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Abstract— This paper explores the impact of the burgeoning
electric vehicle (EV) presence on distribution grid operations,
highlighting the challenges they present to conventional pricing
strategies due to their dual role as power consumers and
suppliers, coupled with their energy storage capabilities. We
propose an advanced real-time pricing model for the electricity
market, employing a novel distributed bilevel optimization
framework. This framework distinguishes between the distri-
bution system operator (DSO) at the upper level and the EVs
at the lower level, each aiming to optimize profit margins. The
optimization includes power flow constraints at the upper level
to ensure efficient operation within safe system limits, while
model predictive control (MPC) is used to optimize lower-level
EV responses. Additionally, we provide a rigorous convergence
analysis of the proposed bilevel optimization method. Detailed
convergence studies and simulation results demonstrate the
effectiveness and superiority of the proposed algorithm.

I. INTRODUCTION

The recent rise in urban electric vehicle (EV) adoption
impacts the distribution grid due to their charging and
discharging activities. With vehicle-to-grid (V2G) and grid-
to-vehicle (G2V) capabilities, EVs contribute to both energy
consumption and supply, boosting grid resilience and effi-
ciency [5], [12], [25]. Since EVs are often parked for long
periods, fast-charging technology reduces charging times,
encouraging participation in V2G programs that support grid
stability and efficiency. Electricity pricing influences EV
charging behavior, prompting owners to charge during low-
rate periods and discharge during peak times [13], [18], [26].
This interaction is crucial for a sustainable energy future.

The variability of EV power challenges traditional electric-
ity pricing models, which rely on historical data and fixed
intervals, often struggling with the market’s dynamic nature
[1], [17]. Intelligent pricing offers a more adaptive solution,
promoting efficient energy use through strategies like critical
peak [22], time-of-use [27], and real-time pricing [21]. Real-
time pricing, which adjusts rates based on immediate user
data, is particularly effective in managing EV integration into
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the grid. Using a Stackelberg game framework, where the
distribution system operator (DSO) leads and consumers fol-
low [23], this approach aligns with shifting market demands
and supports a responsive and sustainable energy ecosystem.

Bilevel optimization, with its nested structure and in-
terdependent variables, poses significant challenges. Vari-
ous algorithms have been developed to tackle this [10],
[11], [15], [19], often using first-order optimality conditions
from the lower-level problem as constraints in the upper
level [7]. While this simplifies the bilevel problem to a
single level, it struggles with high-dimensional variables due
to excessive equality constraints. To address this, gradient-
based techniques like Approximate Implicit Differentiation
(AID) [16] and Iterative Differentiation (ITD) [6] have been
introduced, offering more efficient solutions for complex
bilevel problems.

The energy storage characteristics of EVs require dynamic
battery state analysis, adding uncertainty to the electricity
market and differentiating them from traditional grid loads.
DSOs must incorporate EV behavior predictions into pricing
strategies. Current EV modeling methods include model-
free approaches like Reinforcement Learning (RL) [8], [9],
[24], which handles sequential optimization in V2G but
faces convergence challenges, and model-based approaches
like Model Predictive Control (MPC) [4], [14], [20], which
excels in real-time and multi-scale optimization. Combining
MPC with bilevel optimization could further enhance power
market stability and efficiency.

Recent research on EV integration and electricity pricing
often prioritizes grid revenue, overlooking load, physical
models, and long-term uncertainties in EV charging, result-
ing in unrealistic grid solutions. Additionally, many studies
neglect convergence analysis when assessing algorithms,
potentially compromising market stability. In this paper, a
novel bilevel formulation for the V2G pricing problem will
be proposed in Section II. We employ an MPC-based strategy
for real-time EV charging and discharging decisions at the
lower level, while at the upper level, we account for the
physical structure of the distribution network, integrating
nonconvex optimal power flow with a price sequence as
decision variables. A significant contribution of our work,
detailed in Section III, is the development of a distributed
bilevel optimization algorithm with comprehensive conver-
gence guarantees. We propose a real-time pricing mechanism
for V2G operations, employing a receding horizon approach.
Our methods are validated through a case study using the
IEEE 15-bus benchmark with 80 EVs, demonstrating the
algorithms’ effectiveness in closed-loop scenarios in Sec-
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tion IV. Section V concludes the paper with outlooks.
Notations: Throughout the paper, we use boldface lower

case and upper case letters to represent vectors and matrices,
respectively. Moreover, we use notation In to denote the
identity matrix in Rn×n, and Zz2

z1 = {z ∈ Z|z1 ≤ z ≤ z2}
denotes integer ranges from z1 to z2. Besides, notation
vec(A) denotes the vector obtained by stacking all columns
of A into one long vector. And notation ∥ · ∥F defines
the Frobenius norm for a given matrix. For given two
matrices A and B, we denote the inner product ⟨A,B⟩ =
Tr(A⊤B). For a scale sequence x1, ..., xn, we use notation
x = [x1, ..., xn]

⊤ ∈ Rn.

