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Abstract— This paper considers a cooperative decision-
making method for an adversarial bandit problem on open
multi-agent systems. In an open multi-agent system, the net-
work configuration changes dynamically as agents freely enter
and leave the network. We propose a distributed Exp3 policy
in which a group of agents exchanges the estimation of the
expected reward of each arm with active neighboring agents.
Then, each agent updates the probability distribution of choos-
ing arms by combining the estimated rewards of neighboring
agents. We derive a sufficient condition for a sublinear bound
of a pseudo regret. The numerical example shows that active
agents can cooperatively find the optimal arm by the proposed
Exp3 policy algorithm.

I. INTRODUCTION

The bandit problem is a decision-making problem in
which a player agent iteratively learns to choose the best
option from a set of candidates [1]. Many bandit algorithms
that maximize the total rewards over time, or equivalently,
minimize the regret, have been applied to a broad range of
decision-making systems such as recommendation systems,
clinical trials, and anomaly detection [2]. The bandit problem
is divided into two categories: the stochastic bandit problem
and the adversarial bandit problem. In the stochastic bandit
problem, the distribution of rewards is given in a stochastic
manner, while in the adversarial bandit problem, an adversary
can set the rewards of arms arbitrarily. The UCB policy
and the Thompson sampling are commonly applied for the
stochastic bandit problem [3], [4]. For the adversarial bandit
problem, the Exp3 policy is a typical approach to finding the
best arm against a hostile environment [5].

Recently, according to the growing progress of com-
munication and IoT technology, many learning tasks are
expected to be performed in a collaborative way. Control and
optimization of multi-agent systems have received significant
attention due to their broad applications in such a collabora-
tive setting [6]–[10]. The distributed approach is also applied
to the algorithms of the bandit problem. For example, the
distributed UCB-based algorithms for the stochastic bandit
problem have been widely investigated in [11]–[17]. For the
adversarial settings, Cesa-Bianchi et al. proposed the Exp3-
Coop algorithm with communication delay [18]. The authors
showed a sublinear bound of the average welfare regret can
be achieved. Alatur et al. considered a multi-player bandit
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algorithm based on the Exp3 policy with a coordinator-
metaplayer architecture [19]. Yi and Vojnović proposed a
cooperative follow-the-regularizer-leader algorithm with de-
layed information exchange [20].

Most existing distributed methods for the bandit problem
assume a closed multi-agent system, where the number of ac-
tive agents participating in the network is fixed. On the other
hand, open multi-agent systems are networked systems where
the number of agents and communication links changes
dynamically. Many practical networks have such an open
structure, where agents freely enter and leave the network
on their timing. One application of distributed decision-
making is a peer-to-peer file-sharing system where agents
decide which peer to connect in order to optimize download
speed and resource utilization [21]. In such a peer-to-peer
network, agents join and leave the network at any time
based on battery life or dynamic network connectivity. The
bandit problem arises when agents decide which connections
are the most beneficial under the limited bandwidth of the
network. Moreover, as the size of a network becomes large,
the likelihood of an agent failing increases. In response,
additional agents temporarily join the network to maintain
its functionality until the affected agent recovers. The moti-
vation for considering a distributed bandit problem in open
networks lies in developing a robust and flexible learning
architecture in such dynamic environments. In recent years,
distributed control and optimization on open multi-agent net-
works have been investigated to address the dynamic nature
of networked systems [22]–[27]. However, to the best of the
authors’ knowledge, the cooperative bandit problem on open
multi-agent networks has not been previously investigated.

This paper focuses on a distributed approach to the ad-
versarial multi-armed bandit problem on open multi-agent
systems. We propose a distributed Exp3 policy in which
a group of active agents collaboratively searches for the
best arm with the highest expected value of the reward.
An adversary sets the rewards of arms arbitrary before
the active agents take actions. Then, each agent chooses
an arm according to the estimated probability distribution.
After receiving the reward of the chosen arm, the agents
exchange the estimations of the expected rewards with the
neighboring agents. The probability of choosing an arm
is computed by combining the Hedge algorithm [28] that
leverages learned information and the uniform search that
explores better arms. The reward estimation is updated by
integrating the information of the neighboring active agents
with the consensus-based algorithm [6]. We conduct the
analysis of the distributed Exp3 policy under an assumption

