
Necessary and Sufficient Conditions for Satisfying Linear Temporal Logic

Constraints using Control Barrier Certificates

Luyao Niu1, Andrew Clark2, and Radha Poovendran1

Abstract— Temporal logic specifications have been used to
express complex tasks for control systems. Discretization-free
approaches, which do not require discretizing the state and
input spaces of the system, have been proposed for control
synthesis under temporal logic specifications. Among these
approaches, control barrier certificate (CBC)-based solutions
have attracted increasing attention. The existing CBC-based
approaches, however, have no guarantee on always finding
control laws to satisfy the specification, and hence are sound
but not complete. In this paper, we derive the necessary and
sufficient conditions for a control law to satisfy a temporal logic
specification over finite traces using CBCs. By leveraging the
equivalence between satisfying the specification and violating
the negated specification, we first negate the specification
and construct the deterministic finite automaton (DFA) as a
representation. We then decompose the DFA into a set of safety
problems, where each decomposed problem corresponds to a
transition in the DFA. We derive the necessary and sufficient
conditions for a control law to solve each safety problem
via CBC-based approach. We further develop the necessary
and sufficient conditions to verify whether the control laws
associated with different safety problems are composable or not.
The composability captures whether a sequence of transitions
in the DFA can be realized by the system or not. If the set
of composable control laws does not render an accepting run
on the DFA, then the system can satisfy the specification. We
illustrate the proposed approach using a numerical case study
on a multi-agent system.

I. INTRODUCTION

Temporal logics [1] have been widely used to specify

complex tasks across various application domains including

robotics [2], [3] and traffic network control [4]. As a con-

sequence, verification and control synthesis under temporal

logic properties have gained increasing attention.

Verification and control synthesis under temporal logic

constraints can be achieved using off-the-shelf model check-

ing algorithms [1]. These algorithms construct a finite ab-

straction via discretization to model the original system

[2], [5]–[8]. When the discretization granularity is suffi-

ciently small, (approximately) equivalent abstractions can be

generated, rendering discretization-based control synthesis

to be sound and complete [9], at the expenses of inten-

sive computational complexity. Recently, researchers have

1Luyao Niu and Radha Poovendran are with the Network Security
Lab, Department of Electrical and Computer Engineering, University of
Washington, Seattle, WA 98195-2500 {luyaoniu,rp3}@uw.edu

2Andrew Clark is with the Electrical and Systems Engineering Depart-
ment, McKelvey School of Engineering, Washington University in St. Louis,
St. Louis, MO 63130 andrewclark@wustl.edu

This work was supported by the Office of Naval Research grant N00014-
20-1-2636, National Science Foundation grant CNS 1941670, and Air Force
Office of Scientific Research grants FA9550-20-1-0074 and FA9550-22-1-
0054

proposed compositional abstraction of large-scale systems

to mitigate the curse of dimensionality, including small-

gain type conditions [10], dissipativity approaches [11], and

dynamic Bayesian networks [12].

An alternative way to mitigate the computational challenge

incurred by the discretization-based approaches is through

discretization-free approaches [13]–[16], which focus on the

continuous state space without discretization. Recently, con-

trol barrier certificates (CBCs) and control barrier functions

(CBFs) have been used to satisfy temporal logic properties

[13]–[20]. CBC- and CBF-based approaches decompose the

temporal logic specification into a sequence of safety and/or

reachability problems, where each decomposed problem

corresponds to a transition in the automaton representing

the temporal logic formula. These approaches derive a

control law to satisfy each decomposed specification. The

aforementioned CBC- and CBF-based approaches, however,

only provide sufficient conditions without any complete-

ness guarantee. Consequently, there may exist control laws

that allow the system to satisfy the given temporal logic

specification, but cannot be found by the CBC- and CBF-

based approaches. One reason of such incompleteness is

that the existing CBC- and CBF-based approaches treat

each transition in the automaton independently. However,

such an independence assumption is not valid due to the

underlying system dynamics [21], [22]. At present, necessary

and sufficient conditions for discretization-free approaches to

satisfy a temporal logic specification have been less studied.

In this paper, we consider a continuous-time control-affine

system subject to a linear temporal logic (LTL) specification.

We consider a fragment of LTL formula, namely LTL over

finite traces. Our objective is to derive the necessary and

sufficient conditions for a CBC-based approach to satisfy

the given LTL specification. We observe that satisfying the

specification is equivalent to violating its negation. We then

negate the specification and construct an equivalent finite

automaton to represent the negated specification. We con-

struct a set of safety verification problems, with each problem

corresponding to a transition in the automaton. We then solve

each decomposed safety verification problem using CBCs.

We finally develop a set of conditions to compose the result

from each individual safety verification problem. We make

the following contributions in this paper.

• We derive the necessary and sufficient conditions for

a control law to guarantee the satisfaction of each de-

composed safety verification problem using CBCs. We

propose a labeling procedure to label each transition in

the automaton to indicate the result of the corresponding

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 8583

safety verification problem.

