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Deep Adaptive Indirect Herding of Multiple Target
Agents with Unknown Interaction Dynamics

Cristian F. Nino, Omkar Sudhir Patil, Jhyv N. Philor, Zachary I. Bell, and Warren E. Dixon

Abstract—The herding problem has received growing interest
in the robotics and controls community in recent years. In par-
ticular, indirect herding is an abstraction for many potential ap-
plications in fields such as wildlife management, crowd control,
traffic management, and environment cleanups. Existing works
in indirect herding, however, have not taken advantage of recent
advances in the field of adaptive control, which have allowed for
the development of adaptive controllers using Lyapunov-based
deep neural networks (Lb-DNNs). These results, however, are
only applicable for systems that are directly controlled, and not
for indirect control problems such as the herding problem. This
paper develops a novel approach to address the indirect herding
problem using an Lb-DNN adaptive backstepping design. The
Lb-DNN adaptive backstepping controller enables the herding
agent to learn the interaction dynamics and adaptively herd
the target agents in real-time, using actual interactions during
task-execution. A Lyapunov-based switched systems analysis is
used to develop sufficient dwell-time conditions which guarantee
exponential convergence of all states to an ultimate bound.
Simulations are provided to demonstrate the performance of
the developed Lb-DNN adaptive backstepping controller.

I. INTRODUCTION

Animal behaviors have long served as a source of inspira-
tion for technology development. Sheep herding is one such
behavior that has garnered attention, wherein a single dog can
use its innate herding instincts to coalesce a herd of sheep
towards a desired destination. In a broader sense, herding
can be defined as the act of having one or more agents drive
target agents towards one or more designated locations.

The ability for one (or a small number) of agents to
influence the motion of groups of uncontrolled agents in a
coordinated manner has implications in a variety of fields.
One such application is in high risk manned helicopter oper-
ations, particularly those of wildlife management, where the
non-cooperative nature of indirect herding can be leveraged
to control the movement of wild animals. Developing stable
control algorithms for autonomous agents could potentially
replace the need for human pilots and reduce fatal accidents
[1]. Crowd control is another area where herding behaviors
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can be applied to great effect. In emergency situations,
being able to control the flow of pedestrians is of critical
importance. Indirect herding algorithms can be used to direct
large groups of people towards safety, preventing overcrowd-
ing and potentially hazardous situations. Indirect herding
is also applicable for decentralized traffic management of
mixed autonomous and human-driven vehicles [2]. Herding
behaviors can also be applied in environmental cleanups, such
as the collection of oil spills from oil tankers. By building
robots that can work cooperatively to collect spilled oil, we
can minimize the environmental impact of such incidents [3].

Although existing results provide frameworks for the
robot herding problem, continued development is required
for more complex herd interactions. For example, results
such as [4]–[6] require multiple herder agents, yet a single
sheepdog can effectively herd flocks of 80 or more sheep
[7]. Moreover, previous works on the herding problem have
largely assumed linear, homogeneous, and known interaction
dynamics between the herder and target agents [4], [8];
hence, further development is motivated to examine more
complex interactions that include nonlinearities, uncertainty,
and heterogeneity. Results such as [4], [9], [10] assume
the target agents are cohesive and aligned (i.e., flocking
behavior). It is not clear how such results could be applied
in applications where agents have a fleeing or dispersive
behavior.

The result in [11] was the first to consider single agent
indirect herding of multiple targets with unknown dynam-
ics. In [11], the herding problem was addressed using a
backstepping-based control design, where a single-layer neu-
ral network (NN) is used to approximate the unknown herder-
target interaction dynamics. However, the NN in [11] only
compensates for the uncertainty in the backstepping error
dynamics and not the herding error dynamics, i.e., the NN is
not used to plan the herder’s desired trajectory which acts as
the virtual control in the backstepping design. As a result, the
herder does not learn how to herd the target agents, which is
one of the contributions of the development in this paper.

Recent advances in the field of adaptive control enable
the development of adaptive controllers using deep neural
networks (DNNs) [12]. While single hidden-layer neural
networks are capable of approximating nonlinear functions,
DNNs have shown superior performance [13]–[15]. In par-
ticular, [12] provides a constructive method to derive con-
trol and adaptive update laws for inner and outer layer
weights of a Lyapunov-based DNN (Lb-DNN). However,
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the result in [12] is only applicable for systems that are
directly controlled, unlike indirect control problems such
as the herding problem. Specifically, developing Lb-DNN
adaptive backstepping controllers is an open problem. De-
veloping adaptive backstepping controllers using Lb-DNNs
is challenging because the time-derivative of the Lb-DNN
appears in the backstepping error dynamics, which is difficult
to address in the ensuing Lyapunov-based stability analysis.

