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Abstract— We study the performance of risk-controlling
prediction sets (RCPS), an empirical risk minimization-based
formulation of conformal prediction, on a single trajectory
of data from an unknown stochastic process. Our analysis
characterizes the graceful degradation in RCPS performance as
data becomes nearly arbitrarily dependent and nonstationary,
subject only to a mild requirement that the underlying process is
causal. By specializing this analysis, we find that RCPS attains
guarantees comparable to those enjoyed on independent and
identically distributed data whenever data is generated by an
asymptotically stationary and mixing process. We then relate
these conditions to system-theoretic properties like contractivity.

I. INTRODUCTION

Characterizing uncertainty in the predictions of machine
learning models is a key step in safely bridging learning
and control. However, traditional uncertainty quantification
methods, like confidence sets around maximum likelihood
estimates, rely on strong assumptions about the data gener-
ating process and the performance of the training algorithm
that are incompatible with the often black-box nature of
machine learning practice.

A simple alternative approach is treating a given machine
learning model as arbitrary but fixed, directly estimating
metrics of its predictive uncertainty over labeled holdout
data, and relating the estimate to the true model uncertainty at
test time under weak assumptions about the data generating
process. An example of this approach is conformal prediction
(CP), a family of assumption-light methods that post-process
an arbitrary point predictor, like a black-box neural network,
into a set predictor that provably covers the true label at test
time with high probability [1]–[3].1 However, most existing
proofs of CP coverage rely on the holdout and test data being
independent and identically distributed (iid), or at least ex-
changeable, limiting their use on non-iid, non-exchangeable
dependent data, as is typical in control applications.

Existing works that apply CP to control settings [4]–
[6] overcome this issue by sampling N iid-initialized tra-
jectories, each of length T , from a process of interest,{(

Z(1)
1 ,Z(1)

2 , . . . ,Z(1)
T

)
, . . . ,

(
Z(N)

1 ,Z(N)
2 , . . . ,Z(N)

T

)}
, and then
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1We abuse terminology and refer to any post-hoc uncertainty quan-
tification method that builds set predictors with finite-sample coverage
guarantees as conformal prediction. In the literature, these methods are
varyingly called split conformal prediction, conformal risk control, and
risk-controlling prediction sets. These methods moderately differ from one
another in the algorithm that is implemented and the guarantee attained.

leveraging the fact that under mild regularity conditions, for
any fixed timestep t ∈ [T ], the set of observations aggregated
across trajectories,

{
Z(1)

t , ...,Z(N)
t

}
, is iid. While intuitive,

this multiple trajectories approach falls short of characteriz-
ing what makes CP with dependent data easy or hard, and
does not cover settings, e.g., without simulator access, where
only a single trajectory of data, or multiple trajectories with
varying lengths and non-iid initializations, can be collected.

In this work, we generalize the risk-controlling prediction
sets (RCPS) algorithm, which was first designed for iid
data, and theoretically characterize its performance on a
single trajectory of data from an unknown stochastic process.
By approximating sequences of dependent data with more
structured ones, we prove algorithm-dependent test-time risk
upper bounds of the form ε + γ(w), where ε is the user-
specified risk tolerance and γ(w) is the excess risk incurred
due to dependence, which can be minimized with the choice
of weight parameters w. Specifically,

• In Section III, we use the decoupling technique [7]
toward a general analysis of the excess risk γ(w) that
characterizes the graceful degradation in RCPS perfor-
mance as data becomes nearly arbitrarily dependent and
nonstationary. The only required assumption is that the
underlying process is adapted, or causal. See Theorem 1.

• In Section IV, we use the blocking technique [8] to show
that even with the simplest weights w, excess risk can
be made vanishingly small when data is generated by
asymptotically stationary and mixing processes, which
roughly correspond to contractive dynamical systems.
See Theorem 2 and Corollary 1.

A. Related Works
1) Conformal prediction with dependent data: Recent

works [9]–[11] provide a general analysis of the performance
of split CP and conformal risk control over non-exchangeable
data. While these results are similar in spirit to our general
analysis of RCPS, the underlying techniques are different,
and split CP and conformal risk control guarantees are
weaker than those of RCPS. Prior work [12] also uses the
blocking technique, but to analyze split CP over strictly
stationary and mixing data. Like us, concurrent work [13]
relaxes the strict stationarity requirement, but to analyze split
CP over geometrically ergodic Markovian data. In contrast,
we also study RCPS in more general dependent data settings.