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 3427



of the connectivity of the open network. We show that a
pseudo regret of an active agent has a sublinear upper bound.
Our results can establish the asymptotic performance of
the distributed Exp3 policy for the case when the number
of agents and communication links changes dynamically.
Thus, the proposed method greatly differs from the existing
distributed methods for the adversarial bandit problem [18]–
[20], which only consider the performance on a closed
system with a fixed number of agents and a time-invariant
network. Moreover, in [18]–[20], the communication be-
tween agents is assumed to be bidirectional. To conduct
the analysis for directed networks, we consider the row
stochasticity of the edge weight that is used to obtain the
upper bound.

The remainder of this paper is organized as follows.
In Section II, we present the problem formulation of the
adversarial multi-armed bandit problem and the distributed
Exp3 policy on open multi-agent systems. The regret analysis
of the proposed policy is conducted in Section III. The
illustration via a numerical simulation is shown in Section
IV. Finally, concluding remarks are given in Section V.

II. DISTRIBUTED EXP3 POLICY ON OPEN
NETWORK

We consider an open multi-agent system over a time-
varying undirected graph G(t) = (V(t), E(t)), where V(t)
and E(t) are the sets of agents and communication links
at time t ∈ T = {1, 2, . . . , T}. The times when agent
i is connected to and disconnected from the network are
represented by tini and touti , where 1 ≤ tini < touti . Agent i is
said to be active at t if t ∈ [tini , touti ], and inactive otherwise.

Assumption 1: Once an agent becomes inactive, it will
never be active again.

A group of agents cooperatively solves an adversarial
multi-armed bandit problem with K arms. Let Xi,k(t) be
the reward of agent i for arm k ∈ K = {1, 2, ...,K} at time
t ∈ T .

Let V ′ be the maximum number of active agents in the
time horizon, that is, V ′ = maxt∈T |V(t)|. We assume
that V ′ > 2. We make the following assumption of the
connectivity of the network.

Assumption 2: There exists Q > 0 such that GQ(s) =
(VQ(s), EQ(s)) is strongly connected for s ≥ 1 with T ≥
(s+1)Q− 1, where VQ(s) =

∪(s+1)Q−1
t=sQ V(t) and EQ(s) ⊂

VQ(s)×VQ(s) is the sets of vertices and edges for the union
of the graphs in the interval [sQ, (s+ 1)Q− 1].

Assumption 2 is an extension of the strong connectivity
in a bounded subinterval for a closed multi-agent system to
the case for an open network [24].

In the adversarial bandit problem, each agent obtains the
reward of the chosen arm. To effectively estimate the optimal
arm, we consider the distributed method by sharing the
information of the rewards among agents. The proposed
distributed Exp3 algorithm is shown in Algorithm 1. At step
4, the probability of choosing arm k is computed by the
convex combination of the Hedge algorithm to exploit the
learned information and the uniform search to explore better

Algorithm 1 Distributed Exp3 algorithm
Parameters 0 < γ < 1, 0 < η ≤ γ/K.
Initilization wi,k(t

in
i ) = 1/Kα for all k ∈ K.

1: for t ∈ T do
2: for i ∈ V(t) do
3: for k ∈ K do
4: Compute the probability of arm k by

pi,k(t) = (1− γ)
wi,k(t)∑K
k=1 wi,k(t)

+
γ

K
. (1)

5: end for
6: Choose arm ki(t) according to the probabilities

{pi,ℓ(t)}ℓ∈K.
7: Receive the reward Xi,ki(t)(t).
8: for k ∈ K do
9: Update the estimation of the reward by

X̂i,k(t)

=

{∑
j∈V(t) aij(t)Xj,k(t)

pi,k(t)
, if k = ki(t),

0, if k ̸= ki(t).
(2)

10: Update the weights for the exploitation by

wi,k(t+ 1) = wi,k(t)e
ηX̂i,k(t). (3)

11: end for
12: end for
13: end for

arms. The trade-off parameter γ determines the balance
between the exploitation and the exploration. At step 6,
each agent i randomly chooses arm ki(t) according to
the probabilities pi,1(t), pi,2(t), . . . , pi,K(t). Then, agent i
receives the reward Xi,ki(t)(t) ∈ [0, 1] for arm ki(t) at step
7. At step 9, the estimation of the reward X̂i,k(t) is updated
by integrating the rewards of the neighboring active agents
with the consensus-based update, where aij(t) is the edge
weight for the communication link {i, j} ∈ E(t). Finally,
the weight wi,k(t + 1) for each arm is updated at step 10,
where η is a learning parameter determining the extent to
which learned estimation is exploited. The parameters and
the weight are initialized as 0 < γ < 1, 0 < η ≤ γ/K, and
wi,k(t

in
i ) = 1/Kα, where 0 < α < 1.