In this paper, we develop a more general control strat-
egy for the herding problem that includes a new Lb-DNN
adaptive backstepping design. The design involves two sep-
arate Lb-DNNs: one Lb-DNN is used to adaptively plan
the herder’s desired trajectory as a virtual control, and the
other Lb-DNN is used to compensate for the uncertainty in
the resulting backstepping error dynamics. We develop new
adaptation laws that address the challenges resulting from
the time-derivative of the Lb-DNN term in the Lyapunov-
based stability analysis. A Lyapunov-based switched systems
analysis is used to guarantee that all targets are exponentially
regulated to a neighborhood of the goal location. A simula-
tion is presented which shows a herder agent successfully
herd 10 target agents to goal locations known only by the
herder, in 10.7 seconds.

II. PROBLEM FORMULATION

Consider a network with one herding agent and a set
of N ∈ Z>0 target agents, denoted by the set T ≜
{1, 2, . . . , N}. The herding agent’s goal is to regulate the
positions of the target agents to their respective goal loca-
tions. Since there is only one herding agent, we formulate the
problem such that the herding agent only chases one target
at a time.

The herding agent, whose state is denoted by y ∈ Rn, must
regulate the target agents’ states xi ∈ Rn, ∀i ∈ T , to their
respective goal locations that are only known by the herding
agent. The herding agent’s dynamics are modeled as a single
integrator, given by

ẏ = u, (1)

where u ∈ Rn represents a control input.1 The target
agents are subject to an unknown interaction force that is
a function of the distance between the target and the herder.
The dynamics for target agent i ∈ T is given by

ẋi = gi(xi, y)(xi − y) + hi(xi), (2)

where gi : Rn → R is an unknown locally Lipschitz function
that defines the interaction dynamics between the ith target
agent and the herding agent. The interaction dynamics are
assumed to be bounded by gi ≤ gi(xi, y) ≤ gi, where
gi, gi ∈ R>0 are known constants. Additionally, hi : Rn →
Rn is an unknown locally Lipschitz function that defines the
ith target agent dynamics and is bounded by ∥hi(xi)∥ ≤ hi,
where hi ∈ R>0 is a known constant. The control objective
is to enable the herder to regulate all target agents to their

1Uncertain nonlinear herder dynamics could also be considered using
known adaptive control methods for matched uncertainty; however, due to
space limitations and the desire to focus the paper on the novel contributions,
the dynamics in (1) are considered.

goal locations, given by xi,g ∈ Rn, despite the target agents’
uncertain dynamics and non-cooperative behavior given in
(2). The target regulation error is defined as

ei ≜ xi − xi,g, (3)

where ei ∈ Rn.
To herd multiple target agents, a switching strategy must

be developed, so that the herding agent chases each target
agent, one by one, to its desired goal location. To ensure the
closed-loop stability of the switched system, a dwell-time
condition must be developed for the switching strategy. We
define the set of the currently pursued target agent as P ≜ {i}
and the set of unpursued target agents as U ≜ T \P , where
i is an element of T . We use the subscript p when i ∈ P
the subscript u when i ∈ U . For notational ease, we omit the
index i in the subsequent development. At any given time,
a target will either be operating in a pursued or unpursued
mode. We use tpk ∈ R≥0 and tuk ∈ R≥0 to denote the kth

instance when target agent i ∈ T is switched to the pursued
or unpursued mode, respectively, where k ∈ N.

III. CONTROL DEVELOPMENT

Since the target agent dynamics in (2) do not explicitly
contain a control input, a backstepping-based control strategy
is developed to herd the pursued target agent, where the
herder’s state y is used as a virtual control input. To facilitate
the backstepping strategy, we introduce the backstepping
error ηp ∈ Rn defined as

ηp ≜ yd − y, (4)

where yd ∈ Rn denotes the herder’s desired trajectory. The
target agent dynamics in (2) and the backstepping error in (4)
are used to express the time-derivative of the target regulation
error in (3) as

ėp = gp(x, y)(x+ ηp − yd) + hp(x). (5)

Since the interaction dynamics may involve unstructured
nonlinear behaviors, we employ Lb-DNNs to adaptively
approximate the interaction dynamics in our control strategy.
To facilitate the adaptive backstepping strategy, we use two
Lb-DNNs in the following section, where one Lb-DNN is
used to adaptively plan yd and the other Lb-DNN is used to
adaptively regulate the backstepping error ηp.