2) Statistical learning with dependent data: Our tech-
niques are adapted from statistical learning works [14],
[15] that use the decoupling and blocking techniques to
prove generalization bounds over adapted and mixing data.
While these works seek uniform convergence guarantees over
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dependent data, RCPS requires only pointwise convergence,
leading to simpler proofs that avoid potential looseness.

B. Notation

A filtered probability space (Ω,F ,P;F1:∞) has a se-
quence of σ -algebras, or filtration, F1:∞ ≜ {Ft}∞

t=1 that sat-
isfies Ft ⊆Ft+1 and Ft ⊂F for all t ∈N. Given a stochastic
process Z1:∞, Pi,P j are the marginal distributions of Zi,Z j.
The total variation distance between two probability mea-
sures P,Q is defined as ∥P−Q∥TV ≜ supA |P(A)−Q(A)| ∈
[0,1], where the supremum is taken over sets A in a common
σ -algebra. The spectral radius of matrix G is denoted by
ρ(G), the resolvent by RG(z) = (zI−G)−1, and the H∞-norm
by ∥G∥H∞

= supz∈T ∥G(z)∥, where T is the complex unit
circle. O(·),Ω(·) denote orderwise upper and lower bounds,
and Õ(·) elides polylogarithmic factors.

II. PROBLEM FORMULATION

Given X ⊆ RdX ,Y ⊆ RdY , consider the model

Yt = f⋆(Xt)+Wt (1)

with unknown f⋆ : X → Y and noise Wt . When Yt = Xt+1,
we recover an autonomous dynamical system. Otherwise,
we assume there exists a marginal process for Xt that is
consistent with the conditions that Section II-A imposes on
the joint process for (Xt ,Yt).

Suppose we have access to a learned model f̂ of f⋆, which
comes with no a priori guarantees, and a single trajectory
Z1:∞ ≜ {(Xt ,Yt)}∞

t=1 drawn from (1) that, for some T,k ∈ N,
we split into training trajectory Z1:T ≜ {(Xt ,Yt)}T

t=1 and test
point ZT+k ≜ (XT+k,YT+k). When appropriate, we draw test
point Z′ = (X ′,Y ′) from the stationary distribution Π of Z1:∞.

The RCPS problem setting is as follows. We use black-
box model f̂ and training trajectory Z1:T to build a set
predictor Cλ : X ×R→ 2Y , which is centered at f̂ (·) and
parameterized by λ ∈ Λ ⊆ R that controls the radius of the
prediction sets, i.e., λ < λ ′ =⇒ Cλ ⊂ Cλ ′ . See prior work
[16] for connections between this “nested sets” approach to
CP and the more standard non-conformity score approach.
Specifically, given a loss ℓ : Y ×2Y → [0,1] that decreases
monotonically as λ increases (usually chosen as the indicator
loss 1(Y /∈Cλ (X)), but other choices are admissible, e.g.,
false negative rate), risk tolerance ε ∈ (0,1), and failure
probability δ ∈ (0,1), we aim to ensure that

P
Z1:T

(
E

ZT+k
[ℓ(YT+k,Cλ (XT+k))|Z1:T ]≤ ε

)
≥ 1−δ , (2)

i.e., with probability at least (1− δ ) over the draw of the
training trajectory, the expectation of ℓ(·, ·) taken over the
draw of ZT+k after conditioning on Z1:T is at most ε . We
also consider a weaker guarantee,

P
Z1:T

(
E

ZT+k
[ℓ(YT+k,Cλ (XT+k))]≤ ε

)
≥ 1−δ , (3)

i.e., the expectation is taken over the marginal draw of ZT+k.
The two expectations are identical if Z1:T ∪ZT+k are iid, but
is not necessarily so otherwise. This distinction highlights
how the “conditional validity” of CP, first discussed in the
iid data setting [17], becomes more nuanced when data is

dependent. When appropriate, we take the expectation of
ℓ(·, ·) over the draw of Z′ from stationary distribution Π of
Z1:∞. For convenience, we often denote ℓλ (Z)≜ ℓ(Y,Cλ (X)).

The RCPS algorithm works as follows. Given weights w=
(w1,w2, . . . ,wT )

⊤ from the probability simplex ∆(RT ) and an
upper bound U : (0,1)×∆(RT )→ R+, we select radius

λ̂ ≜ inf

{
λ ∈ Λ :

T

∑
t=1

wtℓλ (Zt)+U(δ ,w)< ε, ∀λ
′ ≥ λ

}
.