Assumption 3: The unconstrained reward model is con-
sidered, that is, if two or more agents choose the same arm,
they receive the same reward independently. The reward is
given as Xi,k(t) ∈ [0, 1] for all i ∈ V(t), k ∈ K, and t ∈ T .
Moreover, we assume that Xi,k(t) = 0 and X̂i,k(t) = 0 for
all i /∈ V(t), k ∈ K, and t ∈ T .

In this paper, we also make the stochasticity assumption
for the edge weight of an active agent.

Assumption 4:
∑

j∈V(t) aij(t) = 1 for all i ∈ V(t) and
t ∈ T .

The edge weight satisfying Assumption 4 can be set as
aij(t) = 1/(di(t) + σ) if agent i receives the estimation
from j, and aii(t) = 1−

∑
j∈V(t) aij(t), where di(t) is the
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number of incoming edges of i and σ > 0.

III. REGRET FOR DISTRIBUTED EXP3 POLICY
In this section, we evaluate the performance of the dis-

tributed Exp3 algorithm in Algorithm 1. We consider the
following team pseudo regret.

Regret = Ḡ∗ − E

T−1∑
t=1

∑
i∈V(t)

Xi,ki(t)(t)

 , (4)

where Ḡ∗ = maxk∈K E[
∑T−1

t=1

∑
i∈V(t) Xi,k(t)].

The pseudo-regret (4) evaluates the difference between the
optimal expected reward and the expectation of the actual
reward. Thus, the purpose of each agent is to choose arms
in order to achieve smaller regret bound by sharing the
information on the optimal arm among neighboring agents.

We now consider the performance of the proposed algo-
rithm through a regret analysis. First, we derive an upper
bound of the pseudo regret by the distributed Exp3 algorithm.

Theorem 1: If each agent updates the estimation of the
rewards by Algorithm 1, we have Regret ≤ (γ + ηK)Ḡ∗ +
((1− γ)/η)V ′ lnK.

Proof: We define Wi(t) as Wi(t) =
∑K

k=1 wi,k(t).
From (1), for all t ∈ [tini , touti ], we have

∑K
k=1 pi,k(t) =

(1 − γ)(
∑K

k=1 wi,k(t))/Wi(t) +K · γ/K = 1. Thus, from
(1), we have

0 <
γ

K
≤ pi,k(t) ≤ 1. (5)

From (3), we have

Wi(t
out
i ) =

K∑
k=1

wi,k(t
out
i )

=

K∑
k=1

wi,k(t
out
i − 1)eηX̂i,k(t

out
i −1). (6)

From (2), we also have

0 ≤ ηX̂i,k(t) ≤ η

∑
j∈V(t) aij(t)Xj,k(t)

pi,k(t)
≤ η

K

γ
≤ 1, (7)

where the third inequality follows from (5), Assumption 4,
and the fact that 0 ≤ Xi,k(t) ≤ 1. We note that ex ≤ 1 +
x+ x2 holds for any x ∈ [0, 1]. Thus, from (6) and (7), we
have

Wi(t
out
i ) =

K∑
k=1

wi,k(t
out
i − 1)eηX̂i,k(t

out
i −1)

≤
K∑

k=1

wi,k(t
out
i − 1)(1 + ηX̂i,k(t

out
i − 1)

+ (ηX̂i,k(t
out
i − 1))2)

= Wi(t
out
i − 1)(

1 + η

K∑
k=1

wi,k(t
out
i − 1)

Wi(touti − 1)
X̂i,k(t

out
i − 1)

+η2
K∑

k=1

wi,k(t
out
i − 1)