A. Deep Neural Network Function Approximation

Let Φp : R2n×
∑kp

j=0 Lp
jL

p
j+1 → RLp

kp+1 and
Φη : Rn×

∑kη
j=0 Lη

jL
η
j+1 → RLη

kη+1 denote the fully
connected Lb-DNNs of agent i ∈ P , defined as
Φp(κ,Θp) ≜

(
V p⊤
kp

ϕp
kp

◦ · · · ◦ V p⊤
1 ϕp

1

)
(V p⊤

0 κ) and

Φη(x,Θη) ≜
(
V η⊤
kη

ϕη
kη

◦ · · · ◦ V η⊤
1 ϕη

1

)
(V η⊤

0 x),

respectively, where κ ≜
[
x⊤, y⊤

]⊤
, Θp ≜[

vec (V p
0 )

⊤ . . . vec
(
V p
kp

)
⊤

]⊤
∈ R

∑kp
j=0 Lp

jL
p
j+1 ,

and Θη ≜
[

vec (V η
0 )

⊤ . . . vec
(
V η
kη

)
⊤

]⊤
∈
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R
∑kη

j=0 Lη
jL

η
j+1 .2 Additionally, Φp has kp ∈ Z≥0 hidden

layers and weight matrices V p
j ∈ RLp

j×Lp
j+1 for all

j ∈ {0, . . . , kp} with Lp
0 ≜ 2n and Lp

kp+1 ≜ n. Similarly,
Φη has kη ∈ Z≥0 hidden layers and weight matrices
V η
j ∈ RLη

j×Lη
j+1 for all j ∈ {0, . . . , kη}, with Lη

0 ≜ n and
Lη
kη+1 ≜ n, where Lp

j , L
η
j ∈ Z>0 denote the number of

neurons in the jth layer of each Lb-DNN, respectively. The
smooth activation functions used in Φp and Φη are denoted
by ϕp

j : RLp
j → RLp

j and ϕη
j : RLη

j → RLη
j , respectively.

We define C(Ω) as the space of continuous functions over
the set Ω. The universal function approximation theorem
given in [15, Theorem 3.2] states that the function space
of DNNs is dense in C(Ω). According to the subsequent
analysis, κ is guaranteed to remain in a compact set if
initialized within some subsequently defined subset of Ω.
Hence, for any hp in C(Ω) and a prescribed ϵη ∈ R>0,
there exist constants Lη

j ∈ Z>0 and an ideal weight

vector Θ∗
η =

[
vec

(
V η∗

0

)
⊤ . . . vec

(
V η∗

kη

)
⊤

]⊤
∈

R
∑kη

j=0 Lη
jL

η
j+1 such that sup

x∈Ω
∥hp(x)

gp
− Φη(x,Θ

∗
p)∥ ≤ ϵη .

Hence,

Φη(x,Θ
∗
η) + ϵη(x) =

hp(x)

gp
, (6)

where ϵη : Rn → RLη
kη+1 denotes the unknown bounded

function approximation error, and gp denotes the known
lower bound of gp(x, y) for target agent i ∈ P . Similarly,
for any gp and hp in C(Ω) and a prescribed ϵp ∈ R>0,
there exist constants Lp

j ∈ Z>0 and an ideal weight

vector Θ∗
p =

[
vec

(
V p∗

0

)
⊤ . . . vec

(
V p∗

kp

)
⊤

]⊤
∈

R
∑kp

j=0 Lp
jL

p
j+1 such that sup

κ∈Ω
∥gp(x, y)(x − y) + hp(x) −

Φp(κ,Θ
∗
p)∥ ≤ ϵp. Thus, the unknown interaction and target

agent dynamics in (2) can be approximated by an Lb-DNN
as

Φp(κ,Θ
∗
p) + ϵp(κ) = gp(x, y)(x− y) + hp(x), (7)

where ϵp : Rn → RLkp+1 denotes the unknown bounded
function approximation error. The function approximation
errors are bounded such that sup

κ∈Ω
∥ϵp(κ)∥ ≤ ϵp and

sup
x∈Ω

∥ϵη(x)∥ ≤ ϵη .