(4)
When Z1:T ∪ZT+k are iid, we choose wt = 1/T for all t ∈ [T ]
and U(δ ,w)=

√
log(1/δ )/T , and use Hoeffding’s inequality

to show that (2), (3) hold. This idea of leveraging a pointwise
concentration inequality carries over to the dependent data
setting, although we sometimes set U(δ ,w) = 0 because
analogs of the Hoeffding bandwidth can depend on unknown
parameters that quantify the degree of dependence in data,
and instead suffer that term as excess risk.

A. Data Generating Processes

Now we define data generating processes for Z1:∞ that we
consider in each section.

Definition 1 (Adapted process [7]). A stochastic process Z1:∞
is adapted to filtration F1:∞ if Zt is Ft -measurable ∀t ∈N.

In Section III, we require that Z1:∞ is adapted to some
filtration F1:∞. This simply prevents Zt from depending on
the future, i.e., Ft+1:∞, and is a very mild assumption that
all causal systems satisfy.

Definition 2 (φ ⋆-mixing processes [8], [15]). A stochastic
process Z1:∞ that is adapted to filtration F1:∞ and has
stationary distribution Π has φ ∗-mixing coefficient

φ
∗(k)≜ φ

⋆
Z (k)≜ sup

t∈N
sup

A∈Ft

[∥∥∥Pt+k (·|A)−Π

∥∥∥
TV

]
.

Z1:∞ is said to be φ ⋆-mixing if φ ⋆(k)→ 0 as k → ∞.

In Section III, we also consider φ ∗-mixing Z1:∞, i.e., the
data generating process converges to a stationary distribu-
tion and samples that are sufficiently separated in time are
approximately independent, even after conditioning on the
realization of a “bad” trajectory Z1:t . This imposes a very
weak dependence structure on Z1:∞ and is a much more
stringent assumption than adaptivity.

Definition 3 (β ⋆-mixing processes [8], [15]). A stochastic
process Z1:∞ that is adapted to filtration F1:∞ and has
stationary distribution Π has β ∗-mixing coefficient

β
⋆(k)≜ β

⋆
Z (k)≜ sup

t∈N
E

Z1:t

[∥∥∥Pt+k (·|Z1:t)−Π

∥∥∥
TV

]
.

Z1:∞ is said to be β ⋆-mixing if β ⋆(k)→ 0 as k → ∞.

In Section IV, we require that Z1:∞ is β ⋆-mixing, which
lies between being adapted and φ ⋆-mixing. This is because
β ∗-mixing only requires that convergence to the stationary
distribution and approximate independence with time sep-
aration occur over “average” trajectories Z1:t . In particular,
β ⋆(k) ≤ φ ⋆(k), so all φ ∗-mixing processes are β ∗-mixing.
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A simple β ⋆-mixing dynamical system is the stable linear
time-invariant (LTI) system with iid Gaussian noise, which
we use to build system-theoretic intuition about results.

III. DECOUPLING TECHNIQUE

In this section, we assume that Z1:∞ is adapted to some
filtration F1:∞, per Definition 1, and use the decoupling
technique to study RCPS guarantees of the form (2). This
yields a general analysis of RCPS that remains valid even as
data becomes nearly arbitrarily dependent and nonstationary.

A sequence being adapted is a sufficient condition for
there to exist a decoupled tangent sequence of conditionally
independent random variables with the following properties.

Proposition 1 (Decoupling technique [7]). Let Z1:∞ be a
stochastic process adapted to some filtration F1:∞ that is
contained in the σ -algebra F . Then there exists a decoupled
tangent sequence Z′

1:∞ = {Z′
t}∞

t=1 that satisfies

1) Zt ,Z′
t are iid with respect to P(·|Ft−1) ∀ t ∈ N, and

2) Z′
1:∞ is conditionally independent given some σ -algebra

G ⊂ F for which P(Z′
t |Ft−1) = P(Z′

t |G ) ∀ t ∈ N. G is
often σ (Z1:∞), the σ -algebra induced by Z1:∞.

Then for any function ℓ that maps Zt to R, by the linearity
of expectation and the law of iterated expectations,

E

[
T

∑
t=1

ℓ(Zt)

]
=

T

∑
t=1

E [E [ℓ(Zt)|Ft−1]] =
T

∑
t=1

E
[
E
[
ℓ(Z′

t)|Ft−1
]]

=
T

∑
t=1

E
[
E
[
ℓ(Z′

t)|G
]]

= E

[
T

∑
t=1

ℓ(Z′
t)

]
.

Instead of directly evaluating RCPS performance on an
arbitrarily dependent and nonstationary sequence, we use
Proposition 1 to do so on its tangent sequence, whose
conditional independence structure can be exploited in a
sequential symmetrization scheme.