• We explicitly consider the dependencies among transi-

tion by investigating the composability of the control

laws associated with the safety verification problems.

We derive the necessary and sufficient conditions for

the control laws to be composable. The composability

result together with the safety verification result yield

the necessary and sufficient conditions for falsifying the

existence of an accepting run on the automaton, and

hence the satisfaction of the given specification.

• We demonstrate the proposed approach using a multi-

agent system. We show that the controller obtained

using the derived conditions guarantees the agents to

satisfy the given specification.

The remainder of this paper is organized as follows.

Section II presents preliminary background on LTL over

finite traces. We formulate the problem in Section III. The

necessary and sufficient conditions to satisfy LTL specifica-

tion are derived in Section IV. We present a numerical case

study in Section V. We conclude the paper in Section VI.

II. PRELIMINARY BACKGROUND

In this section, we present preliminary background on

linear temporal logic (LTL) over finite traces, denoted as

LTLF [23]. We also introduce deterministic finite automaton

which can be used to express the LTLF formula.

Let Π be a set of atomic propositions. An LTLF formula

is constructed using the atomic proposition set Π, and is

defined inductively as [23]

ϕ = ⊤ | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1Uϕ2 | ✸ϕ | ✷ϕ,

where U, ✸, and ✷ are until, eventually, and globally

operators, respectively, π ∈ Π. Since we will work in the

continuous time domain, we omit the next operator of LTLF .

Let β be a sequence of assignments of truth values to

atomic propositions π ∈ Π. We let the length of β be |β|.
Then the semantics of an LTLF formula is defined over β.

Let the set of atomic propositions that are true at i-th position

of β be β(i). Then the satisfaction of LTLF formula ϕ at

the position i, denoted as β, i |= ϕ, is recursively defined as

• β, i |= π iff π ∈ β(i);
• β, i |= ¬ϕ iff β, i 6|= ϕ;

• β, i |= ϕ1 ∧ ϕ2 iff β, i |= ϕ1 and β, i |= ϕ2;

• β, i |= ϕ1 ∨ ϕ2 iff β, i |= ϕ1 or β, i |= ϕ2;

• β, i |= ϕ1Uϕ2 iff there exists some position i ≤ j ≤ |β|
such that σ, j |= ϕ2 and β, k |= ϕ1 for all i ≤ k < j;

• β, i |= ✸ϕ iff there exists some position i ≤ j ≤ |β|
such that σ, j |= ϕ;

• β, i |= ✷ϕ iff for all positions i ≤ j ≤ |β| we have that

σ, j |= ϕ holds.

Given an LTLF formula, we can construct a deterministic

finite automaton (DFA) as an equivalent representation [23].

The DFA will accept all and only words over Π that satisfy

ϕ. A DFA is defined as follows.

Definition 1 (Deterministic Finite Automaton (DFA) [1]). A

DFA is a tuple A = (Q,Σ, δ, q0, F), where Q is a finite set

of states, Σ = 2Π is the finite set of alphabet, δ : Q×Σ 7→ Q

is a finite set of transitions, q0 ∈ Q is the initial state, and

F is a finite set of accepting states.

Given a state q ∈ Q, we define the set of neighbor states

of q as N (q) = ∪
σ∈Σ

δ(q, σ) \ {q}, i.e., a state q′ 6= q is

a neighbor state of q if there exists some transition δ such

that the DFA can transition from q to q′. A finite word on

DFA A is a finite sequence of symbols in Σ, defined as

σ = σ0, σ1, . . . , σn−1. Given a word σ, a run η on A is a

finite sequence of states η = q0, q1, . . . , qn such that qj+1 =
δ(qj , σj), where j = 0, 1, . . . , n−1. A run η is an accepting

run if it intersects with the accepting states F .

III. PROBLEM FORMULATION

We consider a continuous-time control-affine system

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)

where x(t) ∈ X ⊆ R
n is the system state at time t, and

u(t) ∈ U ⊆ R
m is the control input. The initial state at

time t = 0 is denoted as x(0). The vector fields f and g are

locally Lipschitz continuous. Given the current system state

x(t), a feedback control law is a function µ : X ×M → U
specifying the control input at each time t ≥ 0, where M
is a finite set representing the memory. As we will detail

in Section IV, set M can be chosen as M = Q to track

the state evolution on automaton A. Given the initial system

state x(0) and a control law µ, we define the trajectory of

system (1) as x : R≥0 → X , which specifies the system

states x(t;x(0), µ) achieved by applying control law µ at

each time t ≥ 0 when the system starts from x(0).
The system presented in Eqn. (1) is given a specification

modeled by LTLF . The objective of the system is to satisfy

the given LTLF specification. We let Π be the finite set

of atomic propositions. We define a labeling function L :
X → 2Π that maps any state x ∈ X to a subset of

atomic propositions that hold true at state x. For each atomic

proposition π ∈ Π, we define define JπK = {x : π ∈ L(x)}
to be the set of states that satisfies the atomic proposition

