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Abstract— Thanks to their continuously deformable struc-
ture, continuum soft robots are suited for safe human-robot
interactions. However, the executable tasks are still limited in
complexity due to the high number of degrees of freedom,
and the consequent under-actuation that characterizes these
robots complicates the control problem. To develop a control
strategy taking advantage of the main system properties this
work investigates the use of Interconnection and Damping As-
signment Passivity Based Control in the regulation of unstable
equilibria of the underactuated template model soft inverted
pendulum with affine curvature. We show that remarkably, the
partial differential equations that arise from the application
of this technique, have a closed-form solution for this system.
We verify the effectiveness of the controller via simulations,
and we compare the results achieved considering the swing-up
problem against the ones obtained with baseline controllers, i.e.,
Proportional Derivative control and Feedback Linearization.

I. INTRODUCTION

In recent years, soft robots have been the subject of
many studies to guarantee safety and comfort in human-robot
interactions [1]. Inspired by nature, the aim of soft robotics
is to reproduce the behavior of animal muscles which, thanks
to elasticity and compliance, allows the execution of many
interesting tasks.

In the last years, many hardware solutions have been
developed by exploiting several mathematical models, ma-
terials, and actuation [2], [3]. However, the tasks that can
be executed are limited in complexity due to control prob-
lems. The high number of Degrees of Freedom (DoFs) that
characterize the deformable structure and the consequent
under-actuation are the main reasons for control difficulties.
Consequently, model-free approaches have spread widely in
the soft robotic field [4], as they allow the development of
complex and efficient control without perfectly knowing the
structure. Despite the simplicity of developing a dynamic
control with the model-free approach, practical applications
are limited by time and stability problems.
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Fig. 1: Model of the SIP showing key parameters: gravity
g, actuation with a pure torque τ , length l, diameter D.
Configuration variables θ0 and θ1 are the weights of the
affine function that describes the robot’s curvature.

To date, the main challenge is to develop a model-
based control strategy to take advantage of the behavior and
characteristics of continuum soft robots. This work focuses
on the Soft Inverted Pendulum (SIP) (Fig. 1) presented in
[5] and proposes a model-based control strategy designed
to target the energetic components of the system, closely
intertwined with the elastic elements. These components are
pivotal in shaping the dynamics of the considered robot class
and endow the system with intrinsic intelligence.

In [5] Collocated and Non-Collocated Feedback Lineariza-
tion controls are proposed without considering the energy
characteristics of the system. However, since energy covers
the main role in the dynamic behavior one possibility is to
develop an energy based control [6], i.e., Passivity Based
Control (PBC). The PBC consists of controlling a system
to make the closed-loop system passive. In terms of energy,
PBC is an extension of the energy-shaping plus damping
injection methodology. The energy-shape act allows the
modification of the potential energy in such a way the new
one has a global minimum at the equilibrium. The damping
injection act modifies the dissipation properties of the system
to make it passive guaranteeing stability. In the case of PBC,
the energy shaping allows rendering the closed-loop system
passive, characterized by a new desired storage function. This
function is composed of the original kinetic energy of the
system and the new desired potential energy. The damping
injection reinforces this procedure to make the output strictly
passive. However, applying this method to under-actuated
systems destroys the Euler-Lagrange structure. This means
that the storage function does not have the physical meaning
of energy. The solution is the Interconnection and Damping
Assignment-Passivity Based Control (IDA-PBC) [7], which is
different from PBC that first selects a storage function and
then designs a controller to render the storage function non-
increasing, because the control action is divided in energy
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shaping action to assign desired energy function to the
passive map, and damping injection to have asymptotic sta-
bility of the equilibrium in closed-loop. This control strategy
requires the definition of the Hamiltonian equation [8] of the
system and the modification of both kinetic and potential
energy. Moreover, the main challenge to the applicability of
the method is the resolution of Partial Differential Equations
(PDEs) to derive the control law.

Recently, in [9], a PBC application has been presented
for a general class of continuum soft robots without the
damping assignment because of the difficulties involved in
solving PDEs. An IDA-PBC is formulated in [10], [11] for
a rigid link model with elastic joints but does not include
the gravitational energy in the Hamiltonian function because
their systems present a negligible mass. The present study
contributes to the field of continuum soft robotics by:
• formulating an IDA-PBC control for the SIP: unlike pre-

vious approaches that assume negligible mass, our formu-
lation includes gravitational energy, making it suitable for
systems where mass cannot be ignored;

• deriving closed-form solutions for PDEs: we demonstrate
the existence of closed-form solutions for the PDEs gov-
erning the soft inverted pendulum model. This enables
the definition of energy-based control strategies, allowing
efficient control implementation;

• investigating stability with varying stiffness: we explore
how the stability of the controlled continuum soft robot
varies with changes in stiffness. This analysis provides in-
sights into the robustness and adaptability of the proposed
control method under different mechanical conditions.

