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Abstract— This work investigates the dynamic extension of
the Controlled Lagrangians methodology for underactuated
mechanical systems subject to matched disturbances that de-
pend on the generalized position. A new passivity-preserving
controller design procedure is presented for a class of under-
actuated mechanical systems. An interpretation of the dynamic
extension as first-order low-pass filter is proposed. Simulations
results on a inertia-wheel pendulum with various types of
disturbances demonstrate the effectiveness of the new controller.

I. INTRODUCTION

The control of underactuated mechanical systems has been
approached with various methodologies [1], each having its
respective merits. In particular, energy-shaping controllers
have risen to prominence thanks to their interpretability
in terms of mechanical energy, and to their ability to ac-
commodate nonlinearities. The most notable energy-shaping
methodologies include the Interconnection and damping
assignment Passivity based control (IDA-PBC) [2] and the
Controlled Lagrangians (CL) [3], [4], [5]. Both approaches
hinge on designing the control action such that the closed-
loop dynamics preserves the structure of a mechanical system
and is characterized by a desired total energy. In spite
of their different implementations, which rely on either
the port-controlled Hamiltonian (PCH) or the Lagrangian
formulation, there is a clear similarity between IDA-PBC
and CL, see [6], and both approaches have found wide
applicability in various domains. For simplicity, the original
formulations of IDA-PBC and CL did not account for the
effect of disturbances or model uncertainties. The effect of
velocity-dependent forces was then investigated as part of
the CL methodology, see [5], [7]. In parallel, a number
of research works investigated the robustification of IDA-
PBC vis a vis constant matched disturbances resulting in the
so-called integral IDA-PBC methodology (iIDA-PBC) [8],
[9], [10]. More recent works have extended the iIDA-PBC
methodology to systems with non-constant matched distur-
bances [11], with state-dependent matched disturbances [12],
and with constant unmatched disturbances [13], [14]. While
there is a long tradition of employing integral actions for
the control of mechanical systems, see [15], [16], [17], [18],
to the best of the authors’ knowledge, an exact equivalent
of the iIDA-PBC for the CL methodology that preserves
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passivity and that is applicable to underactuated mechanical
systems is not available. This limits the applicability of the
CL methodology to real mechanical systems, where external
disturbances and model uncertainties are ubiquitous.

The main contribution of this work is a new passivity-
preserving dynamic extension of the CL methodology for un-
deractuated mechanical systems that compensates the effect
of matched additive disturbances dependent on the general-
ized position. This is a relevant problem in engineering prac-
tice, since position-dependent disturbances are representative
of uncertain stiffness in mechanical components. Differently
from prior works on iIDA-PBC [12], the proposed controller
is expressed in a more general form, which is directly appli-
cable to systems with non-constant input matrix. The simpler
case of constant matched disturbances is also discussed, and
an interpretation of the dynamic extension as first-order low-
pass filter is proposed. The new controller design procedure
is compared with the iIDA-PBC methodology and with the
use of nonlinear observers. Finally, the effectiveness of the
controller is demonstrated with simulations on a inertia-
wheel pendulum with various matched disturbances.

Notation. Function arguments are specified on first use and
subsequently omitted in equations for conciseness.

II. OVERVIEW OF CONTROLLED LAGRANGIANS

Consider an underactuated mechanical system with n
DOFs and the control input u ∈ Rm applied through the
input matrix G (q) ∈ Rn×m, where rank (G) = m < n
for all q ∈ Rn, and subject to the disturbances δ(q) ∈ Rn.
The system states are the position q ∈ Rn and the velocity
q̇ ∈ Rn, and the Lagrangian is defined as

L(q, q̇) =
1

2
q̇⊤M(q)q̇ − V (q), (1)

where the inertia matrix is M(q) = M(q)⊤ ≻ 0, and the
potential energy is V (q). The system dynamics is defined as

d
dt
∂q̇L(q, q̇)− ∂qL(q, q̇) = G(q)u− δ(q). (2)