π ∈ Π. With a slight abuse of the notation J·K, for a subset

of atomic propositions A ∈ 2Π, we define

JAK =

{

X \ ∪π∈ΠJπK, if A = ∅,

∩π∈AJπK \ ∪π∈Π\AJπK, otherwise.
(2)

That is, JAK is the subset of system states X that satisfy all

and only the propositions in A [24]. For an LTLF formula

σ = π ⊲⊳ σ1 obtained using Boolean connectives, we define

JσK recursively as

JσK =

{

JπK ∩ Jσ1K, if ⊲⊳= ∧

JπK ∪ Jσ1K, if ⊲⊳= ∨

where σ1 is an LTLF formula involving only Boolean

connectives. In the following, we define the satisfaction of a

given LTLF specification by system (1) using the trace of a

system trajectory x given as follows.

8584

Definition 2 (Trace of Trajectory [24]). Let t0, t1, . . . , tN be

a time sequence such that

• 0 = t0 < t1 < . . . < tN ,

• L(x(t;x(0), µ)) = L(x(tk;x(0), µ)) for all t ∈
[tk, tk+1) where k = 0, . . . , N ,

• limǫ→0 L(x(tk−ǫ;x(0), µ)) 6= L(x(tk;x(0), µ)) for all

k = 0, . . . , N .

We then say the sequence Trace(x) = A0, A1, . . . , AN is

the trace of trajectory x, where Ak = L(x(tk;x(0), µ)).

The trace given in Definition 2 describes the sequence

of the atomic propositions that is satisfied by the system

trajectory. Following the semantics of LTLF , one can ver-

ify whether a given specification ϕ is satisfied or not. If

Trace(x) |= ϕ, we say system (1) satisfies the specification

ϕ under control law µ, or control law µ satisfies ϕ. We

summarize the problem studied in this paper as follows.

Problem 1. Given the initial system state x(0) for system (1),

derive the necessary and sufficient conditions for a control

law µ so that system (1) satisfies the given LTL specification

ϕ belonging to LTLF .

IV. SOLUTION APPROACH

In this section, we present our proposed solution approach

to Problem 1. Given the LTLF specification ϕ, we first take

the negation of ϕ, denoted as ¬ϕ. Taking the negation allows

us to convert the problem of reaching the accepting states of

the DFA representing ϕ to an equivalent safety problem. We

then construct the corresponding DFA A = (Q,Σ, δ, q0, F)
of ¬ϕ as given in Definition 1. For each transition of A, we

verify whether system (1) can realize the transition or not. If

the transition can be realized by the system under any control

law, then we say the transition is feasible. The verification

is achieved by searching for a control barrier certificate

(CBC), whose existence is equivalent to the infeasibility of

the transition. We label each transition of A based on the

verification result to indicate if the transition is feasible or

not. We finally verify if there exists an accepting run on DFA

A starting from the initial state q0 such that each transition

of the accepting run is feasible. If no such accepting run

exists, then system (1) violates ¬ϕ, and thus satisfies ϕ. If

an accepting run exists after we label the automaton, then for

each accepting run, we verify the composability of the con-

trol laws associated with the transitions along the accepting

run. If the control laws are composable, then specification ϕ

cannot be satisfied. A summary of our proposed approach

is presented in Algorithm 1. We detail each step of our

proposed solution approach in the remainder of this section.

A. Verifying the Feasibility of Transitions in the Automaton

In this subsection, we present how to verify the feasibility

of each transition in the DFA A corresponding to the negated

formula ¬ϕ, as needed in line 4 of Algorithm 1.

Given the DFA A of the negated formula ¬ϕ, we construct

the following sets corresponding to the transition from state

q to q′ ∈ N (q) under input symbol σ:

Ωq
i = JφqK, Ωq,q′

r = Jφq′K ∩ JσK, Ωq,q′ = Ωq
i ∪ Ωq,q′

r , (3)

where φq ∈ Σ is the input symbol leading to the transition

δ(q, φq) = q. Here state set Ωq
i ⊆ X is the set of states such

that L(x) triggers DFA A to take the self-loop transition

at state q ∈ Q for all x ∈ Ωq
i . State set Ωq,q′

r ⊆ X is

interpreted as the set of states whose labels cause the DFA

to transition from state q to q′ and remains at state q′. We

remark that when φq is not explicitly given in the DFA, we

can choose Ωq
i in the following way. We define Σ′ as Σq =

∪q′∈N (q){σ : q′ = δ(q, σ)}. We then let Ωq
i = JΣ \ ΣqK.

When Σq = Σ, then there must exist some state q′ 6= q such

that the transition from state q to q′ is automatically realized.

