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Abstract— Finite-sum minimization is a fundamental opti-
mization problem in signal processing and machine learning.
This paper proposes a variance-reduced shuffling gradient
descent with Nesterov’s momentum for smooth convex finite-
sum optimization. We integrate an explicit variance reduction
into the shuffling gradient descent to deal with the variance
introduced by shuffling gradients. The proposed algorithm with
a unified shuffling scheme converges at a rate of O( 1

T
), where

T is the number of epochs. The convergence rate independent
of gradient variance is better than most existing shuffling
gradient algorithms for convex optimization. Finally, numerical
simulations demonstrate the convergence performance of the
proposed algorithm.

I. INTRODUCTION

Finite-sum minimization is a fundamental problem with
many practical applications in signal processing and machine
learning [1], [2]. With the rapid growth of data in recent
years, the deterministic gradient descent methods based on
full gradients have become inefficient in solving finite-
sum optimization problems. Therefore, various first-order
stochastic methods are leading algorithms for finite-sum
minimization due to their scalability and low computational
requirements [3]–[5]. Stochastic gradient descent (SGD) is
a well-known first-order algorithm where the actual full
gradient is replaced by a gradient estimate calculated from
randomly sampled data. SGD owns conditionally unbiased
gradients by uniformly independent sampling and achieves
the convergence rate of O(1/

√
T ) [6], [7], where T is the

number of epochs. Inspired by the Nesterov’s momentum
technique, researchers have made efforts to integrate the
momentum step into the stochastic gradient descent. With the
strong growth condition that the variance converges to zero,
some existing works [8], [9] proved a faster convergence rate
of SGD with Nesterov’s momentum. However, the vanishing
variance assumption is necessary for these works to develop
a better convergence rate of SGD with momentum than the
traditional SGD.
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Shuffling gradient descent is a popular but elusive stochas-
tic algorithm for finite-sum minimization problems, where
the components are sampled without replacement, differently
from the traditional sampling-with-replacement SGD. Shuf-
fling gradient algorithms with deterministic or random shuf-
fling samples often perform better than SGD in many prac-
tical problems [10], [11]. Therefore, the theoretical research
of shuffling gradient descent has recently attracted much
attention. The main difficulty in analyzing shuffling gradient
methods is that the sampling without replacement makes
the conditional gradients biased. Facing this challenge, some
inspiring works [12], [13] have provided some involved yet
insightful proofs for theO(1/T 2/3) convergence rate of shuf-
fling gradient descent algorithms under weak assumptions.
To further improve the convergence rate of shuffling gradient
algorithms, the recent work [14] integrated the Nesterov’s
momentum step into shuffling gradient descent and obtained
an O(1/T ) convergence rate, in which there still exists the
effect of gradient variance.

More recently, the variance reduction technique has be-
come another important way to improve the convergence
rate of first-order stochastic algorithms. Many works have
shown that SGD can converge much faster if one makes a
better choice of the stochastic gradient so that its variance
reduces as the iteration increases [15], [16]. Many variance
reduction techniques have been proposed for strongly convex
optimization, such as SAGA [17], SVRG [18], and SARAH
[19]. Furthermore, [20] has incorporated Nesterov’s momen-
tum trick into a variance-reduction-based algorithm and sped
it up. However, all these variance reduction works are based
on the SGD algorithms. Limited works such as [21], [22]
have applied variance reduction techniques to the shuffling
gradient descent algorithms.

Motivated by the popular practical applications of shuf-
fling algorithms, we studied a new shuffling gradient descent
algorithm with variance reduction and momentum steps for
finite-sum convex optimization. The contributions of this
paper are summarized as follows.
• This paper develops a variance-reduced shuffling gradi-

ent descent with momentum to obtain a solution for
smooth convex optimization. We relax the vanishing
gradient variance assumption in most existing SGD
algorithms with Nesterov’s momentum for convex opti-
mization [8], [23]. In addition, we integrate an explicit
variance reduction step into the shuffling gradient algo-
rithm to eliminate the effect of gradient variance and
obtain a better convergence rate.