Theorem 1 (Decoupled RCPS). Fix risk tolerance ε ∈ (0,1),
failure probability δ ∈ (0,1), weights w ∈ ∆(RT ), and upper
bound U(δ ,w)= ∥w∥2

√
8log(1/δ ). Suppose Z1:∞ is adapted

to filtration F1:∞. Then setting λ̂ according to (4) attains

P
Z1:T

(
E

ZT+k

[
ℓ

λ̂
(ZT+k)|Z1:T

]
≤ ε + γ(w)

)
≥ 1−δ ,

where the expectation is taken over the draw of the test point
after conditioning on realized training trajectory Z1:T , and

γ(w)≜ E
[
ℓ

λ̂

(
ZT+k)

)
|Z1:T

]
−

T

∑
t=1

wt ·E
[
ℓ

λ̂
(Zt) |Z1:t−1

]
.

Theorem 1 states that when data is causal, the test-time
risk upper bound is the sum of risk tolerance ε and an
excess risk term γ(w) that captures the drift between the
test distribution PZT+k(·|Z1:T ) and the mixture of past distri-
butions ∑

T
t=1 wtPZt (·|Z1:t−1). The weights w can be selected

to minimize the latter term; prior works [9], [14] discuss
strategies for selecting these weights. In Section IV, we show
that even the simplest weights wt = 1/T for all t ∈ [T ] attains
desirable guarantees when data is appropriately mixing.

Proof of Theorem 1. We adapt the proof of Theorem 1 in
[14]. Suppose E

ZT+k

[
ℓ

λ̂
(ZT+k) |Z1:T

]
> ε + γ(w), i.e.,

T

∑
t=1

wtE
[
ℓ

λ̂
(Zt)|Z1:t−1

]
> ε.

Then λ̂ < λ ∗ ≜ inf
{

λ ∈ Λ : ∑
T
t=1 wtE [ℓλ (Zt)|Z1:t−1]≤ ε

}
.

However, by (4), ∑
T
t=1 wtℓλ ∗(Zt) +U(δ ,w) < ε must have

held. We show this occurs with probability at most δ , i.e.,

P
Z1:T

(
T

∑
t=1

wt

(
E
Zt
[ℓλ ∗ (Zt) |Z1:t−1]− ℓλ ∗ (Zt)

)
>U(δ ,w)

)
≤ δ .

Denote U ≜U(δ ,w) for convenience. Then for any a > 0,

P
Z1:T

(
T

∑
t=1

wt

(
E
Zt
[ℓλ ∗ (Zt) |Z1:t−1]− ℓλ ∗ (Zt)

)
>U

)
exp(aU)

≤ E
Z1:T

[
exp

(
a

T

∑
t=1

wt

(
E
Zt
[ℓλ ∗(Zt)|Z1:t−1]− ℓλ ∗(Zt)

))]

= E
Z1:T

[
exp

(
a

T

∑
t=1

wt

(
E
Z′

t

[
ℓλ ∗
(
Z′

t
)
|Z1:T

]
− ℓλ ∗(Zt)

))]

≤ E
Z1:T

[
E

Z′
1:T

[
exp

(
a

T

∑
t=1

wt
(
ℓλ ∗
(
Z′

t
)
− ℓλ ∗(Zt)

))∣∣∣∣Z1:T

]]

= E
Z1:T ,Z′

1:T

[
exp

(
a

T

∑
t=1

wt
(
ℓλ ∗
(
Z′

t
)
− ℓλ ∗(Zt)

))]
,

where the first line holds by the Chernoff bound, the second
line holds because E [ℓλ ∗(Zt)|Z1:t−1] = E [ℓλ ∗ (Z′

t) |Z1:t−1] =
E [ℓλ ∗ (Z′

t) |Z1:T ] by Proposition 1, the third line holds by
Jensen’s inequality, and the final line holds by the law of
iterated expectations.