Throughout this paper, we make the following assumption.

Assumption 1. We assume that sets Ωq
i and Ωq,q′

r are

compact for each transition from state q ∈ Q to q′ ∈ Q

in automaton A.

When Assumption 1 holds, we have that set Ωq,q′ ⊆ X is

also compact. In the following, we verify the feasibility of

transition from state q to q′ under input symbol σ using a

safety property. The feasibility is defined as follows.

Definition 3 (Feasibility of a transition). A transition from

q to q′ under input symbol σ of a DFA is said to be feasible

if and only if there exists some state x ∈ JΩq
i K and a time

T ≥ 0 such that every control law µ for system (1) satisfies

x(T ;x, µ) ∈ JΩq,q′

r K.

If a transition is feasible, then we say the transition can

be realized by system (1). Thus if there exists an accepting

run on the DFA of ¬ϕ whose transitions can be realized by

system (1), then specification ϕ cannot be satisfied by the

Algorithm 1 Summary of the proposed solution approach

1: Input: Specification ϕ, system dynamics (1)

2: Output: Control law µ

3: Compute the automaton A corresponding to the negated

formula ¬ϕ
4: Verify the feasibility of each transition of A via Theorem

1

5: Label each transition from state q to q′ using a tuple

(yq,q′ , Uq,q′)
6: if the labels yield an accepting run then

7: for each labeled accepting run do

8: Verify the separation of each set Ωq,q′

i along the

accepting run via Proposition 1

9: if the conditions in Theorem 2 do not hold then

10: return failure

11: break

12: end if

13: return the control law µ

14: end for

15: else

16: return the control law µ

17: end if

8585

system. We will verify the feasibility of each transition in A
using a safety property defined as follows.

Definition 4 (Safety). Consider system (1). Let X ⊂ R
n,

Xi,Xr ⊆ X be given sets. System (1) is safe under a control

law µ if there exists no system trajectory with x(0) ∈ Xi,

x(T ;x(0), µ) ∈ Xr for some T ≥ 0 and x(t;x(0), µ) ∈ X
for all t ∈ [0, T].

As shown in [25], the safety property given in Definition

4 can be verified using a control barrier certificate (CBC).

We have the following preliminary result.

Lemma 1 ([25]). Consider system (1). Let Ωq,q′ ⊂ R
n,

Ωq
i ,Ω

q,q′

r ⊆ Ωq,q′ be compact sets. Suppose there exists a

continuously differentiable function b such that ∂b
∂x

(f(x) +
g(x)µ(x)) < 0 holds for some control law µ and for all

x ∈ Ωq,q′ . Then there exists a continuously differentiable

function B satisfying

B(x) ≤ 0, ∀x ∈ Ωq
i , (4a)

B(x) > 0, ∀x ∈ Ωq,q′

r , (4b)

∂B

∂x
(x)[f(x) + g(x)µ(x)] ≤ 0, ∀x ∈ Ωq,q′ (4c)

if and only if the safety property in Definition 4 holds under

some control law µ : Ωq,q′ → U , where Ωq
i ,Ω

q,q′

r , and Ωq,q′

correspond to Xi,Xr, and X in Definition 4, respectively.

Function B satisfying Eqn. (4) is a CBC. Leveraging

Lemma 1, we verify the feasibility of the transition from

state q to q′ under input symbol σ as follows.

Theorem 1. Consider system (1) and a transition from state

q to q′ under input symbol σ. Let Ωq
i , Ωq,q′

r , and Ωq,q′

be defined as in Eqn. (3) satisfying Assumption 1. Suppose

there exists a continuously differentiable function b such that
∂b
∂x

(f(x)+ g(x)u) < 0 holds for all u and for all x ∈ Ωq,q′ .

Then the transition from state q to q′ under input symbol σ

cannot be realized by system (1) if and only if there exists a

CBC B(x) satisfying Eqn. (4) under a control policy µ.

Proof. By Lemma 1, we have that the safety property holds

if and only if there exists a CBC B(x) satisfying Eqn. (4).

Then the proof reduces to show the equivalence between the

infeasibility of the transition on automaton A and the safety

property as given in Definition 4.

We first show that if the safety property holds, then the

transition from state q to q′ under input symbol σ cannot

be realized by system (1), i.e., the transition is infeasible.

We prove by contradiction. Suppose that the safety property

holds while transition from state q to q′ under input symbol

σ is feasible. Using Definition 4, we have that the system

trajectory cannot reach Ωq,q′

r for some T ≥ 0 while ensuring

xt ∈ Ωq,q′ for all t ∈ [0, T]. To this end, the system trajectory

can only reach Ωq,q′

r by leaving set Ωq,q′ , which can only

be triggered via some other input symbol σ′ 6= σ, leading to

contradiction.

We next prove that if the transition from state q to q′ under

input symbol σ is infeasible, then the safety property holds.

