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Image-based visual relative information for distributed rigid formation
control in 3D space
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Abstract—Image-based visual relative information (IBVR)
for distributed rigid formation control of agents moving in
3D space is proposed for single-integrator agents. The IBVR
approach is based solely on the local information of the
neighbors’ visible area, of neighbors’ local coordinates in
the image plane, and of the camera parameters in order to
achieve and maintain rigid formation distributedly. Each agent
is represented as a spherical agent and modeled as a single
integrator. We introduce a rigid formation framework based
on the image-based visual information and subsequently use it
to design the gradient-based distributed formation control in
3D space.

I. INTRODUCTION

Formation-control theories and methods have attracted
many researchers in various research fields, especially in
robotics and in autonomous systems. Formation control
theory is applicable to a multitude of robotic applications.
Some popular applications of formation control methods are
autonomous underwater vehicles (AUVs), unmanned aerial
vehicles (UAVs), and mobile robots/unmanned ground vehi-
cles (UGV). In these applications, the (distributed) formation
control is used to reach and maintain desired formation
shapes based on relative information that is measured by
the on-board local sensor systems. In literature, various
formation control methods have been proposed that depend
on the form of relative information and on the location of
the sensor systems. We refer interested readers to the review
papers in [1]-[3].

In contrast to various formation control methods, the
distance-based approach can be fully implemented in a
distributed way and in a coordinate-free fashion, which has
made it popular for the past decade. In the distance-based for-
mation control framework, the desired shape is defined based
on inter-agent distance. Correspondingly, each agent uses
only relative position defined on its local coordinate systems
so that all agents can reach and maintain the desired shape.
Due to its distributed nature, it has an inherent robustness
such that it can be combined with other complex algorithms,
such as, the fully-homomorphic encryption algorithm [4].

As an alternative to the distance-based method, bearing-
based approach has been studied where the relative bearing
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of neighboring agents is used to form a 2D/3D formation.
However, it requires a common global reference framework
or additional measurements such as relative orientation,
azimuth angle and altitude/elevation angle to reach and
maintain 3D formation [5]-[7]. Recently, an internal angle
approach was proposed in [8] for 2D formation that uses only
local information and local frame of reference. It assumes
that all agents are circular agents with uniform radius so
that the internal angle of neighboring agents can be used to
define rigid formation.

Inspired by the work in [8], we study in this paper the
generalization of internal angle approach to the 3D space.
It was recently demonstrated that distance measurement
of three-dimensional objects (3D-objects) from an image
snapshot using a single camera is feasible [9]. Motivated
by the approach in [9], we study in this paper the problem
of distributed formation control that uses directly image
information. It is based on the same mechanism as found
in nature, where bees use the image information of visible
landmarks that is compared to the ones in their memory [10].
We note that the use of a single camera for distance mea-
surement in a 3D environment is particularly attractive due
to its reduced complexity and cost compared to alternative
sensors like 3D LIDAR or stereo cameras [11].

The formation control framework using image informa-
tion has recently been presented in the literature, which is
primarily driven by the use of image-based visual servoing
(IBVS) approach. In the IBVS approaches, the distributed
control uses directly position coordinate of the neighbors via
image information to steer the agents towards the desired
shape via leader-follower scheme [12]-[14]. In this case, the
followers ensure that their leaders are steered toward the
right image coordinate by adjusting their own position in
the physical space. The uncertainty problem arising from
unknown leaders’ parameters such as velocities or vision-
related parameter uncertainties can be solved by introducing
adaptive algorithm as discussed in [15], [16]. However, in the
IBVS formation control methods, the use of a global position
system is still required by the leader and the formation
is kept via leader-follower configuration, which does not
guarantee the rigidity of the formation shape. To the best
of authors’ knowledge, IBVS rigid distributed formation
control has not been presented in the literature of formation
control. In this sense, we do not use the vision systems for
servoing purposes as commonly used in the IBVS literature.
Correspondingly, in order to emphasize the use of vision
systems for obtaining relative information in the distributed
control, we introduce the notion of Image-Based Visual



Relative (IBVR) information.