The CL methodology [3] aims at stabilizing the prescribed
equilibrium (q, q̇) = (q⋆, 0) by assigning a new Lagrangian
Lc(q, q̇) =

1
2 q̇

⊤Mc(q)q̇ − Vc(q) such that in closed loop

d
dt
∂q̇Lc(q, q̇)− ∂qLc(q, q̇) = 0, (3)

where the potential energy Vc(q) > 0 admits a strict
minimizer in q⋆ hence verifying the conditions ∂qVc (q

⋆) = 0
and ∂2

qVc (q
⋆) ≻ 0. The other design parameter besides Vc(q)

is the inertia matrix Mc(q) = M⊤
c (q) ≻ 0.
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This shaping of the system energy is achieved, in the absence
of disturbances (i.e., δ = 0), by using the control law [6]

uCL = G† (∂q(Mq̇)q̇ − ∂qL)

−G†MM−1
c (∂q(Mcq̇)q̇ − ∂qLc) ,

(4)

where G† =
(
G⊤G

)−1
G⊤. The control law (4) is im-

plementable provided that Mc(q) and Vc(q) verify for all
(q, q̇) ∈ R2n the partial differential equations (PDEs)

G⊥
(
−∂q

(
1

2
q̇⊤Mq̇

)
+MM−1

c ∂q

(
1

2
q̇⊤Mcq̇

))
+G⊥ (

∂q(Mq̇)q̇ −MM−1
c ∂q(Mcq̇)

)
= 0, (5)

G⊥ (
∂qV −MM−1

c ∂qVc

)
= 0, (6)

where G⊥(q) is defined so that G⊥G = 0 and rank
(
G⊥) =

n−m,∀q ∈ Rn. As demonstrated in [6], the CL control law
(4) is identical to the IDA-PBC control law [2]

uIDA = G† (∂qH −MdM
−1∂qHd + J2∂pHd

)
,

where p = Mq̇ are the momenta, H(q, p) = 1
2p

⊤M−1p+V
and Hd(q, p) =

1
2p

⊤M−1
d p+Vd are the open-loop Hamilto-

nian and the desired Hamiltonian respectively, provided that

Mc(q) = MM−1
d M, Vc(q) = Vd(q),

J2 = MdM
−1

(
∂q(MM−1

d p)⊤ − ∂q(MM−1
d p)

)
M−1Md.

The effect of physical damping can be accounted for in
(2) by introducing a dissipation function R(q̇) such that
q̇⊤∂q̇R > 0,∀q̇ ̸= 0, see [5]. Similarly, damping injection
can be achieved for the purpose of stabilizing the equilibrium
(q, q̇) = (q⋆, 0) by introducing in (3) the closed-loop dissi-
pation ∂q̇Rc = McM

−1
(
∂q̇R+GKvG

⊤M−1Mcq̇
)

such
that q̇⊤∂q̇Rc > 0,∀q̇ ̸= 0, where Kv = K⊤

v ≻ 0 is a
tuning parameter. This is achieved by including a so-called
damping-injection term ud in the control law (4), that is

u = uCL + ud, ud = −KvG
⊤M−1Mcq̇. (7)

Defining the storage function W = Vc + 1
2 q̇

⊤Mcq̇ and
computing its time-derivative along the trajectories of the
closed-loop system (3) yields then

Ẇ = −q̇⊤∂q̇Rc ≤ y⊤c ud ≤ 0, (8)

where yc = G⊤M−1Mcq̇ is a passive output of (3). Invoking
LaSalle’s theorem it follows that the equilibrium (q, q̇) =
(q⋆, 0) is asymptotically stable if q̇⊤∂q̇Rc > 0, ∀q̇ ̸= 0. In
the absence of physical damping (i.e., R = 0), asymptotic
stability is concluded for all Kv ≻ 0 provided that yc is
detectable, that is yc → 0 =⇒ (q, q̇) → (q⋆, 0), see [6],[5].

III. MAIN RESULT

A. System class definition

A new dynamic extension of the CL methodology (i.e.,
integral CL) is outlined here for a class of underactuated
mechanical systems defined by the following assumptions.