• We provide a rigorous and complete proof for the
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proposed variance-reduced shuffling gradient algorithm
with momentum. We first provide an equivalent re-
formulation of the original finite-sum minimization
problem. Then, we establish a concise analysis using
some proper auxiliary variables and the backward per-
iteration deviation at each epoch.

• For the unified shuffling scheme (either deterministic
or random shuffling), the proposed algorithm achieves
an improved convergence rate of O( 1

T ) in terms of the
number of epochs, better than the O( 1

T 2/3 ) convergence
rate of shuffling gradient algorithms without momentum
[24]. Compared with the accelerated shuffling work
[14], the proposed algorithm achieves a faster conver-
gence rate independent of gradient variance, at the cost
of computing the full gradient once at each epoch.

The remainder of the paper is organized as follows. The
problem description and variance-reduced shuffling gradient
algorithm are developed in section II. The convergence
analysis of the proposed algorithm is provided in section
III. The efficiency of the proposed algorithm is verified by
simulations in Section IV and the conclusion is made in
section V.

Mathematical notations: We denote R as the set of real
numbers, Rn as the set of n-dimensional real column vectors,
Rn×m as the set of n-by-m real matrices, and N+ as the
set of positive integers. All vectors in the paper are column
vectors, unless otherwise noted. The notation 1 denotes an
all-1 vector with the corresponding dimension. The notation
[n] denotes the set {0, · · · , n− 1}. For a real vector v, ‖v‖
is the Euclidean norm. For a differentiable function f(x), its
gradient vector is represented by ∇f(x).

II. PROBLEM DESCRIPTION AND ALGORITHM DESIGN

In this paper, we study the following finite-sum convex
optimization problem

min
x∈Rd

f(x), f(x) =
1

n

∑
i∈[n]

fi(x), (1)

where x ∈ Rd is the variable to be determined and fi for
i ∈ [n] is a scalar function. This standard finite-sum problem
arises in many signal processing and machine learning tasks
[25]–[27], where the number of components n is large such
that deterministic algorithms relying on full gradients are
usually inefficient for this problem.

We design a new stochastic gradient descent using the
unified shuffling scheme (either deterministic or random
shuffling). With an explicit variance reduction and Nesterov’s
momentum, we propose a variance-reduced shuffling gradi-
ent algorithm with momentum in Algorithm 1 to reduce the
effect of biased gradients and obtain a faster convergence
rate.

In the proposed algorithm, an epoch is one complete
pass through all training data. At the beginning of each
epoch, the data samples are shuffled to obtain a new random
or deterministic permutation of the index set [n]. Then,
consecutive gradient descents are executed with the shuffled

Algorithm 1 Variance-reduced shuffling gradient algorithm
with momentum (VRSGM)

1: Initialization: Set y0 = x0, the number of epochs T .
2: for k = 1, · · · , T do
3: Generate any permutation πk = (π0

k, · · · , π
n−1
k ) of

[n] (either deterministic or random)
4: y0k = yk−1
5: for i = 0, · · · , n− 1 do
6: gik = ∇fπi

k
(yik)−∇fπi

k
(yk−1) +∇f(yk−1)

7: yi+1
k = yik −

ηk
n g

i
k

8: end for
9: xk = ynk

10: yk = xk +
k−1
k+2 (xk − xk−1)

11: end for

permutation in the inner iterations. The step-size ηk/n in
each gradient descent satisfies 0 < ηk < 1/L, and the
proposed algorithm uses a gradient estimator gik instead of
the stochastic gradient ∇fi to reduce the gradient variance.
The gradient estimator takes an explicit variance reduction,
first developed in [18] for strongly-convex optimization. At
the end of each epoch, we adopt Nesterov’s momentum step
using the final variable of inner iterations.

Remark 2.1: Compared with the existing Nesterov ac-
celerated SGD algorithms [8], [9], the proposed algorithm
adopts an explicit variance reduction step to remove the van-
ishing variance assumption, which is generally not satisfied
in practice. In addition, the introduced variance reduction
step eliminates the effect of gradient variance on the conver-
gence rate of the algorithm, different from the accelerated
shuffling gradient work [14].