Correspondingly, the main contribution of this paper is on
the design of IBVR distributed formation control that does
not rely on the use of a global positioning system. Firstly,
we propose an IBVR distributed control for reaching and
maintaining a rigid formation shape in a 3D space. This
paper extends naturally the work in [8] to 3D space. In
standard geometry, one possible generalization of internal
angle from 2D to the 3D case can be based on the use of solid
angle. Inspired by the notion of solid angle, we use camera
image to obtain the visible area that can be linked to the
solid angle. The proposed IBVR approach relies only on the
visible area from the image and the direction to the centroid
of neighboring agents to form a 3D formation, without
requiring a common global reference frame or additional
angle measurements. The use of IBVR eliminates the need
for direct distance and relative position measurements or
inferring this information from the image. By assuming that
the neighboring agents are uniform spherical objects and
defined as single-integrator agent, our approach hinges on
measuring the visible area of agents along with image data ,
camera parameters and uses this IBVR information to define
rigid formation shape and the associated potential function
suitable for the gradient-based formation control law. In
contrast to the approach presented in [17], which focuses
on distance-based formation control, here, we introduce a
novel image-based relative information method that can be
obtained via simple camera systems.

This paper is structured as follows. In Section II, we
present the preliminaries on rigid formation framework that
is commonly adopted in distance-based formation control.
In Section III, we discuss the camera model and present the
relationship between the visible area of neighboring agents to
the distance. Accordingly, we present an image-based rigid
formation framework that can be used to construct IBVR
distributed formation control in Section IV. For showing
the efficacy of the approach, we present the numerical
simulations in Section V, and the conclusions in Section VI.

II. PRELIMINARIES

In this paper we use the following standard notations. The
identity matrix of dimension n is denoted as I,,. The Kro-
necker product is denoted by ®. Given a square matrix R,
we define R := R®1,,. For a set of vectors x; € R™, where

i € {1,...,k}, we define the concatenated vector & € R*"

by = £ [m;' w; :c;HT the corresponding block

diagonal matrix by D = diag(:)ic{1,... x} € REm>kn and
its 2-norm by ||z;||. We also define col(-) as a concatenated
column vector operator. The space % (R ) is the space of
continuous-time functions/signals @ : R, — R™, which are
square-integrable, i.e. [;° [l@(t)||?dt < oco. Similarly, the
space £ (R4 ) denotes the space of functions « : Ry — R"
that are essentially bounded, i.e. ess-sup,cp, [|Z(?)[| < oc.
Consider a graph of agents given by G = (¥, &), where
¥ ={1,...,N} is the set of N agents, and & C ¥ x ¥ is
set of edges describing pairs of interacting agents. We define
the set of neighbors of agent i by 4 = {j € ¥|i,j €

&}. For every pair of interacting agents in the edge set &,
the relative information between them can be described by
an incidence matrix B € RI”7I*I1€| where the k-th column
vector is associated to the k-th edge j and its elements are
given by

-1 ifi= é&,?”d,
bir=<¢4+1 ifi= é",;aﬂ,
0 otherwise .

Associated to each node in the graph G, we can assign
the agent’s position g; € R®. The tuple of positions
qa=la a5 q;\'—,}—r and the graph G defines the
framework. Using the incidence matrix B, we can define the
relative position z between interacting agents by z = B q,
where B = B ® I,,. For defining a geometrical shape and
its rigidity property, a scalar positive-definite function g can
be defined for every edge in the framework that can be
related to the geometry. For instance, one can consider the
use of Euclidean distance based on the position of interacting
agents g(¢i,q;) = @ — q;ll = |zkll. where & = (i, 7).
as commonly used in the distance-based formation control.
In the literature of distance-based formation control, it is
common to consider

9(qi. q;) = |zl (1)

with £ > 1. Another commonly used function is the relative
bearing between interacting agents g(q;,q;) = £2k.

Correspondingly, an edge function g — f(q) € R‘fl can
be defined that collects all scalar measures in each edge. In
our main results, we will later propose an image-based edge
function where g will be defined based on the apparent image
size of the neighboring agent.

Let us revisit the concept of an infinitesimally rigid
framework, which has been studied extensively in prior
works, such as [18]-[20]. The infinitesimal rigidity of a given
geometrical shape defined by f(q)* = d*, where d* is the
desired edge quantities, which can be characterized by the
null space of the rigidity matrix defined by R(q) = a’g—gq).
For instance, using the distance-based edge function as in
(1), which can be rewritten as

T —
fas(@) = [zl lzi6)°] = D:zDJz,  (2)
where Z = [||z1]‘2 ||z|cg»|HZ*2]T, the distance-
based rigidity matrix is given by
Ofai — —
Ryu(q) = 99 _ p_pT BT,

dq

In this case, by denoting d* as the desired distance vector
in every edge, the set of all positions with the desired shape
is given by

2 ={q" | fast(q") = d"}.