Now we equate the expectation over Z1:T ,Z′
1:T to an

expectation over auxiliary random variables through a se-
quential symmetrization argument, following [14], [18].
This involves introducing σ = (σ1,σ2, . . . ,σT ), where the
{σt} are pairwise independent, distributed uniformly over
{−1,1}, and each σt drawn independently of Zt ,Z′

t ,
so that the expression inside the expectation becomes
exp
(
a∑

T
t=1 σtwt (ℓλ ∗(Z′

t)− ℓλ ∗(Zt))
)
. Consider t = 1. If σ1 =

1, w1 (ℓλ ∗(Z′
1)− ℓλ ∗(Z1)) is unchanged. If σ1 =−1, the order

of subtraction is flipped, i.e., w1 (ℓλ ∗(Z1)− ℓλ ∗(Z′
1)). Then Z1

becomes part of the tangent sequence and Z′
1, the original

sequence. Iteratively applying this argument to all indices
t ∈ [T ] motivates using binary tree structures to keep track of
“who is tangent to who.” Define binary tree z = (z1, . . . ,zT )
as a T -tuple of mappings zt : {−1,1}t−1 →X ×Y , i.e., from
σ1, . . . ,σt−1 to a value of Zt = (Xt ,Yt). Define the tangent
binary tree z′ = (z′1, . . . ,z

′
T ) as the T -tuple of maps z′t from

σ1, . . . ,σt−1 to Z′
t =(X ′

t ,Y
′

t ). Lemma 2 of [14] and Theorem 3
of [18] prove that the expectation over the draw of Z1:T ,Z′

1:T
is equivalent to the expectation over the independent draw
of the trees z,z′ and the “path” σ . Then

E
Z1:T ,Z′

1:T

[
exp

(
a

T

∑
t=1

wt
(
ℓλ ∗
(
Z′

t
)
− ℓλ ∗(Zt)

))]
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= E
z′,z

[
E
σ

[
exp

(
a

T

∑
t=1

σtwt
(
ℓλ ∗(z′t)− ℓλ ∗(zt)

))]]

= E
z′,z

[
E
σ

[
exp

(
a

T

∑
t=1

σtwtℓλ ∗(z′t)+
T

∑
t=1

−σtwtℓλ ∗(zt)

)]]

≤ 1
2
E
z′

[
E
σ

[
exp

(
2a

T

∑
t=1

σtwtℓλ ∗(z′t)

)]]

+
1
2
E
z

[
E
σ

[
exp

(
2a

T

∑
t=1

σtwtℓλ ∗(zt)

)]]

= E
z

[
E
σ

[
exp

(
2a

T

∑
t=1

σtwtℓλ ∗(zt)

)]]
,

where the fourth line holds by Young’s inequality and the
final line holds by symmetry. Now observe that

E
σT ,zT

[
exp((2awT )σT ℓλ ∗(zT ))

]
≤ exp

(
2a2w2

T
)

by Hoeffding’s lemma and the independence of σT ,zT . So,

E
z,σ

[
exp

(
2a

T

∑
t=1

σtwtℓλ ∗(zt)

)]

= E
z,σ

[
exp

(
2a

T−1

∑
t=1

σtwtℓλ ∗(zt)

)

· E
zT ,σT

[
exp(2aσT wT ℓλ ∗(zT )) |z1:T−1,σ1:T−1

]]

≤ E
z,σ

[
exp

(
2a

T−1

∑
t=1

σtwtℓλ ∗(zt)

)
exp
(
2a2w2

t
)]

≤ exp
(
2a2∥w∥2

2
)
,

where the second line holds by the law of iterated ex-
pectations and the final line holds by iteratively applying
the previous one. Collecting the exp(−aU) term from the
beginning of the argument and optimizing over a completes
the proof.

The key difference between the general RCPS guarantee
in Theorem 1 and the guarantee in the iid data setting is the
excess risk term γ(w). When Z1:T ∪ZT+k are iid, γ(w) = 0
for any w. Now we show a bound on γ(w) for when data is
only very weakly dependent, i.e., φ ∗-mixing per Definition 2.

Example 1 (φ ⋆-mixing process). If Z1:∞ is φ ⋆-mixing with
stationary distribution Π, then implementing RCPS with wt =
1/T for all t ∈ [T ], U(δ ,w) =

√
8log(1/δ )/T , and test point

Z′ ∼ Π ensures that

P
Z1:T

(
E
Π

[
ℓ

λ̂
(Z′)

]
≤ ε + γ(w)

)
≥ 1−δ ,

where

γ(w)≤

∥∥∥∥∥ 1
T

T

∑
t=1

PZt (·|Z1:t−1)−Π

∥∥∥∥∥
TV

≤ 1
T

T

∑
t=1

∥PZt (·|Z1:t−1)−Π∥TV ≤ φ
∗(1)

The first inequality captures the intuition that γ(w) is small
when w is chosen so that the mixture of past distributions
closely approximates the test distribution Π. Naturally, we

hope to relate γ(w) to the φ ∗-mixing coefficient, which
measures distance to Π. However, this is complicated by
the fact that each past distribution at time t is conditioned
on Z1:t−1, which interacts poorly with the definition of the
φ ∗-mixing coefficient. In the second inequality, we resort to
the triangle inequality and recover the constant upper bound
φ ∗(1), which cuts against intuition that uniform weights
over past distributions should be sufficient to capture the
stationary distribution of an ergodic process. Unfortunately,
conditioning on Z1:t−1 at each time t is a key part of the
decoupling technique and cannot be easily removed. This
suggests that because the decoupling technique is designed
for incredibly general settings, it can refrain from exploiting
additional structures available in weakly dependent data.