Wi(touti − 1)
X̂i,k(t

out
i − 1)2

)
. (8)

From (1), we have pi,k(t
out
i − 1) = (1 − γ)wi,k(t

out
i −

1)/Wi(t
out
i − 1) + γ/K. Thus, we obtain

wi,k(t
out
i − 1)

Wi(touti − 1)
=

1

1− γ
pi,k(t

out
i − 1)− γ

(1− γ)K

≤ 1

1− γ
pi,k(t

out
i − 1). (9)

From (9), we have

η

K∑
k=1

wi,k(t
out
i − 1)

Wi(touti − 1)
X̂i,k(t

out
i − 1)

≤ η

1− γ

K∑
k=1

pi,k(t
out
i − 1)X̂i,k(t

out
i − 1)

=
η

1− γ
pi,ki(touti −1)(t

out
i − 1)X̂i,ki(touti −1)(t

out
i − 1)

≤ η

1− γ
pi,ki(touti −1)(t

out
i − 1)

×
∑

j∈V(touti −1) aij(t
out
i − 1)Xj,ki(touti −1)(t

out
i − 1)

pi,ki(touti −1)(t
out
i − 1)

=
η

1− γ

∑
j∈V(touti −1)

aij(t
out
i − 1)Xj,ki(touti −1)(t

out
i − 1),

(10)

where the first equality follows from the fact that the esti-
mated reward has a positive value only for the chosen arm
and the second inequality follows from (2).

From (9), we also have

η2
K∑

k=1

wi,k(t
out
i − 1)

Wi(touti − 1)
X̂i,k(t

out
i − 1)2

≤ η2

1− γ

K∑
k=1

pi,k(t
out
i − 1)X̂i,k(t

out
i − 1)2

≤ η2

1− γ

K∑
k=1

pi,k(t
out
i − 1)X̂i,k(t

out
i − 1)X̂i,k(t

out
i − 1)

≤ η2

1− γ

K∑
k=1

pi,k(t
out
i − 1)

×
∑

j∈V(touti −1) aij(t
out
i − 1)Xj,k(t

out
i − 1)

pi,k(touti − 1)
X̂i,k(t

out
i − 1)

=
η2

1− γ

K∑
k=1

 ∑
j∈V(touti −1)

aij(t
out
i − 1)Xj,k(t

out
i − 1)


× X̂i,k(t

out
i − 1)

≤ η2

1− γ

K∑
k=1

 ∑
j∈V(touti −1)

aij(t
out
i − 1)

 X̂i,k(t
out
i − 1),

=
η2

1− γ

K∑
k=1

X̂i,k(t
out
i − 1), (11)

where the last equality follows from Assumption 4.
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From (8), (10), and (11), we obtain

Wi(t
out
i )

≤ Wi(t
out
i − 1)(

1 +
η

1− γ

×
∑

j∈V(tout
i −1)

aij(t
out
i − 1)Xj,ki(tout

i −1)(t
out
i − 1)

+
η2

1− γ

K∑
k=1

X̂i,k(t
out
i − 1)

)
. (12)

By iteratively solving (12), we obtain

Wi(t
out
i )

≤ Wi(t
in
i )

tout
i −1∏
t=tini

1 +
η

1− γ

∑
j∈V(t)

aij(t)Xj,ki(t)(t)

+
η2

1− γ

K∑
k=1

X̂i,k(t)

)
. (13)

From (3), for any arm k ∈ K, we have

Wi(t
out
i ) =

K∑
ℓ=1

wi,ℓ(t
out
i )

≥ wi,k(t
out
i )

= wi,k(t
out
i − 1)eηX̂i,k(t

out
i −1)

= wi,k(t
in
i )e

η
∑tout

i −1

t=tin
i

X̂i,k(t)
. (14)

From (13) and (14), we obtain

wi,k(t
in
i )e

η
∑tout

i −1

t=tin
i

X̂i,k(t)

≤ Wi(t
in
i )

touti −1∏
t=tini

1 +
η

1− γ

∑
j∈V(t)

aij(t)Xj,ki(t)(t)

+
η2

1− γ

K∑
k=1

X̂i,k(t)

)
. (15)

By taking the natural logarithm for (15) and using the
initialization of wi,k(t

in
i ) = K−α and Wi(t

in
i ) = K1−α,

we have

− lnK + η

tout
i −1∑
t=tini

X̂i,k(t)

≤
touti −1∑
t=tini

ln

1 +
η

1− γ

∑
j∈V(t)

aij(t)Xj,ki(t)(t)

+
η2

1− γ

K∑
k=1

X̂i,k(t)

)
.

