinear MPC (NMPC)
algorithm with full knowledge of the model as follows:

min
x(·),u(·)

N−1∑
k=0

(||xk|t||2CQC⊤+||uk|t||2R) + ||xN |t||2CPC⊤ (33)

s.t. xk+1|t = fd(xk|t,uk|t, pk|t), k = 0, · · · , N − 1,

xk|t ∈ X, k = 0, · · · , N,
uk|t ∈ U, k = 0, · · · , N − 1,

(34)

where N is the prediction horizon, the weight matrices
Q, R, and P are defined as in (24), and matrix C is
identified in (12). The function fd is obtained by discretizing
the nonlinear function (5) using the Euler method with a
sampling time of Ts = 0.01 s. The controller’s parameters
are provided in Table I.

To compare the performance of two controllers, simu-
lations were conducted using (32) with an initial state of
[x, y] = [3, 0.5] and a time-varying parameter is shown in
Fig. 5b. The PVKO-MPC problem (24) was solved using the
light-weight sparse quadratic programming solver, qpSWIFT
[25], while the interior point optimizer, IPOPT [26], with
CasADi software [27] in MATLAB was used for NMPC.

Figure 5 shows the result of the three controllers and opti-
mal trajectory obtained by (33) with N = ∞. The cumulative
cost is calculated as Jc(k) =

∑k
i=0(||xi||2CQC⊤+||ui||2R),

and the resulting costs are shown in Fig. 5d. As can be
seen, the PVKO-MPC spent less cost than KO-MPC in this
simulation and almost similar with NMPC, which uses full
knowledge of the model. The average computation time and
the cumulative cost are summarized in Table. II.

TABLE II: Average computation time, the cumulative cost,
and the cost ratio of three controllers (where J∗

c is the
cumulative cost of global optimal trajectory)

NMPC KO-MPC PVKO-MPC

Avg. computation time 0.0056 0.0032 0.0033

Cumulative cost Jc 5136.7 5585.5 5246.8

100 · (Jc − J∗
c )/J

∗
c 0.71% 9.51% 2.87%

V. CONCLUSION

In this paper, we proposed the data-driven PVKO approach
for modeling and controlling parametric uncertain nonlinear
systems. Our method involved identifying local Koopman
operators at each working point and interpolating them to
form a complete PVKO. Furthermore, we designed a PVKO-
MPC approach with a robust error-compensation controller,
derived through linear matrix inequality, and provided re-
cursive feasibility and stability analysis. The efficacy of the
proposed approach was demonstrated through simulations,
which showed improved accuracy in modeling and perfor-
mance in controlling for uncertain nonlinear systems.
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(c) Time trajectories of control inputs.
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Fig. 5: Simulation results.
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