This is not a fundamental shortcoming of the RCPS
algorithm: next, we fix uniform weights and modify our
analysis to prove RCPS performs well on mixing data.

IV. BLOCKING TECHNIQUE

In this section, we fix wt = 1/T for all t ∈ [T ], assume
Z1:∞ is β ⋆-mixing per Definition 3, and use the blocking
technique to study RCPS guarantees of the form (3). We also
study these guarantees in terms of system-theoretic quantities
when the underlying process is a stable LTI system with iid
Gaussian noise—a β ∗-mixing process that does not satisfy
the strict stationarity assumption required in prior work [12].

The blocking technique can be viewed as a specialization
of the decoupling technique that goes beyond exploiting
conditional independence structures to outright iid-like struc-
tures in mixing data. Specifically, this approach transforms
the analysis of a subsample of β ∗-mixing random variables
into one of a subsample of iid random variables from
stationary distribution Π, at the expense of an additive error
term that is minimized with our choice of subsample size.

Proposition 2 (Blocking technique [8], [15], [19]). Suppose
Z1:∞ is a β ⋆-mixing sequence with stationary distribution
Π. Fix m,n ∈ N and suppose without loss of generality that
T =mn. Construct n subsampled blocks of size m each, where

Z( j) = {Zt : (t −1 mod n) = j−1} for j = 1,2, . . . ,n.

Let Z̃Π be a block of m iid draws from Π. Then for any
measurable function ℓ that takes values in [0,1],∣∣∣E[ℓ(Z̃Π

)]
−E

[
ℓ
(
Z( j)
)]∣∣∣≤ mβ

⋆(n).

Using the blocking technique, we first study RCPS perfor-
mance on the stationary distribution Π, then on the marginal
distribution PT+k of the test point ZT+k = (XT+k,YT+k).

Theorem 2 (Blocked RCPS, Π.). Suppose Z1:∞ is β ∗-mixing
with β ∗(k) = O(1/k). Fix block size m and number of blocks
n, and assume without loss of generality that T =mn. Also fix
risk tolerance ε ∈ (0,1), failure probability (T β ∗(n),1), and
trivial upper bound U(δ ,w) = 0. Then selecting λ̂ according
to (4) attains

P
Z1:T

(
E
Π

[
ℓ

λ̂
(Z′)

]
≤ ε +η

)
≥ 1−δ ,

3022



where the expectation is over the draw of Z′ = (X ′,Y ′) from

stationary distribution Π and η =

√
log
(

n
δ−T β ⋆(n)

)
/m.

Theorem 2 states that for a sufficiently long training
trajectory, the upper bound on true risk E

Π

[
ℓ(Y ′,C

λ̂
(X ′))

]
can be made arbitrarily close to ε at the blocking-deflated
rate Õ(1/

√
m). The assumption that β ∗(k) = O(1/k) is

mild, as many processes of interest mix faster. With this
assumption, the requirement that δ > T β ⋆(n) is satisfied for
any δ ∈ (0,1) as long as T exceeds a burn-in time that is
at most polynomial in 1/δ . Importantly, because this result
does not rely on any particular values of m,n, they can be
selected to balance the required burn-in time for T and the
η term (as part of the analysis, not the implementation, of
RCPS). We discuss these details in Example 2.

Proof of Theorem 2. We adapt the proof of Theorem 2.2 in
[19]. Suppose E

Z′

[
ℓ

λ̂
(Z′)

]
> ε +η . Then

λ̂ < λ
∗ ≜ inf

{
λ ∈ Λ : EΠ

[
ℓλ (Z

′)
]
≤ ε
}
.