Suppose that the transition is infeasible while the safety

property does not hold. Therefore, there exists some system

trajectory such that x0 ∈ Ωq
i , xT ∈ Ωq,q′

r for some T ≥ 0
and xt ∈ Ωq,q′ for all t ∈ [0, T]. Using Eqn. (3), we have

that this trajectory realizes the transition from from state q

to q′ under input symbol σ, leading to contradiction.

Using Theorem 1, we can verify whether each transition in

DFA can be realized by system (1) or not. In the following,

we design a labeling procedure to label each transition from

state q to q′ in DFA using one or multiple pairs (yq,q′ , Uq,q′)
based on its feasibility, where yq,q′ ∈ {0, 1} and Uq,q′ ⊆ U .

This corresponds to line 5 of Algorithm 1. For a transition

from state q to q′ in DFA A, if we can find some CBC

B(x) and non-empty Uq,q′ 6= ∅ such that any u ∈ Uq,q′ ⊆
U renders Eqn. (4) to be satisfied under control law µ :
Ωq,q′ → Uq,q′ , then we label transition from state q to q′ as

(yq,q′ , Uq,q′), where yq,q′ = 0. In addition, if there exists a

self-loop transition at state q, we label the self-loop transition

as (yq,q, Uq,q), where yq,q = 1 and Uq,q = Uq,q′ . If no CBC

B(x) can be found to satisfy Eqn. (4), we label yq,q′ = 1
and yq,q = 0 when the self-loop transition at state q exists.

B. Composable Control Laws and Realizability of ¬ϕ

Using Theorem 1, we have that the feasibility of each

transition in automaton A can be verified by computing a

CBC B(x). Given the feasibility of each transition, we then

label each transition of A using (yq,q′ , Uq,q′). Using these

labels, we finally verify whether there exists an accepting

run on A starting from q0 such that each transition along the

run is labeled as yq,q′ = 1 (line 6 of Algorithm 1). If no

such run exists (line 15-17 of Algorithm 1), then system (1)

satisfies the specification ϕ under some control law µ. We

formally state this result as follows.

Lemma 2. There exists a control law µ for system (1) to

satisfy specification ϕ if there does not exist an accepting

run on A with all transitions being labeled as yq,q′ = 1.

Proof. The lemma holds by the equivalence between violat-

ing ¬ϕ and the absence of an accepting run.

We next discuss the scenario where an accepting run on

A, denoted as η, can be found with each transition along η

being labeled as yq,q′ = 1. This scenario corresponds to line

6-14 in Algorithm 1. We observe that even if an accepting

run on A is found and labeled in Algorithm 1, system (1)

may not always be capable of realizing it. The reason is

that there exist dependencies between the transitions along

η [21], [22]. The dependencies, raised due to dynamics in

Eqn. (1), capture whether the control laws associated with the

transitions along η can be composed or not. In the following,

we derive the conditions for control laws to be composable

and thus system (1) can realize the accepting run η.

We first discuss the dependencies between the transitions.

Consider an accepting run η that is labeled as yq,q′ = 1
for each transition from q to q′ along η. For each state q

along the accepting run η, we define the forward reachable

8586

set when starting from Ωq
i as

Rfwd(Ω
q
i) =

⋃

T≥0,x0∈Ωq

i

{xT : xT = x(T ;x0, µ)

for some control law µ}. (5)

We additionally define the backward reachable set as

Rbck(Ω
q
i) = {x : ∃T ≥ 0 s.t. x(T ;x, µ) ∈ Ωq

i

for some control law µ}. (6)

We observe that accepting run η cannot be realized by system

(1) when there exists at least one state q on η such that

Rfwd(Ω
pre(q;η)
i) ∩Rbck(Ω

suc(q;η)
i) = ∅,

where pre(q; η) and suc(q; η) are the predecessor and

successor of state q along run η, respectively. In the re-

mainder of this subsection, we verify the emptiness of

Rfwd(Ω
pre(q;η)
i)∩Rbck(Ω

suc(q;η)
i) via set separation which

is defined below.

Definition 5 (Set Separation). Let sets R1,R2 ⊂ Ωq,q′

r be

closed. We say R1 and R2 are separable by system (1) if

there exists no time T ≥ 0 such that x(T ;x(0), µ) ∈ R2 and

x(t;x(0), µ) ∈ Ωq,q′

r for all t ∈ [0, T] when starting from

R1 by implementing some control law µ.

As shown in [26], set separation can be verified via a

certificate D(x).

Lemma 3 ([26]). Let sets R1 and R2 be closed subsets of

X . Then R1 and R2 are separable if and only if there exists

some function D(x) satisfying

D(x1) ≤ D(x2), ∀x1 ∈ R1, x2 ∈ R2 (7a)

inf
u∈U

{
∂D

∂x
(f(x) + g(x)u)} < 0, ∀x ∈ X . (7b)

Leveraging Lemma 3, we verify the the emptiness of

Rfwd(Ω
pre(q;η)
i) ∩Rbck(Ω

suc(q;η)
i) as follows.