Simulation results are presented to prove that the proposed
method allows the stabilization of the robot on its unstable
vertical configuration, countering the natural behavior of the
robot. Then, to show the competitiveness of the energy-
based control, we provide a comparison with a Proportional-
Derivative (PD) and a Feedback Linearization (FL) already
presented in the literature [3], [5].

II. PROBLEM DEFINITION
A. Background

The detailed description of the SIP template problem can
be found in [5]. Here, we summarize briefly its main points.

The overall shape of the robot is described by the config-
uration of the robot’s central axis. In turn, this is univocally
specified at each point by the curvature function, which is
assumed affine κs(t) = θ0(t)+ θ1(t)s [5]. Here, θ0 and θ1
are the constant and linear components of κ and serve as
configuration variables. t is the time variable and s ∈ [0,1]
is the coordinate to parameterize the positions along the
main axis of the pendulum. Let us define as d ∈ [− 1

2 ,
1
2 ] the

coordinate to parametrize points within the segment, thus a
generic point (s,d) can be defined with coordinates (xs,d ,ys,d)
in the global frame (Fig. 1). The SIP dynamics is defined as
follows [5]

B(θ)θ̈ +C(θ , θ̇)θ̇ +G(θ)+ kHθ +βHθ̇ = H
[

1
0

]
τ , (1)

where θ = [θ0,θ1]
⊤, θ̇ , and θ̈ ∈R2 are the position, velocity,

and acceleration vectors, respectively, B(θ) ∈ R2×2 is the
inertial matrix, C(θ , θ̇)∈R2×2 is Coriolis matrix, G(θ)∈R2

is the gravity vector, k ∈ R is the robot stiffness, β ∈ R is

(a) Equilibria of the SIP evaluated for k = 1.

(b) Equilibria of the SIP evaluated for τ = 0.

Fig. 2: Graphical representation of the bifurcation of equilib-
ria obtained when varying (a) the input with stiffness equal
to 1; and (b) the stiffness with zero input.

the damping and τ ∈ R is the input, which is a pure torque
applied on the robot tip. H ∈ R2×2 is the Hankel matrix
whose elements are defined as Hi, j =

1
i+ j−1 ; note that it is

full rank. Imposing the equilibrium conditions θ̇ = [0,0]⊤
and θ̈ = [0,0]⊤ in (1) leads to

G1(θ̄)+ kθ̄0 +
k
2

θ̄1 = τ̄, G2(θ̄)+
k
2

θ̄0 +
k
3

θ̄1 =
τ̄

2
. (2)

with θ̄ equilibrium configuration and τ̄ the equilibrium
torque. Since G(0,0) = [0,0]⊤, the configuration θ = [0,0]⊤
is an equilibrium for τ̄ = 0, and its stability depends on the
stiffness value in relation to mass m and length l. If the
stiffness is such that

k
lgm

>
13+2

√
31

60
, (3)

the equilibrium is stable [5]. On the other hand, if θ ̸= [0,0]⊤
a closed-form solution for (2) does not exist. Fig. 2 reports
some equilibria that are numerically evaluated varying τ (Fig.
2a) and k (Fig. 2b), respectively.

The dynamics of the SIP model (1) can be reformulated in
Hamiltonian form using standard procedures documented in
the literature [12]. This formulation is suitable for the defi-
nition of an energy-based control law. By adopting the more
commonly used mathematical notation for clarity, we define
q≜ θ , and p≜B(q)q̇ and then express the Hamiltonian (total
energy) of the SIP as

H (q, p) =
1
2

p⊤B−1(q)p+
k
2

q⊤Hq+mgh . (4)

The first term in (4) is the kinetic energy of the pendulum,
and the remaining two are the elastic and gravitational
potential energy, respectively. Therefore, our system in the
Hamiltonian form [8] is

[
q̇
ṗ

]
=


[

0 I
−I 0

]
︸ ︷︷ ︸

J(q,p)

−
[

0 0
0 βH

]
︸ ︷︷ ︸

R(q,p)


[

∇qH
∇pH

]
+

[
0
A

]
u ,

(5)



where ∇q(·)≜ ∂ (·)
∂q and ∇p(·)≜ ∂ (·)

∂ p are the vectors of partial
derivatives with respect to p and q, u∈R is the control input,
I ∈ R2×2 identity matrix, H is the Hankel matrix, β ∈ R is
the natural damping of the system, and A =

[
1, 1

2

]⊤
. J(q, p)

and R(q, p) are defined as the interconnection and damping
matrix, respectively.