However, by (4), ∑
T
t=1 wtℓλ ∗(Zt) < ε must have held. We

show that this occurs with probability at most δ ,
For j ∈ {1,2, . . . ,n}, let I j be the set of indices included

in the jth block. Then

P
Z1:T

(
E
Π

[
ℓλ ∗
(
Z′)]− 1

T

T

∑
t=1

ℓλ ∗ (Zt)> η

)

= P
Z1:T

(
1
n

n

∑
j=1

1
m ∑

t∈I j

(
E
Π

[
ℓλ ∗
(
Z′)]− ℓλ ∗ (Zt)

)
> η

)

≤
n

∑
j=1

P
Z( j)

(
1
m ∑

t∈I j

(
E
Π

[
ℓλ ∗
(
Z′)]− ℓλ ∗ (Zt)

)
> η

)

≤ T β
⋆(n)+n P̃

ZΠ

(
E
Π

[
ℓλ ∗
(
Z′)]− 1

m ∑
t∈I j

(ℓλ ∗ (Zt))> η

)
≤ T β

⋆(n)+(δ −T β
⋆(n)) = δ .

The second line holds by the union bound: if
1
n

n

∑
j=1

1
m ∑

t∈I j

(
E
Π

[
ℓλ ∗
(
Z′)]− ℓλ ∗ (Zt)

)
> η

holds, then there must exist an index j for which
1
m ∑

t∈I j

(
E
Π

[
ℓλ ∗
(
Z′)]− ℓλ ∗ (Zt)

)
> η

holds. The third line follows from Proposition 2, and the
final line follows from setting η as in the theorem statement
and applying Hoeffding’s inequality.

Theorem 2 shows that when data is β ∗-mixing, RCPS
with respect to the stationary distribution is nearly as easy
as RCPS in the iid setting: there is no excess risk term
analogous to γ(w) in Theorem 1. Instead, excess risk is due
to the η term, which is simply the Hoeffding bandwidth that
scales with block size, rather than training trajectory length.
We set U(δ ,w) = 0 because the desired block size is not
known a priori, but if it is, η can be offset.

Corollary 1 (Blocked RCPS, PT+k). Under the assumptions

of Theorem 2, we have that

P
Z1:T

(
E

PT+k

[
ℓ

λ̂
(ZT+k)

]
≤ ε +η + γ

)
≥ 1−δ ,

where the expectation is taken over the marginal draw of test
point ZT+k, η = Õ(1/

√
m) as in Theorem 2, and γ ≤ β ⋆(k)

is an excess risk term.

Proof of Corollary 1. Observe that

γ ≜ E
PT+k

[
ℓ(YT+k,Cλ̂

(XT+k))
]
−E

Π

[
ℓ(Y ′,C

λ̂
(X ′))

]
≤ ∥PT+k −Π∥TV ≤ E

Z1:T
[∥PT+k (·|Z1:T )−Π∥TV]≤ β

⋆(k),

where the second line holds by the law of iterated expecta-
tions and Jensen’s inequality. Introducing γ to the result of
Theorem 2 completes the proof.

An excess risk term analogous to γ(w) in Theorem 1 is
found in Corollary 1, but this term is at most β ∗(k), which
captures the intuition that RCPS with respect to a marginal
distribution that is sufficiently separated from the training
trajectory should be as easy as RCPS with respect to the
stationary distribution. This is a significant improvement over
the constant φ ∗(1) bound shown in Example 1.

Next, we study these results in the specific case where
data is generated by a stable LTI system with iid Gaussian
process noise.

Example 2 (Stable LTI [19]). Consider the stable and
autonomous LTI system

Xt+1 = AXt +Wt

with spectral radius ρ = ρ(A) < 1 and Wt ∼ N(0, I). The
associated stochastic process X1:∞ = {Xt}∞

t=1 has marginal
distribution Xt ∼ N(0,Σt), where Σt = ∑

t−1
j=1(A

j)(A j)⊤, and
stationary distribution N(0,Σ∞), where Σ∞ is the unique
solution to the discrete-time Lyapunov equation

AΣ∞A⊤−Σ∞ + I = 0.

For any initial Σ0 ̸= Σ∞, this system is not strictly stationary,
but is asymptotically so. Suppose X0 = 0. Then

β
⋆
X (k) = sup

t∈N
E

X1:t

[∥∥∥Pt+k (·|X1:t)−Π

∥∥∥
TV

]
≤

(
∥Rρ−1A∥H∞

2

√
Tr(Σ∞)+

dX

1−ρ2

)
ρ

k ≜ Γρ
k,

which tends to 0 as k → ∞. By an application of Pinsker’s
inequality and the chain rule for the Kullback-Leibler di-
vergence, the process Z1:∞ = {(Xt ,Xt+1)}∞

t=1, has mixing
coefficient β ∗

Z (k)≤ 2β ∗
X (k). Hence Z1:∞ is β ∗-mixing.