Theorem 2. Suppose that Assumption 1 holds. System (1)

cannot satisfy specification ϕ if and only if there exists some

accepting run η on DFA A such that each transition from

state q to q′ along η is labeled with yq,q′ = 1 by line 5 of

Algorithm 1, and for any state q along accepting run η, sets

R1(q),R2(q) ⊆ Ωq
i are not separable by system (1) under

any control law µ, where

R1(q) = Rfwd(Ω
pre(q;η)
i) ∩ Ωq

i ,

R2(q) = Rbck(Ω
suc(q;η)
i) ∩ Ωq

i .

Proof. We first prove the ‘if’ direction. If line 5 of Algorithm

1 yields an accepting run with yq,q′ = 1 for each transition

from q to q′ along η, and R1(q) and R2(q) are not separable

by system (1) under any control law µ, we have that system

(1) joins sets R1(q) and R2(q) without leaving set Ωq
i . As

a consequence, the accepting run η is realized by system (1)

regardless of the choice of control law µ. Since η is accepted

by the automaton corresponding to ¬ϕ, we have that system

(1) cannot satisfy ϕ.

We next prove the ‘only if’ direction. When the sys-

tem cannot satisfy specification ϕ, it implies that run η

corresponding to ¬ϕ can be realized by the system under

any control law. Therefore, Algorithm 1 must label some

accepting run, i.e., each transitions from state q to q′ along

η is feasible. The self-loop transition at each state q along

η is feasible for all q, indicating that R1(q) and R2(q) are

not separable under any control law.

Theorem 1 and Theorem 2 together give the necessary and

sufficient conditions for a control law to satisfy specification

ϕ. That is, any control law that satisfies Theorem 1 and

Theorem 2 guarantees the satisfaction of ϕ. If there exists

no control law µ that can satisfy Theorem 1 and Theorem

2, then specification ϕ cannot be satisfied by system (1).

Computing the reachable sets for nonlinear system (1) is

difficult [27]. In what follows, we show that the conditions

given in Theorem 2 can be verified by synthesizing two

separable sets W1,W2 ⊂ Ωq
i and checking the feasibility

of a set of inequalities.

Proposition 1. Suppose that Assumption 1 holds. Let q be

some state along an accepting run η given by line 5 of

Algorithm 1. Let σ be defined as q = δ(pre(q; η), σ). Sets

R1(q) and R2(q) are not separable if and only if there

exist sets W1,W2 ⊂ Ωq
i and no continuously differentiable

functions B1(x), B2(x), and D(x) satisfying

B1(x) ≤ 0, ∀x ∈ Ω
pre(q;η)
i , (8a)

B1(x) > 0, ∀x ∈ W1, (8b)

inf
u∈U

{
∂B1

∂x
(x)[f(x) + g(x)u]} ≤ 0,

∀x ∈
(

Ω
pre(q;η),q
i ∪W1 ∩ JσK

)

, (8c)

B2(x) ≤ 0, ∀x ∈ W2, (8d)

B2(x) > 0, ∀x ∈ Ωq,suc(q;η)
r , (8e)

inf
u∈U

{
∂B2

∂x
(x)[f(x) + g(x)u]} ≤ 0,

∀x ∈
(

W2 ∪ Ωq,suc(q;η)
r

)

, (8f)

D(x1) ≤ D(x2), ∀x1 ∈ W1, x2 ∈ W2, (8g)

inf
u∈U

{
∂D

∂x
(f(x) + g(x)u)} < 0, ∀x ∈ Ωq

i . (8h)

Proof. We first prove the ‘if’ direction. If line 5 of Algorithm

1 yields an accepting run with yq,q′ = 1 for each transition

from q to q′ along η, and R1(q) and R2(q) are not separable

by system (1) under any control law µ, we have that system

(1) joins sets R1(q) and R2(q) without leaving set Ωq
i . As

a consequence, the accepting run η is realized by system (1)

regardless of the choice of control law µ. Since η is accepted

by the automaton corresponding to ¬ϕ, we have that system

(1) cannot satisfy ϕ.

We next prove the ‘only if’ direction. When the sys-

tem cannot satisfy specification ϕ, it implies that run η

corresponding to ¬ϕ can be realized by the system under

any control law. Therefore, Algorithm 1 must label some

accepting run, i.e., each transitions from state q to q′ along

8587

η is feasible. The self-loop transition at each state q along

η is feasible for all q, indicating that R1(q) and R2(q) are

not separable under any control law.

We finally discuss how we extract the control law µ :
X ×M → U . Note that here memory M is set as M = Q,

which is used to track the current state of automaton A.

Given the current system state x and the current state q ∈ Q

of automaton A, the control law is defined as µ(x, q) = u

such that u ∈ Uq,q′ , where there exists no accepting run η

starting from q′ whose transitions are labeled as yq′′,q′′′ = 1.