B. Problem Statement
Let us consider the case for which the vertical config-

uration θ ∗ = [0, 0]⊤ is an unstable equilibrium, i.e., when
the stiffness k does not satisfy (3). The goal of this work
is to stabilize the SIP in this unstable configuration, i.e., the
swing-up problem, by designing a passivity-based control.

III. PROBLEM SOLUTION
In this section, we show that the challenge introduced in

II-B can be solved by opportunely defining the SIP model in
the Hamiltonian, taking into account the gravitational contri-
bution because the mass is not negligible, and opportunely
defining the IDA-PBC showing that resulting PDEs admit
solution.

Applying IDA-PBC means designing the control law in
such a way the closed-loop is still in the Hamiltonian form
and resulting as in [13][

q̇
ṗ

]
= [Jd(q, p)−Rd(q, p)]

[
∇qHd
∇pHd

]
, (6)

where Jd =−J⊤d is the desired interconnection matrix, Rd =
R⊤

d is the desired damping matrix, and Hd is the new
Hamiltonian function. We choose

Hd(q, p) =
1
2

p⊤B−1
d (q)p + Vd(q) , (7)

as the desired energy structure of the closed-loop system,
where Bd(q) and Vd(q) are the inertia matrix and the desired
potential energy function of the closed-loop system, respec-
tively. Note that, choosing (7), Vd(q) must verify

qd = argmin(Vd(q)). (8)

We define the desired structure of Jd and Rd in order to
preserve the structure of (5) and simplify the solution of
the PDEs parameterized by the chosen matrices [13]. More
specifically, choosing

Jd =

[
0 B−1Bd

−BdB−1 J2,

]
, (9)

where J2 =−J⊤2 is a tuning matrix, allowing for conserving
the under-actuation of the system also in the closed-loop,
i.e., the control action u does not act on the variable q. On
the other hand, choosing

Rd =

[
0 0
0 βHB−1Bd +AKVA⊤

]
, (10)

where KV > 0 is a control gain, allowing for considering the
existing damping β and adding a new one with the negative
feedback.

Substituting (9) and (10) into (6) leads to the desired
closed-loop dynamics[

q̇
ṗ

]
=

[
0 B−1Bd

−BdB−1 J2 −βHB−1Bd −AKVA⊤

][
∇qHd
∇pHd

]
.

(11)

As customary in PBC, we consider a controller composed
of two terms u = ues +udi, where ues is the energy shaping
term, and udi is the damping injection action. Equating (6)
and (11) leads to[

0 I
−I βH

][
∇qH
∇pH

]
+

[
0
A

]
(ues +udi) =[

0 B−1Bd
−BdB−1 J2 −βHB−1Bd −AKVA⊤

][
∇qHd
∇pHd

]
.

(12)

Since udi is the negative feedback that acts on the system
damping, we can define it directly as

udi =−KVA⊤
∇pHd. (13)

The energy shaping controller is found by substituting (13)
in (12)

ues = A∗
(

∇qH −BdB−1
∇qHd + J2B−1

d p
)
, (14)

where A∗ is a left-inverse, for example A∗ =(A⊤A)−1A⊤. The
feasibility of the control law (14) relies upon the existence
of the solutions of a set of PDEs in the unknowns Bd, J2 and
Vd:

A⊥
(

∇qH −BdB−1
∇qHd + J2B−1

d p
)
= 0, (15)

where A⊥ is a full rank left annihilator of A.
Proposition 1: Equation (15) is solved by choosing

Bd = KBB, J2 = 0, (16)

and

Vd =
k

2KB
q⊤Hq+

mgh
KB

− k
2KB

(q0 +
1
2

q1)
2

+
KP

2

[
(q0 −qd0)+

1
2
(q1 −qd1)

]2

+
k

4KB
(q0 +

1
2

q1)
2,

(17)
where KB and KP ∈ R are control gains.