Remark 2.2: Different from the unbiased gradient estima-
tor in SGD, the gradient in the shuffling gradient algorithm
is biased, so the intuition of applying the momentum step in
each inner iteration may not be superior due to the possible
error accumulation [14].

III. THEORETICAL ANALYSIS

This section provides the convergence analysis for Algo-
rithm 1 under the following basic assumptions of objective
function.

Assumption 3.1: Each objective function fi is convex
and L-smooth, i.e., fi(x) + 〈∇fi(x), y − x〉 ≤ fi(y) and
‖∇fi(x) − ∇fi(y)‖ ≤ L‖x − y‖ for all x, y ∈ Rd and
i ∈ [n].
The L-smoothness of function fi also implies that the
function fi satisfies

fi(x) ≤ fi(y) + 〈∇fi(y), x− y〉+
L

2
‖x− y‖2, i ∈ [n].

For concise proof, we define vk , k+1
2 xk− k−1

2 xk−1 and
the backward per-iteration deviation of VRSGM at epoch k
as Bk = 1

n

∑
i∈[n] ‖yik − y0k‖2 for all k ∈ N+. Define x∗ as

a solution to Problem (1) and f∗ , f(x∗).
At first, we estimate an upper bound of the optimality gap

f(xT )− f∗ for T ∈ N+.
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Lemma 3.1: Suppose Assumption 3.1 holds. Let 0 <
ηk ≤ 1

L , i ∈ [n] and {εk}Tk=1 be a positive sequence. Then,
we have

T (T + 2)[f(xT )− f∗]

≤
T∑
k=1

L2ηk(k + 1)2

2εk
Bk −

T∑
k=1

[f(xk)− f∗]

+

T∑
k=1

2

ηk
‖vk−1 − x∗‖2 −

T∑
k=1

2

ηk
(1− εk)‖vk − x∗‖2.

(2)
Proof: Let ai,k−1 , −∇fπi

k
(yk−1) +∇f(yk−1). The

gradient estimate in Line 6 of VRSGM can be written as

gik = ∇fπi
k
(yik) + ai,k−1. (3)

Clearly,
∑
i∈[n] ai,k−1 =

∑
i∈[n]

(
− ∇fπi

k
(yk−1) +

∇f(yk−1)
)
= 0. Adding this zero to f(·) in problem (1)

yields that

f(xk) =
1

n

∑
i∈[n]

(fi(xk) + 〈ai,k−1, xk〉) =
1

n

∑
i∈[n]

f̃i(xk),

(4)

where f̃i(xk) , fi(xk) + 〈ai,k−1, xk〉 for all i ∈ [n]. Note
that ∇f̃i(xk) = ∇fi(xk) + ai,k−1 for all i ∈ [n]. It follows
from (3) that

gik = ∇f̃πi
k
(yik), ∀i ∈ [n]. (5)

Following from the fact that yi+1
k = yik −

ηk
n ∇f̃πi

k
(yik),

we have yik = y0k−
∑i−1
j=0 η

j
k∇f̃πj

k
(yjk). Note that y0k = yk−1

and ynk = xk. We obtain

xk = yk−1 −
ηk
n

∑
j∈[n]

∇f̃πj
k
(yjk)

= yk−1 −
ηk
n

∑
j∈[n]

∇fπj
k
(yjk). (6)

Following from the definition of ∇f̃i(xk) and∑
i∈[n] ai,k−1 = 0, we have the fact that

∑
i∈[n]∇fi(xi) =∑

i∈[n]∇f̃i(xi) holds for any given argument xi. From this
fact, the last equality of (6) holds. In addition, because our
problem assumptions are the same as those of [14] and the
variable updating (6) is the same as the variable updating
in the proof of Lemma 1 of [14], we can follow similar
derivations of Lemma 1 of [14] to obtain the desired result.