V. CASE STUDY

In this section, we evaluate the proposed approach using

an example on multi-agent motion planning. There are two

agents i ∈ {1, 2} navigating in a bounded 2-dimensional

domain. The dynamics of the system are given as

[

ẋ1, ẏ1, ẋ2, ẏ2
]⊤

=
[

ux,1, uy,1, ux,2, uy,2

]⊤

where xi represents the position along X-coordinate and

yi represents the position along Y -coordinate of agent

i ∈ {1, 2}. We use ux,i and uy,i to denote the horizontal

and vertical velocity given to the agent. We denote x =
[x1, y1, x2, y2]

⊤. The initial positions of agents 1 and 2 are

set as x = [0, 0, 1, 0]⊤. We assume that xi ∈ [−10, 10] and

yi ∈ [−10, 10] for all i ∈ {1, 2}.

We let the atomic proposition set be defined as Π =
{Dest 1, Dest 2, Dest 3, Obs}. Here Obs represents the

set of states belonging to a static obstacle, whose geometric

information is given as

JObsK =
∏

i∈{1,2}

{x : (xi − 1)2 + (yi − 2)2 ≤ 1}.

Atomic propositions Dest 1, Dest 2, and Dest 3 label the

set of states that belong to static destinations. The geometric

information for each destination is given as

JDest 1K = {x : (x1 + 4)2 + y21 ≤ 1},

JDest 2K = {x : (x2 − 6)2 + (y2 − 4)2 ≤ 1}.

JDest 3K = {x : (x1 − 2)2 + y21 ≤ 1}.

The specification ϕ given to the agents is formulated as

ϕ = ✸(Dest 1 ∧✸Dest 2) ∧✷¬Obs∧

(✸Dest 2 =⇒ ✸Dest 3).

Specification ϕ requires that (i) destinations JDest 1K and

JDest 2K are reached in order, (ii) both agents always avoid

the obstacle Obs, and (iii) once JDest 2K is reached, then

JDest 3K needs to be reached. Specification ϕ introduces

coupling between agents 1 and 2.

Using our proposed approach, we first generate the DFA

A corresponding to ¬ϕ. There are 7 states, denoted as

Q = {0, 1, . . . , 6}, and 25 transitions in the DFA. We

adopt the sum-of-squares optimization-based approach [15],

[16] to search for CBCs. Using Theorem 1, we can label

the transitions ending at state 0 with yq,0 = 1, where

q ∈ {0, 2, 3, 4, 5}, which also renders the self-loop transitions

-1 0 1 2 3 4 5 6 7

X-Coordinate

-1

0

1

2

3

4

5

6

Y
-C

o
o
rd

in
at

e

Obs

Dest 1

Dest 3

Dest 2

Agent 1

Agent 2

Fig. 1: This figure presents the trajectories of agents 1 and 2
for specification ϕ. The obstacle and destinations are plotted

using dotted red and black lines, respectively. The trajectories

of agent 1 and 2 obtained using our proposed approach are

plotted using solid blue and green lines, respectively.

at states {2, 3, 4, 5, 6} to be infeasible. In addition, we

label the transitions ending at state 1 as yq,1 = 0, where

q ∈ {0, 2, 3, 4, 5, 6}. In this case, there is always a feasible

control input at state q = 6 since there exists no accepting

run labeled to be feasible as long as there exists some q′

such that y6,q′ = 1, where q′ ∈ {2, 3, 4, 5}.

Our control law realizes the infinite non-accepting run

6, 5, 2, 0, 0, . . ., indicating that JDest 1K, JDest 2K, and

JDest 3K need to be reached in this order. We illustrate the

corresponding trajectories for agents 1 and 2 in Fig. 1. We

depict the trajectories for agent 1 and 2 using blue and green

lines, respectively. We observe that agent 1 reaches JDest 1K
and agent 2 reaches JDest 2K. After that, agent 1 reaches

JDest 3K. In the meantime, both agents avoid the obstacle

region JObsK to guarantee the safety property. Therefore, the

trajectories of the agents satisfy the given specification ϕ.

VI. CONCLUSION

In this paper, we considered continuous-time control-affine

systems under linear temporal logic constraints defined over

finite traces. We developed the necessary and sufficient

conditions for a control law of the system to satisfy the

given specification. We first negated the given specification

and generated the deterministic finite automaton to represent

the negated specification. We then constructed a safety

verification problem for each transition in the automaton. We

derived the necessary and sufficient conditions for a control

law to solve the decomposed safety verification problem via

CBC. We formulated the dependencies among the transitions

by considering the composability of control laws. We derived

the necessary and sufficient conditions for the composability,

and thus realizability of the specification. We illustrated the

proposed approach using a numerical case study.

8588

REFERENCES

[1] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of Model Check-

ing. MIT Press, 2008.