Proof: Eq. (15) can be split into kinetic energy PDE,
and potential energy PDE, obtained by dividing its kinetic
and potential terms [10].

Eq. (16) solves the kinetic PDE

A⊥ (∇q(p⊤B−1 p)−BdB−1∇q(p⊤B−1
d p)+2J2B−1

d p
)
= 0

A⊥
(

∇q(p⊤B−1 p)− KB

KB
∇q(p⊤B−1 p)+0

)
= 0.

Eq. (17) solves the potential PDE

A⊥
(

∇qV −BdB−1
∇qVd

)
= 0, (18)

and is derived considering V = k
2 q⊤Hq + mgh, evaluating

∂V
∂q =

[
kq0 +

k
2 q1 +mg ∂h

∂q0
k
2 q0 +

k
3 q1 +mg ∂h

∂q1

]
, and defining Vd as

Vd =
k

2KB
q⊤Hq+

mgh
KB

− k
2KB

(q0 + γq1)
2 +Φ(q0 + γq1) (19)

where γ ∈ R is a parameter to be defined and Φ ∈ R is an
arbitrary differential function that we have to define to satisfy
(8) for qd = [0,0]⊤. We define Φ as proposed in [14]

Φ(q0 + γq1) =
KP

2
[
(q0 −qd0)+ γ(q1 −qd1)

]2
+

k
4KB

(q0 + γq1)
2.

(20)



It is worth noting that (20) satisfies ∇qVd(qd) = 0.
Substituting (19) in (18) leads to

A⊥
(

∂

∂q

(
k
2

q⊤Hq+mgh
))

−A⊥
(

KB
∂

∂q

(
k

2KB
q⊤Hq+

mgh
KB

))
+A⊥

(
−KB

∂

∂q

(
− k

4KB

(
q0 +

1
2

q1

)2
))

+A⊥

(
−KB

∂

∂q

(
KP

2

((
q0 −qd0

)
+

1
2
(
q1 −qd1

))2
))

= 0

Then, choosing γ = 0.5 solves the equation

A⊥
[ k

4 (2q0 +q1)− KBKP
2

(
2q0 −2qd0 +q1 −qd1

)
k
4

(
q0 +

1
2 q1
)
− KBKP

2

(
q0 −qd0 +

1
2 q1 − 1

2 qd1

) ]= 0.

Proposition 2: The closed loop generated when applying

u =−KBKP

(
q0 −qd0 +

q1

2
−

qd1

2

)
+ k
(q0

2
+

q1

4

)
− KV

KB

(
q̇0 +

q̇1

2

) (21)

to the system (5), has (qd,0) as asymptotically stable equi-
librium for all KB.

Proof: Defining the Lyapunov function candidate [15]
as W = Hd +C , where C > 0 is a constant such that W
is positive definite [7], the time derivative of W , evaluated
along the trajectories of the closed-loop system (11) is

Ẇ = Ḣd = (∇qHd)
⊤q̇+(∇pHd)

⊤ ṗ

= (∇qHd)
⊤(KB∇pHd)

+(∇pHd)
⊤
(
−KB∇qHd −AKVA⊤

∇pHd −βHKB∇pHd

)
=−∇pH

⊤
d AKV A⊤

∇pHd −∇pH
⊤

d βHKB∇pHd

=−∇pH
⊤

d

(
AKV A⊤+βHKB

)
∇pHd ≤ 0

It is worth noting that ṗ ∈ L∞, p is bounded and asymptot-
ically converges to zero. Furthermore, substituting p = ṗ =
0 in the closed-loop equations the condition ∇qVd = 0 is
obtained. Since ∇qVd(qd) = 0, according to the Barbashin-
Krasovskii theorem, (qd,0) is an asymptotically stable equi-
librium.

A. Tuning of the gains

The choice of the control gains must avoid reducing the
compliance of the manipulator in a closed loop [16] and has
to guarantee asymptotic stability. Writing the state equation
of the SIP system

q̇ = q̇

ṗ = B−1
[(

− k
2

H +
k
2

AA⊤−KBKPAA⊤
)

q−mg
∂h
∂q

]
−B−1

[(
KV

KB
AA⊤+βH

)
q̇
]
,

(22)

it is possible to note that the gain of the energy-shaping
is related to the stiffness of the robot k while the one
of the damping injection is related to the damping β . In
particular, applying Lyapunov’s indirect method, we study
the first dependency numerically, to show how the value of
KP depends on k.