For convenience, we define v0 = x0 and θk = 2
k+2 ∈

(0, 1) for k ≥ 1 with θ0 = 1. Recall that vk , k+1
2 xk −

k−1
2 xk−1. By the yk updating in line 10 of Algorithm 1, we

have that yk is a convex combination of vk and xk,

yk =xk +
k − 1

k + 2
(xk − xk−1)

=
2

k + 2

(k + 1

2
xk −

k − 1

2
xk−1

)
+
(
1− 2

k + 2

)
xk

=θkvk + (1− θk)xk. (7)

Using the above quantities and (7), we establish an upper
bound of Bk in the following lemma.

Lemma 3.2: Suppose Assumption 3.1 holds. Let ηk ≤ 1
2L

and k ∈ N+. Then, for all k ∈ N+, Bk satisfies

Bk ≤ 8η2kL
(k − 1

k + 1
(f(xk−1)−f∗)+

2

k + 1
(f(vk−1)−f∗)

)
.

Proof: By the proposed algorithm and the L-
smoothness of objective functions,

‖yik − y0k‖2

=
η2k
n2

∥∥∥ i−1∑
j=0

∇fπj
k
(yjk)−

i−1∑
j=0

∇fπj
k
(yk−1) +

i−1∑
j=0

∇f(yk−1)
∥∥∥2

≤2iη2kL
2

n2

i−1∑
j=0

‖yjk − yk−1‖
2 +

2η2ki

n2

i−1∑
j=0

∥∥∥∇f(yk−1)∥∥∥2
≤2iη2kL

2

n2

i−1∑
j=0

‖yjk − y
0
k‖2 +

2η2k
n

i−1∑
j=0

∥∥∥∇f(yk−1)∥∥∥2
≤2iη2kL

2

n2

n−1∑
j=0

‖yjk − y
0
k‖2 +

2η2k
n

n−1∑
j=0

∥∥∥∇f(yk−1)∥∥∥2
=
2iη2kL

2

n
Bk +

2η2k
n

n−1∑
j=0

∥∥∥∇f(yk−1)∥∥∥2,
where the first inequality holds due to the AM-QM inequality(
i.e. ‖

∑n
j=1 xj‖2 ≤ n

∑n
j=1 ‖xj‖2, ∀xj ∈ Rd

)
and L-

smoothness of fi, and Bk = 1
n

∑n−1
i=0 ‖yik − y0k‖2. Summing

up the previous expression from i = 0 to i = n− 1 yields

nBk =

n−1∑
i=0

‖yik − y0k‖2

≤
n−1∑
i=0

2iη2kL
2

n
Bk +

n−1∑
i=0

2η2k
n

n−1∑
j=0

∥∥∥∇f(yk−1)∥∥∥2
≤2η2kL

2

n

n2 + n

2
Bk +

n−1∑
i=0

2η2k
n

n−1∑
j=0

∥∥∥∇f(yk−1)∥∥∥2
≤2η2kL2nBk +

n−1∑
i=0

2η2k
n

n−1∑
j=0

∥∥∥∇f(yk−1)∥∥∥2
≤1

2
nBk +

n−1∑
i=0

2η2k
n

n−1∑
j=0

∥∥∥∇f(yk−1)∥∥∥2,
where the third inequality holds due to n2+n

2 ≤ n2 and the
fourth inequality holds due to ηk ≤ 1

2L and η2kL
2 ≤ 1

4 .
By subtracting nBk

2 and multiplying 2
n from the both sides

of the above inequality, we have

Bk ≤ 4η2k‖∇f(yk−1)‖2. (8)

Because of the convexity and L-smoothness of f ,
‖∇f(yk−1)‖2 ≤ 2L(f(yk−1) − f∗). Substituting this in-
equality into (8) gives

Bk ≤ 8η2kL(f(yk−1)− f∗). (9)

1060



Due to the fact that yk = θkvk + (1− θk)xk,

f(yk)− f∗

=f(θkvk + (1− θk)xk)− f∗

≤θkf(vk) + (1− θk)f(xk)− f∗

=θk(f(vk)− f∗) + (1− θk)
(
f(xk)− f∗

)
. (10)