Assumption 1. The PDEs (5) and (6) are solvable an-
alytically with the parameters Mc and Vc, where q⋆ =
argmin (Vc), that is ∂qVc(q

⋆) = 0 and ∂2
qVc(q

⋆) ≻ 0.

Physical damping is defined by the dissipation function
R(q̇), with q̇⊤∂q̇R ≥ 0,∀q̇ ̸= 0. All model parameters are
exactly known, and all system states are measurable.

Assumption 2. The disturbance is defined as δ(q) =
δ1GG⊤h(q), where δ1 ∈ R is an unknown scalar constant,
while h(q) ∈ Rn is a known globally bounded and continu-
ously differentiable function of q.
While the solvability of PDEs remains a major challenge for
the CL methodology, Assumption 1 is verified by various
systems with non-constant G(q), see [19]. Thus the investi-
gation of this aspect is beyond the scope of this work. The
assumption on the disturbance is similar to [12] to facilitate
the comparison with iIDA-PBC, see Section IV. However,
the input matrix G(q) is not required to be constant hence
the new controller is applicable to a wider class of systems.

B. Controller design

Proposition 1. Consider the system (2) satisfying Assump-
tions 1 and 2 and define the desired closed-loop dynamics
d
dt
∂q̇Lc(q, q̇)− ∂qLc(q, q̇) + ∂q̇Rc(q, q̇) + ∂q̇Θ(q, q̇, ζ) = 0,

∂q̇Rc(q, q̇) = McM
−1

(
∂q̇R+GKvG

⊤M−1Mcq̇
)
,

Θ =
kI
2

(
ζ −Ψ− δ1

kI

)2

, Lc(q, q̇) =
1

2
q̇⊤Mcq̇ − Vc.

(9)

C1. The dynamics (9) is achieved with the control law
Ψ(q, q̇) = h(q)⊤GG⊤M−1Mcq̇,

u = uCL + ud +G⊤h(q)kI(ζ −Ψ),
(10)

where kI > 0 is a scalar tuning parameter, and the time-
derivative of ζ (i.e., the integral action) is given by

ζ̇ = − (∂q̇Ψ)
⊤
M−1

c (∂qVc + ∂q̇Rc)

− (∂q̇Ψ)
⊤
M−1

c

(
∂q (Mcq̇) q̇ − ∂q

(
1

2
q̇⊤Mcq̇

))
− (∂q̇Ψ)

⊤
q̇ + (∂qΨ)

⊤
q̇.

(11)

C2. If q̇⊤∂q̇Rc > 0,∀q̇ ̸= 0, the equilibrium point (q, q̇) =
(q⋆, 0) is locally asymptotically stable for all kI >
0,Kv ≻ 0.

C3. If in addition |h(q)| > ϵ > 0 globally, then ζ → δ1
kI

at
the equilibrium.

C4. If R = 0,∀q̇, the equilibrium is locally asymptotically
stable for all kI > 0,Kv ≻ 0, provided that the passive
output yc = G⊤M−1Mcq̇ is detectable.

Proof. To construct the control law (10), substitute (1) into
(2) while accounting for the dissipation function R(q̇), and
compute the acceleration q̈, which yields

q̈ = M−1
(
Gu− δ1GG⊤h(q)− ∂qV − ∂q̇R

)
−M−1∂q (Mq̇) q̇ +M−1∂q

(
1

2
q̇⊤Mq̇

)
.

(12)

Computing the acceleration q̈ from (9) yields instead

q̈ = M−1
c (−∂qVc − ∂q̇Rc − ∂q̇Θ)

−M−1
c ∂q (Mcq̇) q̇ +M−1

c ∂q

(
1

2
q̇⊤Mcq̇

)
.