Fig. 3: Stability w.r.t. the robot stiffness: green circles
represent KP values that guarantee closed-loop stability while
red crosses represent the ones for which the closed-loop is
unstable.

Linearizing (22) in [q⊤, q̇⊤]⊤ = [0,0,0,0]⊤ leads to[
q̇
ṗ

]
=

[
02×2 I

J1(q̈,q) J2(q̈, q̇)

]
|(0,0,0,0)

[
q
q̇

]
, (23)

where J1(q̈,q) and J2(q̈, q̇) are the Jacobian of q̈ w.r.t.
q and the Jacobian of q̈ w.r.t. q̇, respectively. We found
the value of KP for which the stability is guaranteed. Fig.3
shows that a softer robot requires a larger gain KP to be
asymptotically stable in the studied equilibrium point.

IV. SIMULATION RESULTS

In this section, the implemented IDA-PBC control is
applied to the SIP to stabilize it in its vertical configuration
when this is an unstable equilibrium. Then, the same swing-
up problem is solved with other controllers proposed in the
literature to compare our results and show the competitive-
ness of our method.

A. Swing-up

Fig. 4 summarizes the results obtained from different
simulation tests. We consider two different stiffness values
for the SIP, i.e. k = 1, k = 2, to highlight that the required
control gains for stabilization are higher the softer the robot
is. Furthermore, for each value of k, three different initial
positions are chosen for the SIP to show how it can be
stabilized in its unstable equilibrium with the proposed IDA-
PBC starting from several configurations.

Tab. I reports the values of the start configuration and the
control gains for each presented test. In all tests, the desired
configuration is the vertical equilibrium, i.e., qd = [0,0]⊤.

B. Comparison Analysis

The comparison analysis is made by solving the swing-up
problem with a PD controller and with Feedback Lineariza-
tion (FL), both available in the literature [3], [5].

TABLE I: Test parameters

Test Stiffness k Start q KB KP KV
q0 q1

1 (Fig. 4a,4d) 1 π/4 −π/4 10 25 1
2 (Fig. 4b,4e) 1 ¯q0sx ¯q1sx 10 25 1
3 (Fig. 4c,4f) 1 2π −6π 10 25 1
4 (Fig. 4g,4j) 2 π/4 −π/4 10 1 0.1
5 (Fig. 4h,4k) 2 ¯q0sx ¯q1sx 10 1 0.1
6 (Fig. 4i,4l) 2 2π −6π 10 1 0.1



(a) Test 1: θ and τ trend. (b) Test 2: θ and τ trend. (c) Test 3: θ and τ trend.

(d) Test 1: SIP behavior. (e) Test 2: SIP behavior. (f) Test 3: SIP behavior.

(g) Test 4: θ and τ trend. (h) Test 5: θ and τ trend. (i) Test 6: θ and τ trend.

(j) Test 4: SIP behavior. (k) Test 5: SIP behavior. (l) Test 6: SIP behavior.

Fig. 4: Simulation results of IDA-PBC control. Two stiffness values, k = 1, k = 2, are considered, and for each one, three
different start configurations of the SIP, for a total of six cases I. Figs. 4a, 4b, 4c, 4g, 4h, 4i report the trend of θ0 in green,
θ1 in red, and τ in yellow for the six cases, respectively. Figs. 4d, 4e, 4f, 4j, 4k, 4l represent respectively the robot behavior
in the same six cases; the green line indicates the start configuration, the blu line the final configuration, and the grey lines
the intermediate configurations.

1) PD Controller: the PD control law is a generalization
for the under-actuated systems of the one derived for the
continuum fully-actuated soft systems [3].

τ(qd,q, q̇) = AL((kHq)+G(q))+KPA⊤(qd −q)−KDA⊤q̇

with AL the left inverse of A, KP = 3 and KD = 0.01 (Fig.
5a, 5b).