Motivated by the subsequent analysis, the weight estima-
tion errors Θ̃p ∈ R

∑kp
j=0 Lp

jL
p
j+1 and Θ̃η ∈ R

∑kη
j=0 Lη

jL
η
j+1 are

defined as
Θ̃p ≜ Θ∗

p − Θ̂p, (8)

and
Θ̃η ≜ Θ∗

η − Θ̂η, (9)

respectively, where Θ̂p ∈ R
∑kp

j=0 Lp
jL

p
j+1 and Θ̂η ∈

R
∑kη

j=0 Lη
jL

η
j+1 are estimates of the Lb-DNN weights. For

notational brevity, we introduce the shorthand notations

2vec(·) denotes the vectorization operator, i.e. given A ≜ [ai,j ] ∈ Rn×m,
vec(A) ≜ [a1,1, . . . , a1,m, . . . , an,1, . . . , an,m]⊤.

Φ∗
p ≜ Φp(κ,Θ

∗
p), Φ

∗
η ≜ Φη(x,Θ

∗
η), Φ̂p ≜ Φp

(
κ, Θ̂p

)
, and

Φ̂η ≜ Φη

(
x, Θ̂η

)
.

To facilitate the subsequent development, we make the
following assumption [16, Assumption 1]:

Assumption 1. There exist known constants Θη ∈ R>0 and
Θp ∈ R>0 such that the unknown ideal Lb-DNN weights in
(6) and (7) can be bounded as ∥Θ∗

η∥ ≤ Θη and ∥Θ∗
p∥ ≤ Θp,

respectively.

B. Control and Adaptation Laws

The herder’s desired trajectory is motivated by the desire
to minimize the mismatch between a target agent and its goal
location. Based on the subsequent stability analysis and the
uncertainty in the pursued agent’s dynamics, an Lb-DNN is
included in the herder’s desired trajectory as

yd ≜ Kpep + xp,g + Φ̂η, (10)

where Kp ∈ R>0 is a user-defined gain. Let g̃ = gp(x, y)−g
and note that 0 ≤ g̃ ≤ g − g. By using (3), (6), (10) and the
fact that gp = g + g̃, we can rewrite (5) as

ėp(t) = gp(x, y)(1−Kp)ep + gp(x, y)ηp

+ g
(
Φη + ϵη(x)− Φ̂η

)
− g̃Φ̂η. (11)

Based on the development in (6), an error model for the Lb-
DNN in (6) can be derived using the first-order Taylor series
approximation is given by

Φ∗
η = Φ̂η + Φ̂′

ηΘ̃η +O
(
∥Θ̃η∥2

)
, (12)

where O
(
∥Θ̃η∥2

)
denotes the higher-order terms, and Φ̂′

η ≜

∂

∂Θ̂η
Φη(x, Θ̂η) ∈ RLη

kη+1×
∑kη

j=0 Lη
jL

η
j+1 . We also define Ξη ≜

∂
∂xΦη

(
x, Θ̂η

)
∈ Rn×n.

After substituting (12) into (11), we obtain the closed-loop
target regulation error dynamics as

ėp(t) = gp(x, y)(1−Kp)ep + gp(x, y)ηp − g̃Φ̂η

+ gΦ̂′
ηΘ̃η + g

(
O
(
∥Θ̃η∥2

)
+ ϵη(x)

)
. (13)

The backstepping error dynamics are determined by taking
the time-derivative of (4), and using (1), (2), and (7), which
yields

η̇p = Kpėp +
˙̂
Φη − u(t), (14)

where ˙̂
Φη can be obtained using the chain rule and the

definitions of Ξη and Φ̂′
η as

˙̂
Φη = Ξηẋ+ Φ̂′

η
˙̂
Θη. (15)

Substituting (15) into (14), and using (2) and (3) yields

η̇p = (KpIn + Ξη) (gp(x, y)(x− y) + hp(x))

+ Φ̂′
η
˙̂
Θη − u(t). (16)
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Similar to the development for (12), the error model for
the Lb-DNN in (7) can be derived using the first-order Taylor
series approximation is given by

Φ∗
p = Φ̂p + Φ̂′

pΘ̃p +O
(
∥Θ̃p∥2

)
, (17)

where O
(
∥Θ̃p∥2

)
denotes the higher-order terms, and Φ̂′

p ≜

∂

∂Θ̂p
Φp(κ, Θ̂p) ∈ RLp

kp+1×
∑kp

j=0 Lp
jL

p
j+1 .