The corresponding group motion that makes & invariant can
be established by studying the infinitesimal displacement
dq such that R(q)dq = 0. For the distance-based edge
function, the admissible infinitesimal displacement includes



translations and rotations of the entire framework and it is
related also to the rank of the distance rigidity matrix by
rank(Raist(q)) = n| V| — %, where n is the dimension

of the working space.

III. IBVR RIGID FRAMEWORK

In this section, we present the use of IBVR to define a
rigid formation framework. As described in the Introduction,
IBVR can be used as a proxy to measure the distance and
relative position of the neighboring agents. The proposed
technique relies on camera parameters and only measures
objects with a specific shape, which will be a uniform sphere
in this paper. The main motivation of using sphere is due
to its simple mathematical representation, which facilitates
the design of IBVR-based methods and the corresponding
analysis. We note that this assumption is satisfied by a
number of recent design of unmanned aerial vehicles [21]—
[23] or those encapsulated in a sphere cage [24]-[26].

Let us consider a tetrahedron-shaped formation consisting
of four spherical agents working in 3D-space, Suppose
that each agent is capable of visual observation of other
neighboring agents in 3D space via camera. In this case, the
image-based visual information of the neighboring agents is
given by the area of spherical caps as shown in Figure 1.
The plane curve (conic) of the sphere is a circle, obtained
by intersecting the line with the image plane, and its apparent
sizes can be related to distance information [27], [28].

Fig. 1. The black area illustrates the visible area of the spherical
neighboring agent as seen by an observer at o. The parameters r, dj, a,
Ay and A, are the radius, distance to the centroid, apparent radius, total
surface area and visible area, respectively.

Let us now derive the relation between the visible area and
the distance to the neighboring agents. Figure 1 shows an
illustration of these variables where a neighboring spherical
agent j is observed from the centroid of an agent ¢ (indicated
by o) with (4,7) € k. In this figure, the spherical cap visible
area A, is part of the total surface area A, [29]. The visible
circle that encapsulates A, has a radius of a, which is smaller
than the sphere’s radius of . As before, the distance between
two agents is given by dr = |zg|. The ratio between
the spherical cap visible area and the sphere’s surface area
satisfies A, dp—r

Ara io = T, — .
¢ A, 5, (3)

Now, let us discuss the relationship between the size of the
visible area of an agent and the distance at which that area

can be seen. To illustrate this relationship, we will employ
principles of geometry and the characteristics of a pinhole
camera. Figure 2 shows the top view of pinhole camera
system, where o is the optical center (pinhole), f is focal

Fov

Fig. 2. The top-view plot of a pinhole camera system that projects a
spherical object to the image plane.

length measured in pixels, d, is the distance from pinhole to
the surface of the object, [ is the distance between the visible
part of the sphere and its center, s, is an area of a circle with
radius 7, s, is the area of a circle with radius a and sy, is the
circular area of the neighbors j on the image plane of agent 3.
Based on this pinhole camera model, we can estimate object
distances by using the pixel area measurements as proposed
in [9], [30]. The relationship between the distance of an agent
to its neighbors and the measured visible area in 3D working
space is given by
2
o p

For a sufficiently large inter-agent distance dj > r, we have
that a = r, A, = A, and s, = s,. For instance, when dj, >
10r, and the real distance defined as (fk, it holds that A, >
0.45A4,, s, > 0.90s,, and dj, > 0.94862k. For the rest of the
paper, we will assume that d; > r so that the following
approximation holds. In this case, the relationship between
the visible area and i2ts projzection satisfies the pinhole camera
equation given by 5—3 ~ g—i and i—’; ~ z—’:, or in other words,
following (4),

srf?
dz

Sk R &)
This approximation allows us to measure the distance dy,
using the image-based visual relative information (IBVR) of
sg. The large distance condition of dj > r means also that
the spherical agents are not in the collision range.

In the following, we will establish the relation between the
IBVR variable s; and the relative position zj, as illustrated in
Figure 3. First, note that the relative position between agents
¢ and j on the camera coordinate plane can be obtained
using the pinhole camera model [31]. We can obtain the
relationship between zj, and the camera coordinate plane
Dz, Py by using the following equations

zx = [FpPa Fpy 2], (6)
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Fig. 3. An illustration of a pinhole camera model depicting the relative
position of agent j compared to the camera coordinate plane of agent 1.

where z, = j—; f. Let us discuss the use of s; to define
rigid formation shape. Using s, we define a visible-area-

based edge function farea(s) by

-
faeal@) =[... sk ...] , Vke{l,..,]8]}.
Based on (5), it can also be expressed as
spf? T
fuala) = [ =] ke L6l @)