2) FL Control: in [5] the Author proposes a partial
collocated feedback linearization by rewriting the dynamics
as

B̃(z) z̈+C̃ (z, ż) ż+ G̃(z)+ K̃z+ D̃ż =
[

τ

0

]
,

where z = [θ0 +
1
2 θ1,

1
2 θ0 +

1
3 θ1], B̃(z) = H−1B(H−1z)H−1,

C̃(z, ż)=H−1C(H−1z,H−1ż)H−1, G̃(z)=H−1G(H−1z), K̃ =
kH−1, and D̃ = βH−1. The control law is

τ =
(
h1 −

(
B̃2,1/B̃2,2

)
h2
)
+
(
B̃1,1 − B̃2

2,1/B̃2,2
)

u,

where u =−ϕPz0 −ϕDż0 is an extra PD control with ϕP = 1
and ϕD = 1 in reported simulation (Fig. 5c, 5d)

(a) (b)

(c) (d)

Fig. 5: Simulation results PD and FL control: the stiffness
is set to 1, the start configuration is the left equilibrium
for τ = 0 Nm equal to [−6.18,6.87]⊤rad and the desired
final configuration is [0,0]⊤rad. Figs. 5a and 5c show the
trend of θ0 in green, θ1 in red, and τ in yellow in the
case of PD and FK, respectively. Figs. 5b and 5d represent
respectively the robot behavior in the case of PD and FL;
the green line indicates the start configuration, the blu line
the final configuration, and the grey lines the intermediate
configurations.



C. Discussion
Simulation results for the implemented IDA-PBC demon-

strate its effectiveness in addressing the swing-up problem
by leveraging the energetic characteristics of the Soft In-
verted Pendulum (SIP). It is important to highlight that the
necessary input torque, consistent with our findings during
the definition of the control law, increases not only in
proportion to the deviation of the initial configuration from
the desired one but also with the softness of the robot.
It is also noteworthy that the robot’s behavior becomes
significantly more oscillatory as the parameter k increases.
This behavior is attributed to the accumulation of energy
within the robot, leading to pronounced oscillatory dynamics
that, depending on the input torque value, may escalate into
the snap phenomenon [17]. Analyzing the results of the
comparisons, for which we considered only the case with k =
1, we can observe that the proposed controller gives smoother
trends of θ0 and θ1 compared to those obtained with PD and
FL, although with slower response times compared to PD.
Evaluating the root mean squared error of θ0 and θ1 for all
three cases, considering zero as the desired reference value
for both variables (corresponding to the desired vertical con-
figuration), we obtain rmseθ0 = 1.0989 and rmseθ1 = 2.1263
with IDA-PBC, rmseθ0 = 4.6836 and rmseθ1 = 7.4893 with
PD, and rmseθ0 = 3.3527 and rmseθ1 = 5.1856 with FL.
Moreover, given that the suggested IDA-PBC requires higher
control gains when k is very small, we assessed the cost
of the control action as the modulus of the integral of the
input torque over time. The resulting costs, equal to 4.2764,
2.3465, and 6.7094 for IDA-PBC, PD, and FL, respectively,
underscore that the overall cost incurred with our energy-
based control is comparable to others, in particular, lower
than that of FL. The suggested IDA-PBC has proven to be
a competitive control method that, different from the two
others, allows exploiting the energetic components that play
a significant role in the dynamic behavior of continuum soft
robots.

V. CONCLUSIONS
In the field of continuum soft robots, this research pro-

posed a study on the soft inverted pendulum and a model-
based control for the system. The objective was to realize
a model-based controller to obtain highly performant soft
robots. The choice of the model-based approach derived
from the necessity of guaranteeing more stability and ve-
locity in order to realize more complex tasks. The research
proposed the design of an IDA-PBC to shape the energy
and guarantee damping injection at the same time. The
definition of the control law required the definition of the
Hamiltonian function of the system and the resolution of
two PDEs. It is worth noting that, the solution of PDFs does
not always exist. However, with this work, we demonstrated
that a closed-form solution for both PDEs exists for the
considered model. The effectiveness of the control method
was demonstrated through simulations and comparisons with
state-of-the-art controllers. Future work will be devoted to
extending the proposed energy-based controller to multiple
models (and robots) [18]–[20], trajectory tracking problems,
and experimental validation. Even if experimental validation
remains a bottleneck for soft continuum robots, it was
demonstrated that implementing actuation at the structure’s

tip enables good control in both regulation and tracking tasks
[21]. It is reasonable to anticipate that the proposed control
strategy could deliver promising results in experimental
settings, considering its dependence on information about
angles, which can be obtained through bend sensors, and tip
actuation methods such as cable-driven systems or human-
muscle-inspired single-fiber actuators. The only constraint
that could be addressed is the requirement for higher torque
in the case of high soft structures.
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