Since ln(1 + x) ≤ x holds for any x ≥ 0, we further have

− lnK + η

touti −1∑
t=tini

X̂i,k(t)

≤ η

1− γ

touti −1∑
t=tini

∑
j∈V(t)

aij(t)Xj,ki(t)(t)

+
η2

1− γ

K∑
k=1

touti −1∑
t=tini

X̂i,k(t).

We note that X̂i,k(t) is the unbiased estimator of Xi,k(t),
and Xi,k(t) = 0 and X̂i,k(t) = 0 for t /∈ [tini , touti ].
Thus, by taking the expectation with respect to the estimated
distribution of the rewards obtained by Algorithm 1, we have

− lnK + η

T−1∑
t=1

Xi,k(t)

≤ η

1− γ

T−1∑
t=1

∑
j∈V(t)

aij(t)Xj,ki(t)(t)

+
η2

1− γ

K∑
k=1

T−1∑
t=1

Xi,k(t). (16)

Since (16) holds for each active agent, by taking the expec-
tation with respect to the true distribution of the rewards, we
have

− V ′ lnK + ηE

T−1∑
t=1

∑
i∈V(t)

Xi,k(t)


≤ η

1− γ
E

T−1∑
t=1

∑
i∈V(t)

∑
j∈V(t)

aij(t)Xi,ki(t)(t)


+

η2

1− γ

K∑
k=1

E

T−1∑
t=1

∑
i∈V(t)

Xi,k(t)


≤ η

1− γ
E

T−1∑
t=1

∑
i∈V(t)

Xi,ki(t)(t)

+
η2K

1− γ
Ḡ∗, (17)

where the first inequality follows from the unconstrained
reward model in Assumption 3, and the last inequality
follows from Ḡ∗ ≥ (1/K)

∑K
k=1 E[

∑T−1
t=1

∑
i∈V(t) Xi,k(t)]

and Assumption 4. Since (17) holds for any k ∈ K, we obtain

− V ′ lnK + ηḠ∗

≤ η

1− γ
E

T−1∑
t=1

∑
i∈V(t)

Xi,ki(t)(t)

+
η2K

1− γ
Ḡ∗.

This concludes the proof.
Theorem 1 shows that the regret bound by the distributed

Exp3 algorithm depends on the learning parameter η and the
trade-off parameter γ. The next proposition addresses that
a sublinear regret can be achieved by appropriately setting
these parameters.
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Proposition 1: Suppose that the learning parameter
and the trade-off parameter are given as η =
min{c/K,

√
V ′ lnK/(2gK)} and γ = ηK, where

0 < c < 1 and R∗ ≤ R. If each agent updates the
estimation of the rewards by Algorithm 1, we have
Regret ≤ (2/c)

√
2V ′gK lnK.

Proof: If
√
V ′ lnK/(2gK) ≥ c/K, 2g ≤

(V ′K lnK)/c2 holds. Thus, we have

Regret ≤ Ḡ∗ ≤ 4g = 2
√
2g
√
2g ≤ 2

c

√
2V ′gK lnK.

(18)

If
√
V ′ lnK/(2gK) < c/K, η =

√
V ′ lnK/(2gK)

holds. Moreover, we have η < c/K, and hence, 1 − γ =
1− ηK > 0 holds. Thus, from Theorem 1, we obtain

Regret ≤ (γ + ηK)Ḡ∗ +
V ′

η
lnK

≤ 2ηKḠ∗ + V ′
√

2gK

V ′ lnK
lnK

≤ 2
√
2V ′gK lnK.

From the definition of the pseudo regret, g ≤ T
holds. Thus, from Proposition 1, we have Regret ≤
(2/c)

√
2TV ′K lnK, which shows a sublinear regret bound

of O(
√
TV ′). If each agent estimates the optimal arm

without information exchange over a network, the regret
bound becomes V ′ × O(

√
T ). Hence, Proposition 1 shows

that the proposed algorithm is effective for large-scale open
networks.