(13)



Equating (12) and (13) while substituting Θ and Rc yields

M−1
(
Gu− δ1GG⊤h(q)− ∂qV − ∂q̇R

)
−M−1∂q (Mq̇) q̇ +M−1∂q

(
1

2
q̇⊤Mq̇

)
=

−M−1
c ∂qVc −M−1

(
∂q̇R+GKvG

⊤M−1Mcq̇
)

+M−1GG⊤h(q)kI

(
ζ −Ψ− δ1

kI

)
−M−1

c ∂q (Mcq̇) q̇ +M−1
c ∂q

(
1

2
q̇⊤Mcq̇

)
.

(14)

C1. Refactoring (14) cancels the parameter δ1 and the physi-
cal damping ∂q̇R. Premultiplying (14) with G⊥M yields the
sum of the PDEs (5) and (6), which are verified by design.
Premultiplying (14) with G†M to compute u yields (10).
To construct the dynamic extension (11), define

W (q, q̇, ζ) = Vc +
1

2
q̇⊤Mcq̇ +Θ > 0, (15)

and compute its time-derivative along the trajectories of
system (9), which yields

Ẇ = ∂q

(
1

2
q̇⊤Mcq̇

)⊤

q̇ + ∂q̇

(
1

2
q̇⊤Mcq̇

)⊤

q̈

+(∂qVc)
⊤
q̇ + (∂qΘ)

⊤
q̇ + (∂q̇Θ)

⊤
q̈ + (∂ζΘ)

⊤
ζ̇.

(16)

Substituting q̈ from (13), Θ from (9), and ζ̇ from (11) while
noting that ∂qΘ = −∂ζΘ∂qΨ and ∂q̇Θ = −∂ζΘ∂q̇Ψ yields

Ẇ = ∂q

(
1

2
q̇⊤Mcq̇

)⊤

q̇ + (∂qVc)
⊤
q̇ − (∂ζΘ∂qΨ)

⊤
q̇

+q̇⊤McM
−1
c (−∂qVc − ∂q̇Rc + ∂ζΘ∂q̇Ψ)

+q̇⊤Mc

(
M−1

c ∂q

(
1

2
q̇⊤Mcq̇

)
−M−1

c ∂q (Mcq̇) q̇

)
− (∂ζΘ∂q̇Ψ)

⊤
M−1

c (−∂qVc − ∂q̇Rc + ∂ζΘ∂q̇Ψ)

+ (∂ζΘ∂q̇Ψ)
⊤
M−1

c

(
∂q (Mcq̇) q̇ − ∂q

(
1

2
q̇⊤Mcq̇

))
+(∂ζΘ)

⊤
(∂q̇Ψ)

⊤
M−1

c (−∂qVc − ∂q̇Rc)

− (∂ζΘ)
⊤
(
(∂q̇Ψ)

⊤
q̇ − (∂qΨ)

⊤
q̇
)

− (∂ζΘ∂q̇Ψ)
⊤
M−1

c

(
∂q (Mcq̇) q̇ − ∂q

(
1

2
q̇⊤Mcq̇

))
.

Refactoring terms yields finally

Ẇ = −q̇⊤∂q̇Rc − (∂q̇Θ)⊤M−1
c (∂q̇Θ) ≤ 0. (17)

It follows from (17) that the equilibrium is stable and all
states are bounded for all Kv ≻ 0.
C2. If q̇⊤∂q̇Rc > 0,∀q̇ ̸= 0, invoking LaSalle’s theorem
(see Theorem 3.4 in [20]) proves that the trajectories of
the closed-loop system (9) converge asymptotically to the
set q̇ = 0 ∩ ∂q̇Θ = 0. Evaluating (13) within this set
yields ∂qVc = 0 thus it follows from Assumption 1 that the
equilibrium (q, q̇) = (q⋆, 0) is locally asymptotically stable.
Stability is global if (15) is radially unbounded, see [20].
C3. If in addition |h(q)| > ϵ > 0 globally, then q̇ = 0 ∩
∂q̇Θ = 0 =⇒ ζ = δ1

kI
.