[2] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[3] J. Fu and U. Topcu, “Synthesis of shared autonomy policies with
temporal logic specifications,” IEEE Transactions on Automation

Science and Engineering, vol. 13, no. 1, pp. 7–17, 2016.

[4] S. Coogan, E. A. Gol, M. Arcak, and C. Belta, “Traffic network control
from temporal logic specifications,” IEEE Transactions on Control of

Network Systems, vol. 3, no. 2, pp. 162–172, 2015.

[5] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of
Markov decision processes with linear temporal logic constraints,”
IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1244–
1257, 2014.

[6] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in 48th IEEE Confer-

ence on Decision and Control (CDC). IEEE, 2009, pp. 5997–6004.

[7] J. Fu and U. Topcu, “Computational methods for stochastic control
with metric interval temporal logic specifications,” in IEEE Conference

on Decision and Control (CDC), 2015, pp. 7440–7447.

[8] L. Niu and A. Clark, “Optimal secure control with linear temporal
logic constraints,” IEEE Transactions on Automatic Control, 2019.

[9] J. Liu, “Robust abstractions for control synthesis: Completeness via
robustness for linear-time properties,” in Proceedings of the 20th In-

ternational Conference on Hybrid Systems: Computation and Control,
2017, pp. 101–110.

[10] A. Lavaei, S. Soudjani, and M. Zamani, “Compositional synthesis of
finite abstractions for continuous-space stochastic control systems: A
small-gain approach,” IFAC-PapersOnLine, vol. 51, no. 16, pp. 265–
270, 2018.

[11] ——, “Compositional abstraction of large-scale stochastic systems: A
relaxed dissipativity approach,” Nonlinear Analysis: Hybrid Systems,
vol. 36, p. 100880, 2020.

[12] S. Esmaeil Zadeh Soudjani, A. Abate, and R. Majumdar, “Dynamic
Bayesian networks for formal verification of structured stochastic
processes,” Acta Informatica, vol. 54, no. 2, pp. 217–242, 2017.

[13] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE Control Systems Letters, vol. 3,
no. 1, pp. 96–101, 2018.

[14] M. Srinivasan and S. Coogan, “Control of mobile robots using barrier
functions under temporal logic specifications,” IEEE Transactions on

Robotics, vol. 37, no. 2, pp. 363–374, 2021.

[15] P. Jagtap, S. Soudjani, and M. Zamani, “Formal synthesis of stochastic
systems via control barrier certificates,” IEEE Transactions on Auto-

matic Control, 2020.

[16] M. Anand, A. Lavaei, and M. Zamani, “Compositional synthesis of
control barrier certificates for networks of stochastic systems against
ω-regular specifications,” arXiv preprint arXiv:2103.02226, 2021.

[17] L. Niu and A. Clark, “Control barrier functions for abstraction-
free control synthesis under temporal logic constraints,” 59th IEEE

Conference on Decision and Control (CDC), 2020.

[18] M. Srinivasan, S. Coogan, and M. Egerstedt, “Control of multi-agent
systems with finite time control barrier certificates and temporal logic,”
in 2018 IEEE Conference on Decision and Control (CDC). IEEE,
2018, pp. 1991–1996.

[19] A. Bisoffi and D. V. Dimarogonas, “Satisfaction of linear temporal
logic specifications through recurrence tools for hybrid systems,” IEEE

Transactions on Automatic Control, vol. 66, no. 2, pp. 818–825, 2020.

[20] A. Nejati, S. Soudjani, and M. Zamani, “Compositional construction
of control barrier functions for continuous-time stochastic hybrid
systems,” arXiv preprint arXiv:2012.07296, 2020.

[21] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential com-
position of dynamically dexterous robot behaviors,” The International

Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, 1999.

[22] J. A. DeCastro and H. Kress-Gazit, “Synthesis of nonlinear continuous
controllers for verifiably correct high-level, reactive behaviors,” The

International Journal of Robotics Research, vol. 34, no. 3, pp. 378–
394, 2015.

[23] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in International Joint Conference on

Artificial Intelligence. Association for Computing Machinery, 2013,
pp. 854–860.

[24] T. Wongpiromsarn, U. Topcu, and A. Lamperski, “Automata theory
meets barrier certificates: Temporal logic verification of nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 61, no. 11,
pp. 3344–3355, 2015.

[25] S. Prajna and A. Rantzer, “On the necessity of barrier certificates,”
IFAC Proceedings Volumes, vol. 38, no. 1, pp. 526–531, 2005.

[26] R. Wisniewski and C. Sloth, “Converse barrier certificate theorems,”
IEEE Transactions on Automatic Control, vol. 61, no. 5, pp. 1356–
1361, 2015.

[27] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-
Jacobi reachability: A brief overview and recent advances,” in IEEE

Conference on Decision and Control (CDC), 2017, pp. 2242–2253.

8589