Then, following from (9) and (10), Bk satisfies

Bk ≤8η2kL(f(yk−1)− f∗)

≤8η2kL
(
(1−θk−1)(f(xk−1)−f∗)+θk−1

(
f(vk−1)−f∗

))
,

where θk−1 = 2
k+1 and 1− θk−1 = k−1

k+1 .
Now, we are ready to prove the convergence rate of Algo-
rithm 1 using properties of the optimality gap in Lemma 3.1
and Bk in Lemma 3.2.

Theorem 3.1: Suppose Assumption 3.1 holds. Let ηk =
hαk

L < 1
2L , α = 1 + 1

T and h = 4

5
√
e3(T+1)

> 0 for k, T ∈
N+, T ≥ 2 and k ≤ T . Then,

f(xT )− f∗ = O
(L‖x0 − x∗‖2

T

)
, T ≥ 2. (11)

Proof:
By Lemma 3.1, we have

T (T + 2)(f(xT )− f∗)

≤
T∑
k=1

L2ηk(k + 1)2

2εk
Bk −

T∑
k=1

(f(xk)− f∗)

+

T∑
k=1

2

ηk
‖vk−1 − x∗‖2 −

T∑
k=1

2

ηk
(1− εk)‖vk − x∗‖2

≤
T∑
k=1

4L3η3k(k + 1)2

εk

[k − 1

k + 1

(
f(xk−1)− f∗

)
+

2

k + 1

(
f(vk−1)− f∗

)]
−

T∑
k=1

(
f(xk)− f∗

)
+

T∑
k=1

2

ηk
‖vk−1 − x∗‖2 −

T∑
k=1

2

ηk
(1− εk)‖vk − x∗‖2

≤
T∑
k=1

4L3η3k(k + 1)2

εk

(
f(xk−1)− f∗ + f(vk−1)− f∗

)
−

T∑
k=1

(f(xk−1)− f∗) +
T∑
k=1

(f(xk−1)− f(xk))

+

T∑
k=1

2

ηk
‖vk−1 − x∗‖2 −

T∑
k=1

2

ηk
(1− εk)‖vk − x∗‖2,

(12)

where the second inequality holds by Lemma 3.2, and the
third inequality holds due to 2

k+1 ≤ 1 and k−1
k+1 ≤ 1.

Without loss of generality, we define εk , 1− 1
α−

he
4 > 0.

Then, the coefficient of the first term in (12) satisfies

4L3η3k(k + 1)2

εk
=

4h3α3k(k + 1)2

εk
≤ 4h3α3k(T + 1)2ε−1k

≤ 16h3e3(T + 1)2
α

4α− 4− αhe
. (13)

It follows from α = 1 + 1
T ≤

3
2 that h

(
16h2e3(T + 1)2α+

αe
)
≤ h

(
24h2e3(T+1)2+ 3e

2

)
. Recall that h2 = 16

25e3(T+1)2 .
Then, we have

h
(
16h2e3(T + 1)2α+ αe

)
≤ 4

5
√
e3(T + 1)

(24e3(T + 1)2 × 16

25e3(T + 1)2
+

3e

2

)
<

4

5
√
e3T

(16 +
3e

2
).

Because 16+ 3e
2 < 5

√
e3, it follows that 16h3e3(T+1)2α <

4α− 4− αhe. Then, it follows from (13) that

4L3η3k(k + 1)2

εk
< 1, ∀k ∈ [T ]. (14)

With the inequalities (12) and (14), we have

T (T + 2)(f(xT )− f∗)

≤
T∑
k=1

[4L3η3k(k + 1)2

εk
− 1
]
(f(xk−1)− f∗)

+ f(x0)− f(xT ) +
T∑
k=1

(
f(vk−1)− f∗

)
+

T∑
k=1

2

ηk
‖vk−1 − x∗‖2 −

T∑
k=1

2

ηk
(1− εk)‖vk − x∗‖2

≤f(x0)−f(xT ) +
T∑
k=1

[
f(vk−1)−f(vk)