C4. If R = 0,∀q̇ (i.e., absence of physical damping), the
trajectories of the closed-loop system (9) converge asymp-
totically to the set yc = G⊤M−1Mcq̇ = 0∩∂q̇Θ = 0. Com-
paring (8) and (17) it follows that Ẇ ≤ −q̇⊤∂q̇Rc ≤ y⊤c ud,
that is yc is also a passive output of (9). If yc is detectable,
then evaluating (13) within the set yc = 0 ∩ ∂q̇Θ = 0 yields
again ∂qVc = 0, hence the equilibrium (q, q̇) = (q⋆, 0) is
locally asymptotically stable □

Remark 1. If h(q) = κ, κ ̸= 0, κ ∈ Rn the condition
|h(q)| > ϵ > 0 is always verified hence ζ converges
asymptotically to δ1/kI at the equilibrium. If in addition G
and M are constant, then the PDE (5) is verified by any
constant Mc. In this case ∂qΨ = 0 hence the controller
design is considerably simplified, so that (10) and (11) yield

u = uCL + ud +G⊤κkI(ζ −Ψ),

Ψ(q̇) = κ⊤GG⊤M−1Mcq̇,
(18)

ζ̇ = − (∂q̇Ψ)
⊤
M−1

c (∂qVc + ∂q̇Rc)− (∂q̇Ψ)
⊤
q̇. (19)

Remark 2. A general expression of the dissipation function
R has been employed in Assumption 1 to include various
types of friction. In case of viscous friction defined by the
matrix D = D⊤ ⪰ 0 we have R(q̇) = 1

2 q̇
⊤Dq̇ ≥ 0. Thus

verifying the inequality q̇⊤∂q̇Rc > 0,∀q̇ ̸= 0 requires

Γ = McM
−1D +McM

−1GKvG
⊤M−1Mc ≻ 0,

where the product GKvG
⊤ is rank deficient. If D ≻ 0,

whether or not this condition is verified depends also on the
matrices M and Mc. Substituting Mc = MM−1

d M in the
above expression yields

MM−1
d D +MM−1

d GKvG
⊤M−1

d M ≻ 0,

which is equivalent to the corresponding condition for
IDA-PBC in the presence of physical damping, that is
DM−1Md +GKvG

⊤ ≻ 0, see [21].

IV. COMPARATIVE ANALYSIS

A. Interpretation of the dynamic extension as low-pass filter

Recall that a first-order low-pass filter with input x, output
z, time constant τ > 0, and bias ∆(t), is defined as

ż =
1

τ
(x− z) + ∆(t).

Defining η = (ζ−Ψ) and computing its time-derivative along
the trajectories of the closed-loop system (9) yields

η̇ = ζ̇ − (∂qΨ)⊤q̇ − (∂q̇Ψ)⊤q̈.

Substituting ζ̇ from (11) and q̈ from (13) in the above
expression and refactoring terms yields

η̇︸︷︷︸
ż

= (∂q̇Ψ)
⊤
M−1

c (∂q̇Ψ) kI︸ ︷︷ ︸
1
τ

(
δ1
kI

− η

)
︸ ︷︷ ︸

x−z

− (∂q̇Ψ)
⊤
q̇︸ ︷︷ ︸

∆

,

which is clearly similar to the first-order low-pass filter: the
output η follows the input δ1/kI , while the bias ∆ depends
on the position q and on the velocity q̇.



If |h(q)| > ϵ > 0 globally, then

1

τ
= (∂q̇Ψ)

⊤
M−1

c (∂q̇Ψ) kI > 0, ∀q.

This is the case if, for instance, h(q),M,Mc and G are all
constant, see Remark 1. Increasing kI scales down δ1 and
increases the corner frequency of the low-pass filter yielding
a faster response of the output η. The bias ∆ ensures that
the output η continues updating until the system reaches the
equilibrium. The interpretation of the dynamic extension as
first-order low-pass filter with input δ1/kI suggests that (11)
has some ability to accommodate a time-varying parameter
δ1(t). This aspect will be investigated in our future work.