For describing the visible area rigidity matrix Rarea(q), one
can take the Jacobian of (7) as follows

_ a-farea(q) o afarea(dk) 8£
Rarea(‘]) = dq = 0Q dq
= ~T(d)Rax(g) = -T(d)D:DIB', ()

where Q = Dy € RI¢l, and T(d) = diag(s, f*(ds); 25, )-
The matrix T'(d) is positive definite as each dj > 0. Thus,
we have rank (Rarea) = rank (Rgist). It shows a one-to-one
relationship between infinitesimal-rigid formation shape that
is defined using the distance-based edge function fg as
in (2) with / = 1 and using the visible-area-based edge
function f,.,. In particular, if we use visible-area vector

s* = kcoél (s;) to define a formation shape of (G,q*),
€6k

the formation is infinitesimally rigid if rank(Rarea(g*)) =
3|7'| — 6. Similar as before, we define the set of all positions
with the desired shape using f, e, b

Darea = {q" | Farea(@d”) = 8"}

We can now specify the desired target formation shape
using a framework denoted as (G, g*). Here, the vector g* €
R3 adheres to a set of desired visible areas s*. One approach
to determine these distances is by employing (5) when the
visible area constraints are measured. This approach utilizes
directly the image measurement to reach and maintain a rigid
formation. Throughout the rest of the paper, we consider a
set of desired visible area {s;}, denoted by s*, such that
the corresponding visible area rigidity matrix Rarea has rank
3|7| — 6, i.e. the formation shape (G, ¢*) is infinitesimally
rigid.

IV. IBVR DISTRIBUTED FORMATION CONTROL

Consider single-integrator agents given by

q"i:uia Vi:].,...7N7 (9)
where q; € R? is the position and u; € R3 is the veloc-
ity input. In the following, we formulate a gradient-based

controller utilizing a visible-area-based potential function

(10)

ex = Sj, — Sk,

where s}, is the desired visible-area of the neighbor j on the
image plane of agent . Recall that the set of desired visible-
area {s}} is such that the corresponding formation shape is
infinitesimally rigid. Let us consider the following potential

function
\5’ |

Z'ka

), Kk is a positive constant for every k €

— k)%, 1D
h = col
where e kceczgk(ek

{1,...,|&]|}. Following the standard gradient-based control
law, the distributed control law for every agents ¢ is given
by

[kl 9
u; = — —Vi(e

By direct substitution of (11) into the above gradient-based
control law, we have
Zij 2
U; = — Z W&]l‘imema (12)
jew; 174

where e;; = ey, Kij = Kk, 2ij = 2Zk, and s;; = s, with
(i,4) = &%. In addition to the directional unit vector towards
the centroid of neighboring agent j given by = Zii | the above
distributed control law uses only visible-area 1nf0rmat10n of
the neighbor to reach the desired formation shape.

Proposition IV.1. Consider a set of single-integrator agents
(9) and assume an infinitesimally rigid framework (G, q*)
with the set of desired visible area s* describing the desired
formation shape. Then the following distributed control law

u=-BD,D]T(s)Dye (13)
solves the problem of image-based visual relative information
distributed formation control of single-integrator agents lo-
cally and exponentially. Particularly, for all initial conditions
q(0) in the neighborhood of Dareq, the visible area error
ey exponentially converges to zero for all k € 1,...,|&),
ensuring that all agents’ positions q;(t) are bounded and
exponentially converge to the desired formation shape.

Proof. First, we will show the asymptotic convergence of
error ey, for all k € {1,...,|&]|} to zero using the potential

function
\ &

E K/k;ek,

(14)



It is known that the gradient of the potential function along
q satisfies

1) Oer, 0Q
Z 6ek 9Q 9q’ (15

where P(ey,) = 35 (s; — si)? is the potential function for
each edge. For each term in (15), we have the following
computation

aek

a0 = diaelsr 2 (d)gs,) = T(d),

0 _ _

Q = DEDTBT = Rgist, and ek) = Kkre. (16)

oq * dex
Correspondingly, (15) is given by 8‘5/926) _

BD.D!T(d)D,e. Note that as we only have image
information of the neighbors, we need to rewrite d
in this equation as a function of image information
using (5). By substituting (5) into T'(d), we can define
T(d) as a function of visual relative information
T(s) = diag({s?(s,f?)"'}kres,) which is a positive
definite matrix. In addition, using (5) one can define Z,
given after (2) and using image measurement in (6), as a

function of visual relative information, § = col Teal
kESE)