]
+

T∑
k=1

L

2
‖vk−x∗‖2

+

T∑
k=1

2

ηk
‖vk−1 − x∗‖2 −

T∑
k=1

2

ηk
(1− εk)‖vk − x∗‖2

≤L
2
‖x0 − x∗‖2 + f(v0)− f∗ +

T∑
k=1

L

2
‖vk − x∗‖2

+

T∑
k=1

2

ηk
‖vk−1 − x∗‖2 −

T∑
k=1

2

ηk
(1− εk)‖vk − x∗‖2

=
L

2
‖x0 − x∗‖2 + f(v0)− f∗ +

T∑
k=1

2L

hαk
‖vk−1 − x∗‖2

−
T∑
k=1

[ 2L

hαk
(1− εk)−

L

2

]
‖vk − x∗‖2, (15)

where the second inequality holds due to f(vk) − f∗ ≤
L
2 ‖vk − x∗‖2, the third inequality holds due to f(x0) −
f(xT ) ≤ f(x0)− f∗ ≤ L

2 ‖x0 − x∗‖
2 and f(v0)− f(vT ) ≤

f(v0)− f∗.
Clearly, αk ≤ αT = (1+ 1

T )
T ≤ e. Hence, εk = 1− 1

α −
he
4 ≤ 1− 1

α−
hαk

4 and 1−εk ≥ 1
α+

hαk

4 = ( 2
hαk+1 +

1
2 )
hαk

2 .
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It follows that
2L

hαk
(1− εk)−

L

2
≥ 2L

hαk+1
, (16)

and, recalling (15), we have,

T (T + 2)(f(xT )− f∗)

≤L
2
‖x0 − x∗‖2 + f(v0)− f∗ +

T∑
k=1

2L

hαk
‖vk−1 − x∗‖2

−
T∑
k=1

2L

hαk+1
‖vk − x∗‖2

≤L
2
‖x0 − x∗‖2 + f(v0)− f∗ +

2L

hα
‖v0 − x∗‖2

≤L
2
‖x0 − x∗‖2 +

(L
2
+

2L

hα

)
‖v0 − x∗‖2

=
L

2
‖x0 − x∗‖2 +

(hα+ 4)L

2hα
‖v0 − x∗‖2, (17)

where the last inequality holds due to f(v0)− f∗ ≤ L
2 ‖v0−

x∗‖2.
Dividing the both sides of (17) by T (T + 2) yields

f(xT )− f∗

≤ L

2T (T + 2)
‖x0 − x∗‖2 +

(hα+ 4)L

2hαT (T + 2)
‖v0 − x∗‖2

=
L

2T (T + 2)
‖x0 − x∗‖2 +

(1 + 4/hα)L

2T (T + 2)
‖x0 − x∗‖2

=
2L+ 5

√
e3TL

2T (T + 2)
‖x0 − x∗‖2

=O
(L‖x0 − x∗‖2

T

)
, (18)

where the first and second equalities hold due to x0 = v0
and 4

hα = 5
√
e3T , respectively.

Remark 3.1: Although the step-size ηk
n is small for large

n, the convergence rate in (18) is independent of n due to
the n consecutive gradient descents in the inner iterations of
the proposed algorithm.

Remark 3.2: With the help of variance reduction and
momentum step, the proposed algorithm has a faster con-
vergence rate than the O( 1

T 2/3 ) rate of traditional shuffling
gradient algorithm [24]. The accelerated shuffling gradient
work [14] shows that random shuffling has a faster decay
rate of gradient variance than deterministic shuffling. In
contrast, the proposed shuffling gradient algorithm possesses
the same convergence rate in both shuffling settings, because
the proposed algorithm achieves a convergence result without
the effect of gradient variance. To be specific, because it
is not affected by the gradient variance σ, the proposed
algorithm has a better convergence rate of O(L‖x0−x∗‖2

T )
than the accelerated shuffling gradient in [14], which owns a
convergence rate of O(σ

2/L+L‖x0−x∗‖2
T ). In addition, due to

using the momentum design, the proposed algorithm has a
convergence rate of the last iterate f(xT ), which is better
in practice than that of the average iterate f(x̃T ), where
x̃T = 1

T

∑T
k=1 xk, in the previous work [21].
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Fig. 1. The trajectories of f(xk)− f∗ over a9a dataset.
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Fig. 2. The norm of gradients generated by different algorithms.