B. Comparison with iIDA-PBC

The iIDA-PBC design for underactuated mechanical sys-
tems with constant input matrix and position-dependent
matched disturbances proposed in [12] yields

uiIDA = uIDA + uD + v, uD = −KvG
⊤M−1

d p

v = (KvG
⊤G+ γ1I)G

⊤h(q)kI
(
ζ − p⊤GG⊤h(q)

)
,

(20)

ζ̇ = −h(q)⊤G(γ1IG
⊤ −G⊤J2)M

−1
d p

−h(q)⊤GG⊤MdM
−1

(
∂qΩd +

1

2
∂q

(
p⊤M−1

d p
))

+
(
GG⊤∂qh(q)p

)⊤
M−1p.

(21)

Note that (20) and (21) have a very similar structure to (10)
and (11) respectively: i) in both cases, the dynamic extension
is modular with respect to the baseline uCL and uIDA; ii)
the original PDEs (5) and (6) are preserved, while the same
applies to uIDA, see [12]; iii) it follows from (17) that the
projected dynamics of the extended system (9) is the same
as that of the baseline CL design resulting in (8), that is

Ẇ = −q̇⊤∂q̇Rc − (∂q̇Θ)⊤M−1
c (∂q̇Θ) ≤ −q̇⊤∂q̇Rc ≤ 0,

and the same holds for uIDA. There are however three
notable differences between (10) and (20): i) the controller
(20) requires the input matrix G to be constant, see [12],
thus (21) contains ∂qh(q), while (11) is expressed in terms
of Ψ and its partial derivatives, which is more general; ii)
the dynamic extension in (10) contains the inertia matrix Mc

within Ψ, while v in (20) does not depend on Md resulting
in a different parameterization; iii) the iIDA-PBC controller
(20) contains the additional parameter γ1, which is not
present in (10) and affects the closed-loop dissipation (i.e.,
increasing γ1 yields slower response and reduced control
action – see [12]). Instead, increasing kI in both (10) and
(20) yields a faster response and a more aggressive control.

A key difference between the new controller (10) and the
iIDA-PBC (20) is the design procedure employed for the
dynamic extension (11). In particular, ζ is included in the
system dynamics (9) through the scalar function Θ. Drawing
a parallel to the dissipation function Rc, the function Θ can
also be interpreted in terms of dissipation due to the residual
z = ((ζ−Ψ)−δ1/kI). This is motivated by the fact that the
disturbance δ typically represents non-conservative forces.

The time-derivative of ζ in (11) is then defined from (16)
to ensure that Ẇ ≤ 0, resulting in (17). Instead, with the
iIDA-PBC design procedure, (21) results from enforcing a
PCH structure of the closed-loop dynamics.

C. Comparison with nonlinear observer

The proposed dynamic extension (11) bears a close sim-
ilarity with a nonlinear observer designed according to
the Immersion and Invariance (I&I) methodology [22]. To
demonstrate this point, define the I&I estimation error for
the unknown scalar constant δ1 as z = ζ

′ −Ψ
′ − δ1, where

Ψ
′
(q, q̇) = kIh(q)

⊤GG⊤q̇,

ζ̇
′
= −

(
∂q̇Ψ

′
)⊤

M−1 (∂qV + ∂q̇R−Gu)

−
(
∂q̇Ψ

′
)⊤

M−1
(
(ζ

′
−Ψ

′
)GG⊤h(q)

)
+
(
∂qΨ

′
)⊤

q̇

−
(
∂q̇Ψ

′
)⊤

M−1

(
∂q (Mq̇) q̇ − ∂q

(
1

2
q̇⊤Mq̇

))
.

(22)

Computing the time-derivative ż along the trajectories of
(2) while accounting for the dissipation function R(q̇) and
substituting ζ̇

′
from (22) yields

ż = − 1

kI

(
∂q̇Ψ

′
)⊤

M−1
(
∂q̇Ψ

′
)
z.