Based on the subsequent stability analysis, the adaptation
laws for the weight estimates of the pursued agent Lb-DNNs
are designed as

˙̂
Θp ≜ Γpproj

(
Φ̂′⊤

p (KpIn + Ξη)
⊤
ηp − σpΘ̂p

)
, (18)

and
˙̂
Θη ≜ Γηproj

(
gΦ̂′⊤

η ep − σηΘ̂η

)
, (19)

where Γp, σp,Γη, ση ∈ R>0 are user defined gains, and In is
an n×n identity matrix3. In (18) and (19), proj(·) denotes the
projection operator defined in [18, Eq.4]. Also motivated by
the subsequent stability analysis, the herding agent controller
is designed as

u(t) ≜ Kηηp + (KpIn + Ξη) Φ̂p + Φ̂′
η
˙̂
Θη, (20)

where Kη ∈ R>0 is a user-defined gain. Substituting (7),
(17), (19), and (20) into (16), yields the backstepping closed-
loop error dynamics

η̇p = (KpIn + Ξη)
(
Φ̂′

pΘ̃p +O
(
∥Θ̃p∥2

)
+ ϵp(κ)

)
−Kηηp.

(21)

Remark 1. Due to the use of the projection operator, the Lb-
DNN weight estimates are bounded. Furthermore, because
the input is contained within a compact set, there exists values
of Φp ∈ R>0 and Φη ∈ R>0 such that ∥Φ̂p∥ ≤ Φp and
∥Φ̂η∥ ≤ Φη . Therefore, we can bound g̃Φ̂η as ∥g̃Φ̂η∥ ≤(
g − g

)
Φp.

Remark 2. The projection operator in (18) and (19) ensures
that Θ̂p(t) ∈ Bp ≜

{
ς ∈ R

∑kp
j=0 Lp

jL
p
j+1 : ∥ς∥ ≤ Θp

}
and

Θ̂η(t) ∈ Bη ≜
{
ς ∈ R

∑kη
j=0 Lη

jL
η
j+1 : ∥ς∥ ≤ Θη

}
, ∀t ∈ R≥0.

Remark 3. Suppose that x, y ∈ Ω. Due to the use of the
projection operator and Assumption 1, the unknown Lb-DNN
weights can be bounded as ∥Θ̃p∥ ≤ ∥Θ∗

p∥+∥Θ̂p∥ = 2Θp and
∥Θ̃η∥ ≤ ∥Θ∗

η∥+∥Θ̂η∥ = 2Θη , respectively. Therefore, due to
the smoothness of the Lb-DNN and the boundedness of Θ̃p

and Θ̃η , there exist known constants ∆p ∈ R>0 and ∆η ∈
R>0 such that

∥∥∥O (
∥Θ̃p∥2

)∥∥∥ ≤ ∆p and
∥∥∥O (

∥Θ̃η∥2
)∥∥∥ ≤

∆η .

IV. STABILITY ANALYSIS

This stability analysis considers the behavior of the ith

target when it is in the pursued and unpursued modes,
and then a combined switched systems analysis is provided
to quantify the behavior of the overall state trajectories.

3Ξη , Φ̂′
p, and Φ̂′

η may be computed via [17, Eq.(11-13)]

Theorem 1 proves that during periods when a target operates
in the pursued mode, the system states associated with the
pursued target agent exponentially converge to an ultimate
bound. When the target agent is operating in the unpursued
mode, Theorem 2 shows that the unpursued agent’s states
remain bounded for all bounded t. Considering these results,
the overall trajectories are analyzed in Theorem 3, and a
sufficient maximum dwell-time condition is provided which,
when satisfied, ensures all agent states remain bounded for
all time.