Then one can use (8) to get Rurea from Rgis, and the
(6)

expression of 2 becomes
mg((]e) — BD.D]T(s)D.e = —R],,Dpe. (I7)

By substituting the distributed control laws in its compact
form as in (17) into the dynamics (9), we have ¢ =

RaTreaD e. The time derivative of visible area error satisfies

Oe 8Q
8Q 3q

By calculating the time derivative of (14) along the trajecto-
ries of visible area error equation (18), we have

T(d)Rdlstq = RareaRareaD e. (18)

Vie) = e ' D.é = —e' Dy Ryea R caDrce. (19)

As Rgis¢ has full row rank at z € 2, it follows that
Ryist (@) Raist(@*) " is a positive definite matrix. As conse-
quence, the matrix Rarea(q*) Rarea(q*) " is a positive definite
matrix. Correspondingly we can rewrite (19) into V( ) =
—e"Qe < —Aminlle/|?, where Q = Dy RppeaRoreaDr and
Amin Tepresents the smallest eigenvalue of matrix Q. Using
the standard comparison lemma and considering that V' is
quadratic in e as shown in (14), we can conclude that e(¢) is
bounded and converges exponentially to zero. It follows that
le(t) V' V(0) for all ¢, i.e. e € L and s, € Lo
from (10) Correspondlngly, the distributed input u; as in
(12) is bounded and converges to zero exponentially. Using
(9), it follows that the agents’ position is bounded for all
time. This concludes the proof. O

V. NUMERICAL SIMULATIONS

We consider the distributed formation of tetrahedron via
our proposed method. For the simulation setup, we define
initial positions for each agent as follows: Agent 1 {0,0,0},
Agent 2 {3,5,—1}, Agent 3 {6,2,1}, and Agent 4 {3,1,5}.
The radius of each agent is set to » = 0.5 meters. We
consider a camera with sensor resolution 4608 x 2592 pixels,
pixel size 1.4um x 1.4um, and the focal length is set to
f =2.75 mm. The incidence matrix B is set as follows

1 -1-10 0 O
-1 0 O

B=|79 1
00 1 0 1 1

which corresponds to all-to-all connectivity. We consider
a tetrahedron formation shape where for each edge k in
the set 1,...,|&|, we set the desired visible area s} =
1.2121 x 10° pixel® = 2.3758 x 10~7 m?. This desired area
corresponds to the desired distance of d;, = 5m according
to the relation in (5). For the numerical simulation of the
virtual spring constant xj, we use the following values

K1 =9 %10 ko =8 x 103, k3 =7 x 103,

Ky =6x 10" ks =5 x 10", kg = 4 x 10'3.

(20)

2

The varying gains indicate that the proposed approach can be
implemented for heterogeneous agents, given the well-posed
nature of the problem. It can be seen in Figure 4 that every
single-integrator agent converges to the desired tetrahedron
shape in the 3D space. The initial positions of the agents
are represented by diamonds, while their final positions are
represented by pentagrams, as depicted by the markers in
Figure 4. Figure 5 shows the convergence of the visible area
error to zero for each edge.

£y
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Fig. 4. The simulation result of an IBVR distributed formation control
where four agents must form a tetrahedron formation shape. The circles
show the trajectories of the agents towards the desired 3D shape.
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Fig. 5. The plot of visible area error ey, for the tetrahedron formation for
all edges k =1,...,6.

To analyze the region-of-attraction and its robustness, we
run a Monte Carlo simulation where 1000 samples of initial
position are taken in the neighborhood of the desired shape
Darea> as illustrated in Figure 6. Figure 6 reveals that when
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Fig. 6. Monte Carlo simulation results of all visible area error e; based

on 1000 random samples of initial positions.

initial positions are close to the desired shape (within 95%
of the normal distribution), the visible area error converges
exponentially, as depicted in cyan. However, when the initial
positions nearly cause the agents to align, the visible area
error does not converge exponentially, as shown in light cyan.
This conforms with our theoretical analysis that our proposed
controller ensures the exponential convergence of the visible
area error e, within the neighborhood of the desired shape.

VI. CONCLUSIONS

We present the design of the IBVR distributed rigid forma-
tion controller for single-integrator agents. Particularly, the
proposed distributed controller only uses local image mea-
surement without any global information. For future work,
we will study the use of physics-based, port-Hamiltonian
systems, [17] to closely represent the agent to the reality and
develop an adaptive algorithm to improve the robustness w.r.t
visual relative information inconsistency [32].
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