Thus, employing the I&I methodology, z converges to zero
for all kI > 0 provided that |h(q)| > ϵ > 0.
Taking inspiration from (10), define an adaptive control law
by augmenting (7) with the observer (22), that is

uI&I = uCL + ud +G⊤h(q)(ζ
′
−Ψ

′
). (23)

Define the storage function W
′
(q, q̇, ζ

′
) = Vc +

1
2 q̇

⊤Mcq̇ +
1
2z

2. Computing its the time-derivative along the trajectories
of (2) in closed loop with (23) while substituting (22) yields

Ẇ
′
= −q̇⊤∂q̇Rc −

1

kI

(
∂q̇Ψ

′
)⊤

M−1
(
∂q̇Ψ

′
)
z2

+
1

kI
q̇⊤M−1

(
∂q̇Ψ

′
)
z.

(24)

Substituting ∂q̇Rc from (9) into (24), assuming ∂q̇R = Dq̇
with D ≥ 0 as in Remark 2, and refactoring terms yields

Ẇ
′
= −x⊤

[
Γ − 1

2kI
M−1

− 1
2kI

M−1 1
kI
M−1

]
x,

x⊤ =

[
q̇⊤ z

(
∂q̇Ψ

′
)⊤

]
Γ = McM

−1D +McM
−1GKvG

⊤M−1Mc.

(25)

Employing a Schur complement argument yields Ẇ
′ ≤ 0

provided that ΓkI − 1
4M

−1 ≻ 0. If D = 0 the former
inequality may not be verified by any Kv ≻ 0 since Γ be-
comes rank-deficient. In summary, employing the nonlinear
observer yields a dynamic extension ζ̇

′
that is similar but

not identical to (11), and which does not preserve passivity.
This occurs since ζ̇

′
is lacking the term (∂q̇Ψ)

⊤
q̇, which

correspond to the bias ∆ in the low-pass filter interpretation.



V. SIMULATION RESULTS

The inertia-wheel pendulum (IWP) consists of an unactu-
ated planar inverted pendulum with an actuated wheel at the
tip, see Fig. 1. The system has two degrees-of-freedom: the
angular position of the pendulum q1, and the angular position
of the wheel q2. The system dynamics is given by (2) where

V = a3 (cos (q1) + 1) ,

G =

[
0
1

]
, M =

[
a1 + a2 a2

a2 a2

]
,

and a1, a2, a3 are constant parameters that depend on the size
of the pendulum and of the wheel [2]. The control goal con-
sists in reaching the prescribed position (q1, q2) = (0, q⋆2).
The CL controller (7) is computed with the parameters

Vc = −a3γ1 cos (q1) +
1

2
kp (q2 + γ1ϵ(a1 + a2)q1)

2
,

γ1 =
1

a2(m2 −m1)
, Mc = MM−1

d M,

Md = a1a2

[
m1

m1a2

a1+a2
+ ϵ

m1a2

a1+a2
+ ϵ m3

]
.

The tuning parameters are kp,Kv,m1,m3, ϵ. Although
M,Mc and G are constant matrices, various disturbances
have been considered, including the case G⊤h(q) = q2 and
G⊤h(q) = q22 , to illustrate the applicability and effectiveness
of the new controller (10). This results in a non-constant
Ψ(q2) even though G,M and Mc are constant.

Fig. 1. Schematic of inertia-wheel pendulum system.

Simulations have been performed in MATLAB using an
ODE23 solver with the model parameters a1 = 0.0124, a2 =
0.0025, a3 = 0.4446 for illustrative purposes. The tuning
parameters for the controllers (7), (10), (18), (20), and (23)
have been set as kp = 1,Kv = 0.0005,m1 = 0.4,m3 =
5, ϵ = 1.08 and kI = 0.1. The initial conditions are
(q1, q2, q̇1, q̇2, ζ) = (0.1, 0.2, 0, 0, 0), and the prescribed
position is q⋆2 = 0.2.

Fig. 2 shows the system response with the constant
matched disturbance δ1 = 0.03 and G⊤h(q) = 1 resulting in
δ = 0.03G. Employing the controller (10) with the dynamic
extension (11), the position reaches the prescribed equilib-
rium (q⋆1 , q

⋆
2) = (0, 0.2). The iIDA-PBC controller (20) with

the same parameters and γ1 = 0.1 yields a slower response
in this case. This results from the different parameterization
employed in (20), see Section IV.B. Responsiveness can
be improved by increasing kI . Finally, the baseline CL
controller (7) yields a large error on the wheel position.