A. Target operating in the pursued mode

Consider an arbitrary target agent i ∈ P . To facilitate
the following analysis, we introduce the auxiliary constants
δ1, δ2, ε ∈ R>0 defined as δ1 ≜

(
g − g

)
Φp + g (∆η + ϵη) ,

δ2 ≜ (∆p + ϵp) ∥KpIn+Ξη∥F and εp ≜ 2σpΘ
2

p+2σηΘ
2

η +

δ21+δ22
2 . Let ξ ≜

[
e⊤p η⊤p Θ̃⊤

p Θ̃⊤
η

]⊤
∈ RΨ denote

a concatenated state, where Ψ ≜ 2n +
∑kp

j=0 L
p
jL

p
j+1 +∑kη

j=0 L
η
jL

η
j+1 and consider the continuously differentiable

Lyapunov function candidate Vp : RΨ → R≥0 defined as

Vp(ξ) ≜
1

2
e⊤p ep +

1

2
η⊤p ηp +

1

2
Θ̃⊤

p Γ
−1
p Θ̃p

+
1

2
Θ̃⊤

η Γ
−1
η Θ̃η. (22)

The candidate Lyapunov function in (22) satisfies

α1∥ξ∥2 ≤ Vp(ξ) ≤ α2∥ξ∥2, (23)

where α1 ≜ 1
2 min

{
1,Γ−1

p ,Γ−1
η

}
and α2 ≜

1
2 max

{
1,Γ−1

p ,Γ−1
η

}
. Similarly, we define β, γp ∈ R>0 as

β ≜ min {Kp,Kη, σp, ση}, and γp ≜ β
α2

. Let

BΛ ≜

{
ς ∈ RΨ : ∥ς∥ < ω

√
α1

α2

}
, (24)

BΥ ≜
{
ς ∈ Ω : ∥ς∥ < (2 +Kp)ω + 2∥xp,g∥+Φp

}
, (25)

denote open and connected sets, where ω ∈ R≥0 is a
prescribed bound on ∥ξ∥.

Theorem 1. Consider the dynamical systems described in
(1) and (2). For any initial conditions of the states ξ(t0) in
BΛ, the controller in (20) and the adaptation laws in (18)
and (19) guarantee that

∥ξ(t)∥ ≤

√(
α2

α1
∥ξ(t0)∥2 −

εp
γpα1

)
e−γp(t−t0) +

εp
γpα1

,

(26)
∀t ∈ [tpk, t

u
k), provided that Assumption 1 is satisfied, and the

control gains Kp and Kη are selected such that Kp > 3g+1
2g

and Kη > g+1
2 .

Proof: By using (13), (20), (21), and Remark 1, we can
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upper bound the time-derivative of Vp as

V̇p(ξ) ≤ (1−Kp)g∥ep∥2 + g∥ep∥∥ηp∥ −Kη∥ηp∥2

+
((
g − g

)
Φp + g (∆η + ϵη)

)
∥ep∥

+ (∆p + ϵp) ∥KpIn + Ξη∥F ∥ηp∥

+ η⊤p (KpIn + Ξη) Φ̂
′
pΘ̃p − Θ̃⊤

p Γ
−1
p

˙̂
Θp

+ ge⊤p Φ̂ηΘ̃η − Θ̃⊤
η Γ

−1
η

˙̂
Θη. (27)

Applying Young’s inequality to (27) and using the definition
of δ1 and δ2, we have

V̇p(ξ) ≤
(
3g + 1

2
− gKp

)
∥ep∥2 +

(
g

2
−Kη +

1

2

)
∥ηp∥2

+ η⊤p (KpIn + Ξη) Φ̂
′
pΘ̃p − Θ̃⊤

p Γ
−1
p

˙̂
Θp

+ ge⊤p Φ̂ηΘ̃η − Θ̃⊤
η Γ

−1
η

˙̂
Θη +

δ21 + δ22
2

. (28)

Substituting (18) and (19) into (28), applying the gain con-
ditions to Kp and Kη , and using (8) and (9), yields the
inequality

V̇p(ξ) ≤ −Kp∥ep∥2 −Kη∥ηp∥2 + σpΘ̃
⊤
p Θ̂p

+ σηΘ̃
⊤
η Θ̂η +

δ21 + δ22
2

. (29)

Substituting the upper bounds given by Assumption 1 and
Remark 1, using the definitions of γp, ϵ, and β and applying
the upper bound of (23) to the resulting inequality, we can
upper bound (29) as

V̇p(ξ) ≤ −β∥ξ∥2 + 2σpΘ
2

p + 2σηΘ
2

η +
δ21 + δ22

2
,

= −γpVp(ξ) + εp. (30)

Solving the differential inequality in (30) and using (22),
yields (26).