Remark 3.3: To discuss the trade-off between variance
reduction and the computational cost clearly, we provide the
gradient computation complexity of the proposed algorithm,
i.e., the gradient computational cost required to achieve an
ε-accurate solution. The gradient computation complexity of
the proposed algorithm is O(nε−1), which is the same as
that of the algorithm in [14]. We assign a computational
cost c for evaluating ∇fi to compare the specific number of
gradient evaluations. For the proposed VRSGM algorithm,
the computational cost is O(2ncL‖x0 − x∗‖2ε−1). For the
algorithm in [14], the computational cost is O(nc(σ2

∗/L +
L‖x0 − x∗‖2)ε−1), where σ2

∗ , 1
n

∑n
i=1 ‖∇fi(x∗)‖2 is

the gradient variance. By comparison, we obtain that if
the gradient variance σ2

∗ satisfies σ2
∗ ≥ L2‖x0 − x∗‖2, the

proposed VRSGM has a lower computational cost.

IV. SIMULATION

In this section, we apply the proposed VRSGM method to
the logistic regression problem, which has the form (1) with

f(x) =
1

n

n∑
i=1

ln
(
1 + exp

(
− li〈ai, x〉

))
, (19)

where {(ai, li)}ni=1 is a set of samples, ai ∈ Rd is the feature
vector of the ith sample, li ∈ {−1, 1} is the classification
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value of the ith sample. For comparison, we also apply some
other stochastic algorithms, i.e. the random reshuffling with
variance reduction (RR-VR) in [21] and Nesterov accelerated
shuffling gradient descent (NASG) and NASG that applies
Nesterov’s momentum in each inner iteration (NASG-PI) in
[14], to solve (19). We conduct the numerical experiments
over the public a9a dataset. We apply the random reshuf-
fling scheme to all stochastic algorithms and take the same
initialization value.

We show the trajectories of f(xk) − f∗ in terms of
epoch k in Fig. 1. The convergent trajectory of VRSGM
demonstrates that the proposed VRSGM algorithm has a
sublinear convergence rate, verifying the theoretical analysis
in Theorem 3.1. In addition, the proposed VRSGM converges
faster than NASG in terms of epoch k, which also confirms
the discussion about the convergence rates of these two
algorithms in Remark 3.2.

We show the convergence results in terms of gradient
evaluations of different comparative algorithms in Fig. 2.
Since VRSGM takes twice as many gradient evaluations
per epoch as NASG, NASG has better convergence perfor-
mance. For simplicity, we omit the numerical trajectory of
NASG algorithm. Fig. 2 indicates that the proposed VRSGM
algorithm converges faster than others, demonstrating the
proposed algorithm’s convergence performance. In addition,
the proposed VRSGM algorithm having a momentum step
converges faster than RR-VR [21], which verifies the dis-
cussion that using the momentum step can help improve the
convergence result at the end of Remark 3.2.

V. CONCLUSION

Combining the explicit variance reduction and Nesterov’s
momentum, this paper has developed a variance-reduced
shuffling gradient algorithm for convex finite-sum optimiza-
tion. With the unified shuffling scheme, the shuffling gradient
descent methods own conditionally biased gradients. This
paper provides the convergence analysis using an equivalent
problem reformulation and backward per-iteration deviation
to handle biased gradients. The main result provides a
convergence rate of O( 1

T ), which works for the last returned
iterate rather than the average iterate. One future research
direction is to reduce the computational cost of the explicit
variance reduction in the proposed algorithm by some im-
proved variance reduction technique, such as [19], [22].
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