When implementing RCPS on Z1:∞, we can select

n =

⌈
1

1−ρ
log
(

4ΓT
δ

)⌉
and γ =

√
log
( 2n

δ

)
m

,

to enforce, in the fourth line of the proof of Theorem 2,

T β
⋆(n)+n P̃

ZΠ

(
E
Π

[
ℓλ ∗
(
Z′)]− 1

m ∑
t∈I j

(ℓλ ∗ (Zt))> η

)

≤ 2T Γρ
n +

δ

2
= δ .
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Notably, β ∗
Z (k) decays geometrically in k, which is much

faster than the O(1/k) decay required in Theorem 2. This
means the required burn-in for T , implicitly given by n, is
logarithmic in 1/δ , far better than the worst-case polynomial
dependence discussed previously. Using techniques from
learning for control [20], similar decay results can be shown
for contractive dynamical systems with non-iid Gaussian
noise, which also lead to efficient burn-in requirements.
This shows that intuition from Example 2 can inform the
application of RCPS to a larger class of systems of interest.

V. DISCUSSION

We theoretically characterize the performance of RCPS on
a single trajectory of non-iid, non-exchangeable data using
the decoupling and blocking techniques, which allow us to
approximate dependent sequences with more structured ones.
Notably, neither technique strictly dominates the other in
usefulness. The decoupling technique handles very general
data and highlights the possibility of re-weighing training
samples to reduce the γ(w) excess risk term, echoing al-
gorithmic modifications that prior works have suggested for
split CP and conformal risk control [9], [10]. However, it can
be difficult to directly relate γ(w) to well-studied metrics of
weak dependence. This motivates the use of the blocking
technique with mixing data, albeit at the cost of introducing
burn-in requirements for training trajectory length T and
suffering the blocking-deflated excess risk term Õ(1/

√
m).

It is worth noting that this deflated rate may be an artifact of
our analysis and could possibly be removed using techniques
from [21]. Importantly, these remaining questions about the
analysis of RCPS do not affect its implementation.

An interesting direction for future work is better under-
standing the interplay between the decoupling and blocking
techniques so that CP algorithms’ performance on data gen-
erating processes that lie between the adapted, or adversarial,
and iid extremes can be more sharply analyzed. This question
relates to recent works on “best-of-both-worlds” CP [22],
[23], which study online CP algorithms that simultaneously
attain desirable guarantees over adversarial and iid data.

Finally, a natural question is whether CP guarantees that
remain valid after (approximately) conditioning on the test
input XT+k, possibly in addition to training trajectory Z1:T , is
possible when data is non-iid. Exact conditioning is known
to be impossible even when data is iid [17], [24], but various
notions of approximate conditioning have been attained by
recent works whose methods seek robustness to specific
types of distribution shifts [25], [26]. Test input-conditional
CP guarantees, if attained over dependent data, would natu-
rally be useful for safety-critical control applications.

VI. ACKNOWLEDGEMENTS

B.L. thanks Ingvar Ziemann, Lars Lindemann, and Rahul
Ramesh for helpful discussions.

REFERENCES

[1] A. Gammerman, G. Shafer, and V. Vovk, Algorithmic Learning in a
Random World. New York: Springer-Verlag, 2005.

[2] A. N. Angelopoulos, S. Bates, A. Fisch, L. Lei, and T. Schuster,
“Conformal Risk Control,” Apr. 2023, arXiv:2208.02814.

[3] S. Bates, A. Angelopoulos, L. Lei, J. Malik, and M. Jordan,
“Distribution-free, Risk-controlling Prediction Sets,” Journal of the
ACM, vol. 68, no. 6, pp. 1–34, Dec. 2021.

[4] N. Hashemi, X. Qin, L. Lindemann, and J. V. Deshmukh, “Data-
Driven Reachability Analysis of Stochastic Dynamical Systems with
Conformal Inference,” in 2023 62nd IEEE Conference on Decision
and Control (CDC), Dec. 2023, pp. 3102–3109.

[5] L. Lindemann, M. Cleaveland, G. Shim, and G. J. Pappas, “Safe
Planning in Dynamic Environments Using Conformal Prediction,”
IEEE Robotics and Automation Letters, vol. 8, no. 8, pp. 5116–5123,
Aug. 2023.

[6] R. Tumu, L. Lindemann, T. Nghiem, and R. Mangharam, “Physics
Constrained Motion Prediction with Uncertainty Quantification,” in
2023 IEEE Intelligent Vehicles Symposium (IV), Jun. 2023, pp. 1–8.
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