Consider the case where ξ(0) ∈ BΛ. By (24), we obtain
∥ξ(0)∥ ≤ ω

√
α1

α2
. This implies that

√
α2

α1
∥ξ(0)∥ ≤ ω.

Using equation (23) and the non-increasing property of Vp,

∥ξ(t)∥ ≤
√

Vp(ξ(t))
α1

≤
√

Vp(ξ(0))
α1

≤
√

α2∥ξ(0)∥2

α1
. Therefore,

∥ξ(t)∥ ≤ ω which implies ∥ep(t)∥ ≤ ω and ∥ηp(t)∥ ≤ ω.
Using (3), (4), (10), applying the triangle inequality to the
resulting terms, and using Remark 1 yields

∥κ(t)∥ ≤ ∥ep + xp,g∥+ ∥ηp +Kpep + xp,g + Φ̂η∥,
≤ (2 +Kp)ω + 2∥xp,g∥+Φη. (31)

Thus, by (25), if ξ(0) ∈ BΛ, then κ(t) ∈ BΥ.
Since ep, ηp, Θ̃p, Θ̃η ∈ L∞, using (3) yields that x, yd, y ∈

L∞. From Remark 1, we know that Φ̂η, Φ̂p ∈ L∞. Using
the projection property, we can conclude that Θ̂p and Θ̂η are
bounded. Since Φp and Φη are smooth, their first derivatives
Φ′

p and Φ′
η are continuous. Because all inputs to Φ′

p and
Φ′

η are bounded, Φ′
p,Φ

′
η ∈ L∞. From the above analysis,

ηp,Φη, Φ̂p, ep, and Θ̂η are all in L∞. This implies that
u(t) ∈ L∞, and therefore, η̇p ∈ L∞. By the universal func-
tion approximation, together with the fact that ηp,Φη, Φ̂η ,
and ep are in L∞, we have that ėp ∈ L∞. By Remark 2,

we can use the projection property again, along with the fact
that Φ′

p,Φ
′
η, Θ̂p, Θ̂η,Ξη ∈ L∞, to show that ˙̂

Θp,
˙̂
Θη ∈ L∞.

As a result, we can conclude that all the closed-loop signals
are bounded.

B. Target operating in the unpursued mode

Since card(U) ≥ 1, we introduce the subscript u to
denote the i ∈ U agent(s). Since i is arbitrary, this
analysis applies to all target agents in the unpursued
mode. To facilitate the following analysis, we introduce
the auxiliary constants γu, εu ∈ R>0 defined as γu ≜
2
(
gu + 1

2guxu,g +
1
2guy +

1
2hu

)
, and εu ≜ 1

2guxu,g +
1
2guy + 1

2hu. Consider the continuously differentiable Lya-
punov function candidate Vu : Rn → R≥0 defined as

Vu(eu) ≜
1

2
e⊤u eu. (32)

Theorem 2. During t ∈
[
tuk , t

p
k+1

)
∀k ∈ N, the system

states associated with target i ∈ U remain bounded as

∥eu(t)∥ ≤

√(
∥eu(t0)∥2 +

εu
γu

)
eγu(t−t0) − εu

γu
. (33)

Proof: By using the upper bounds of (2), we can upper
bound the time-derivative of (32) as

V̇u(t) ≤ gu∥eu∥2 + gu∥eu∥∥xu,g∥+ gu∥y∥∥eu∥+ hu∥eu∥.
(34)

Based on the bound on κ in (31), y is bounded by some
y ∈ R>0. Observing that ∥xu,g∥ is bounded by design, we
can upper bound (34) as

V̇u(t) ≤ gu∥eu∥2+ guxu,g∥eu∥+ guy∥eu∥+hu∥eu∥. (35)

Applying Young’s inequality to (35) and using the definitions
of γu and εu, we have

V̇u(t) ≤ γuVu(t) + εu. (36)

Solving the differential inequality given by (36) yields (33).

C. Combined analysis

Here, we consider i ∈ T , for all time. Since T = U ∪ P
and U and P are disjoint, the combined analysis considers
all possible arrangements of the system. The bound given
by (26) is applicable at times t ∈ [tpk, t

u
k). Similarly, the

bound given by (33) is applicable at times t ∈
[
tuk , t

p
k+1

)
.