IV. NUMERICAL EXAMPLE

We consider the open multi-agent system in which the
number of agents varies at each iteration. The reward of arm
1 at iteration t ∈ T = {1, 2, . . . , 10000} is randomly set
from the interval [0.8, 1.0]. The reward of arm k ∈ K =
{2, 3, . . . ,K} is randomly set from the interval [0.0, 0.6]
if the indices i and k are both even or both odd, and
[0.4, 0.8] otherwise. Thus, arm 1 is the best arm and should
be chosen as many as possible. The connected time tini
and the disconnected time touti are randomly given in the
horizon period [1, 10000]. The edge weight is set as aij(t) =
1/(di(t) + 1) if agent i receives the estimation from j, and
aii(t) = 1−

∑
j∈V(t) aij(t).

We compare the performance of the proposed algorithm
for different values of the trade-off parameter γ. Fig. 1(a)
shows the team pseudo regret (4). The learning parameter,
the number of arms, and the number of maximum agents
are set to η = 0.01, K = 20, and V ′ = 10, respectively.
Although the sublinear regret can be achieved for all cases,
the evolution of the regret is different depending on the value
of the trade-off parameter. As observed in (1), an agent loses
the opportunity to find better arms if the value of γ is too
small; conversely, if γ is too large, the agent cannot continue
to select better arms. In this example, the value of 0.001 for
γ can achieve a good balance between the exploitation and
the exploration.

(a) Different trade-off parameter γ. (b) Different learning parameter η.

Fig. 1. Pseudo regret.

Fig. 2. Average pseudo regret per
active agent with different size of
networks.

Fig. 3. Pseudo regret for different
parameter c.

We also compare the performance of the proposed al-
gorithm for different values of the learning parameter η.
Fig. 1(b) shows the team pseudo regret. The trade-off pa-
rameter, the number of arms, and the number of maximum
agents are set to γ = 0.1, K = 20, and V ′ = 10, respectively.
As in the case of the trade-off parameter γ, the evolution of
the regret depends on the value of the learning parameter; too
large or too small parameter values result in a larger regret.

Next, the performance is compared by varying the size
of the network. In this example, the horizon period and the
number of arms are set to T = 35000 and K = 50. The
trade-off parameter and the learning parameter are set to γ =
0.001 and η = 0.01. Fig. 2 shows the average pseudo regret
with different values for the maximum number of the active
agents V ′. The regret curve in Fig. 2 shows the average regret
per active agent. In this example, the average regret tends to
be smaller for the case when the number of active agents is
large. This is because the information of the best arm can be
effectively searched through the information exchange over
the network and the consensus-based update of the estimation
of the rewards.

Finally, we compare the performance with different values
of the parameter c in Proposition 1. The horizon period,
the number of arms, and the number of maximum agents
are set to T = 4000, K = 5, and V ′ = 6, respectively.
The learning parameter and the trade-off parameter are set
to η = min{c/K,

√
lnK/(2TK)} and γ = ηT . In this

example, the reward is given in an adversarial way such that
Xi,k(t) ∈ [0.1, 0.5] if k = ki(t− 1) and Xi,k(t) ∈ [0.8, 1.0]
otherwise. Thus, the adversary gives the lower reward for the
arm chosen at the previous iteration to disturb the agent’s
estimation. The regret curves in Fig. 3 depend on the values
of the parameter c. The optimal parameter value is problem-
dependent and requires tuning by trial and error. Deriving
optimal parameter settings is a part of the future work.
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V. CONCLUSION

In this paper, we proposed a distributed Exp3 algorithm for
the adversarial bandit problem in an open multi-agent system,
in which each agent freely enters and leaves the communica-
tion network. We showed that an upper bound of the pseudo
regret that evaluates the error between the optimal expected
reward and the expectation of the actual reward. Furthermore,
we derived a sufficient condition with respect to the trade-off
and learning parameters to achieve a sublinear regret bound.
Future work includes investigating the adversarial bandit
problem with communication delays. The linear bandit prob-
lem in non-stationary and non-Markovian settings has been
explored in [29], [30]. Analyzing distributed decision-making
in non-stationary and non-Markovian environments is also a
future direction of this research.
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