0 1 2 3 4 5

time [s]

-0.1

-0.05

0

0.05

0.1

P
e
n
d
u
lu

m
 p

o
s
it
io

n
  

q
1
 [
ra

d
]

Baseline CL

iIDA-PBC

New controller

(a)

0 5 10 15 20 25

time [s]

0

1

2

3

4

W
h
e
e
l 
p
o
s
it
io

n
  

q
2
 [
ra

d
]

Baseline CL

iIDA-PBC

New controller

(b)

0 1 2 3 4 5

time [s]

-0.1

-0.05

0

0.05

C
o
n
tr

o
l 
in

p
u
t

Baseline CL

iIDA-PBC

New controller

(c)

0 1 2 3 4 5

time [s]

-100

-50

0

50

100

D
y
n
a
m

ic
 e

x
te

n
s
io

n
 iIDA-PBC

New controller

(d)

Fig. 2. Simulation results for IWP with constant matched disturbance
δ1 = 0.03 and G⊤h(q) = 1: (a) pendulum position; (b) wheel position;
(c) control input; (d) dynamic extension ζ.
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Fig. 3. Simulation results for IWP with position-dependent matched
disturbance δ1 = −0.1 and G⊤h(q) = q2: (a) pendulum position; (b)
wheel position; (c) control input; (d) dynamic extension ζ.

Fig. 3 shows the system response with the position-
dependent matched disturbance δ1 = −0.1 and G⊤h(q) = q2
resulting in δ = −0.1Gq2. Employing the controller (10)
with the dynamic extension (11), the position reaches the pre-
scribed equilibrium (q⋆1 , q

⋆
2) = (0, 0.2). The controller with

I&I observer (23) yields a similar response. The baseline CL
controller (7) with the same parameters results in a noticeable
error on the wheel position and in a larger control effort.

Fig. 4 shows the system response with δ1 = −10 and
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Fig. 4. Simulation results for IWP with position-dependent matched
disturbance δ1 = −10 and G⊤h(q) = q22 : (a) pendulum position; (b) wheel
position; (c) control input; (d) dynamic extension ζ. “Simplified design”
refers to the controller (18) which assumes G⊤h(q) = 1 and ∂qΨ = 0.

G⊤h(q) = q22 . Note that the dynamic extension ζ computed
with (11) converges to the correct value, that is ζ = δ1/kI =
−100, at the equilibrium. Employing the simplified controller
(18) that treats the disturbance as constant for simplicity (i.e.,
assuming G⊤h(q) = 1 hence ∂qΨ = 0) and using the same
parameters as in (10), the system still reaches the prescribed
equilibrium. This is expected since, as the system approaches
equilibrium, the disturbance converges to a constant value.
However, the convergence is slower and the control effort is
considerably higher (i.e., see “Simplified design” in Fig. 4).
In this case, the controller with I&I observer (23) and the
same parameters yields degraded transient performance and
higher control effort, which can be improved by increasing
kI , see Section IV.C. Finally, the baseline CL controller (7)
fails to stabilize the prescribed equilibrium.

VI. CONCLUSION

In this work we have presented a new passivity-preserving
dynamic extension of the CL methodology for underactuated
mechanical systems that compensates the effect of position-
dependent matched disturbances. An interpretation of the
dynamic extension as a first-order low-pass filter has been
proposed. Although the new controller bears similarities
with the iIDA-PBC methodology and with a I&I nonlinear
observer, it is not identical to these, and it is derived using a
different design procedure. This can result in different perfor-
mance if the same parameters are used. Simulation results
on a inertia-wheel pendulum demonstrate the effectiveness
of the new controller and indicate that explicitly accounting
for position-dependent disturbances can benefit performance.
Future work will aim to extend this result to a broader class
of disturbances, including time-varying parameters.
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