The combined analysis aims to find a sufficient condition
that, if satisfied, will ensure the bounds in (26) and (33)
are true for all t ∈ R>0. Motivated by this aim, we define
∆tpk,∆tuk ∈ R>0 as ∆tpk ≜ tuk − tpk and ∆tuk ≜ tpk+1 − tuk .

Theorem 3. The controller in (20) and the adaptation laws
in (18) and (19) guarantee that the target regulation error(s)
associated with target agent(s) i ∈ T remain(s) bounded as

∥ei(t)∥ ≤
√(

α2

α1
∥ξ(t0)∥2 − εp

γpα1

)
e−γp(t−t0) +

εp
γpα1

, for

all time t ∈ R≥0, provided ∆tuk < τ , where

τ ≤ 1

γu
ln

[
α2

α1
∥ep(tpk)∥2 +

εu
γu

∥eu(tuk)∥2 +
εu
γu

]
. (37)
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Figure 1. Plots of the normalized target regulation error ∥ei∥ for i ∈ [1, 10]
and the instants when the herder switches between targets.

Proof: Based on (26), the stated bound on ∥ei(t)∥ holds
if ∥eu(t)∥ ≤ ∥ep(t)∥, for all t ∈ R≥0.4 Since we start in
the pursued mode, we have that for ∥ep(t)∥, t0 = tpk and
tf = tuk . Similarly, for ∥eu(t)∥ we have that t0 = tuk and
tf = tpk+1. Using ∥eu(t)∥ ≤ ∥ep(t)∥, (26), and (33), taking
the natural logarithm of the resulting expression, and using
exp(−γp∆tpk) ≤ 1, we arrive at (37).

V. SIMULATION

Simulations are performed to evaluate the perfor-
mance of the developed method. The herding agent
is tasked with regulating 10 target agents (N =
10) to 10 separate goal locations known only by
the herding agent. The dynamics for the agents are
given by gi(xi, y) ≜ ai exp

(
1
2µ (xi − y)⊤(xi − y)

)
and

hi(xi) ≜ [[bi,1 sin(xi,2)] , [bi,2 cos(xi,1)]]
⊤
[m], where xi ≜

[xi,1, xi,2]
⊤, ai ∈ [5, 15], µ ∈ [64, 128], and bi,1, bi,2 ∈

[−1, 1].
The planar coordinates for the initial positions of all

agents were randomly selected from a uniform distribution
U(−25, 25), as were the goal location for the target agents.
The subsequent target agent to be herded was determined
using the expression inext = argmaxi∈T ∥ei∥, which ensures
that ∥eu| < ∥ep∥. An agent was determined to reach its goal
location if it was within a radius of 2.5 meters of the goal
coordinate. The simulation concluded when all targets were
simultaneously inside their designated goal areas.

The Lb-DNN weight estimates were initialized with ran-
dom values drawn from a uniform distribution U(−0.5, 0.5).
The parameters were selected as Θp,Θη = 5, Γη = 0.01,
ση = 0.1, Γp = 2.5, and σp = 0.1. The Lb-DNN’s Φp

and Φη were selected with 4 hidden layers and 5 neurons
in each layer. The control gains Kp and Kη are selected as
Kp = 3g+1

2g + 0.25 and Kη = g+1
2 + 0.001, where g = 100.

Figure 1 provides the plot of the target regulation error
for each target agent. The dotted lines in the figure indicate
the time-instants when the herding switched to a different
target agent. As evident from Figure 1, all target agents were

4This case can always be guaranteed by the decision logic for when to
chase the next target [11, Theorem 1].

effectively herded with ∥e∥ < 10 in about 6 seconds. By
10.7 seconds, the herding agent had successfully brought all
target agents within their respective containment zones.

VI. CONCLUSION

This paper develops an approach to address the herding
problem by developing an Lb-DNN adaptive backstepping
controller. The Lb-DNN adaptive backstepping controller
enables the herding agent to learn the interaction dynamics
and adaptively herd the target agents in real-time, using actual
interactions during task-execution. Simulations are provided
to demonstrate the performance of the developed controller,
and the Lyapunov-based switched system analyses ensure
exponential convergence of all states to an ultimate bound.
Future efforts could leverage the new developments in this
paper to examine the ensemble herding problem formulated
in [4], [5], [11]. These efforts could involve expanding the
application of Lb-DNN adaptive backstepping control to a
wider array of indirect control challenges, encompassing
more complex and higher-dimensional interaction dynamics.
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