II. PROBLEM FORMULATION

In this section, we introduce the system model for the
radial distribution grid and the battery model for electric
vehicles (EVs). Subsequently, we encapsulate the entire
design problem of the real-time pricing mechanism as a
bilevel optimization problem. The lower-level problem in-
volves model predictive control (MPC) for managing EV
charging/discharging at charging stations, and the upper-
level problem handles optimal power flow (OPF) within the
distribution grid.

A. OPF-based DSO Decision-Making

Let us consider a radial distribution grid that connects
multiple charging stations distributedly, where EVs engage
in charging or discharging activities. The distribution system
can be defined by the tuple (N , E ,G,B), where N =
{0, 1, · · · , N} represents the bus set, with bus 0 assumed
to be a substation with a fixed voltage. E ⊂ N × N is the
transmission line set with |E| = N , G ⊂ N is the generator
set, and B ⊂ N is the charge station set with |B| = M .

To describe the power balance of the distribution grid, the
relaxed DistFlow model is utilized as follows:

pn =
∑
k∈Cn

Pk − Pn + rnℓn, (1a)

qn =
∑
k∈Cn

Qk −Qn + xnℓn, (1b)

vπn = vn + 2rnPn + 2xnQn − (r2n + x2
n)ℓn, (1c)

ℓn ≥ (P 2
n +Q2

n)/vπn (1d)
for all n ∈ N 0 := N\{0}, where πn is the parent bus of
bus n and Cn is the children set of bus n. ℓn, Pn, and Qn

denote the squared current magnitude, the active and reactive
power through the transmission line (πn, n) ∈ E , connecting
bus n from its parent bus πn, and rn and xn denote the
resistance and reactance of the corresponding transmission
line. Furthermore, pn and qn represent active power and
reactive power injections at bus n given by
∀n ∈ G ∩ B, pn = pgn − pdn − pcn, qn = qgn − qdn,

∀n ∈ G\B, pn = qgn − pdn, qn = qgn − qdn,

∀n ∈ B\G, pn = −pcn − pdn, qn = −qdn,

∀n ∈ N\(G ∪ B), pn = −pdn, qn = −qdn
(1e)

with (pdn, q
d
n) the load power demand at bus n ∈ N , (pgn, q

g
n)

the power generation at bus n ∈ G, and the aggregative
charging demand pcn at bus n ∈ B.

The primary objective of the distribution system operator
(DSO) is to operate the distribution grid within safe system
limits while maximizing revenue by regulating electricity
prices. Therefore, the OPF is employed to seek a determin-
istic solution:

min
pg,qg,α

∆t ·
(∑

n∈G
cn · pgn −

∑
n∈B

αn · pcn

)
(2a)

subject to (pg,qg,α) ∈ Ω with Ω := (2b)
pg

qg

α


∣∣∣∣∣∣∣∣∣

∃P,Q,v, ℓ,p,q such that (1) holds∑
k∈C0

Pk = p0,
∑

k∈C0
Qk = q0,

pgn ∈ [pg
n
, pgn], q

g
n ∈ [qg

n
, qgn],

vn ∈ [vn, vn], ℓn ∈ [0, ℓn], αn ≤ [αn, αn]


with given (pdn, q

d
n) for all n ∈ N , pcn for all n ∈ B and the

price bound (αn, αn) for all n ∈ B.
The objective function (2a) is calculated as the differ-

ence between generation cost and the income from selling
electricity to EVs. Here, coefficient cn defines the price
of generation power, and decision variable αn defines the
price of electricity for EV charge/discharge. The convex
set Ω encompasses all power flow equations (1), as well as
system limits on power generations (pg , qg), squared voltage
magnitude v and transmission lines in terms of squared
current ℓ. Note that, in the present paper, we set cn, αn > 0
for all bus n to ensure the conic relaxation (1d) is exact.

Remark 1 (Exact Relaxation [2]) Given a radial grid, the
conic relaxation of the OPF problem in the branch flow
model is exact, if the cost function is convexity and strict
increase in the line losses.

B. EV Charging Control Using MPC

Each EV connected to the distributed grid influences the
demand side of the system. The primary impact of EVs on
the grid comes from their batteries’ charging or discharging
behavior. In the present paper, we consider the linear battery
model, and the battery dynamic model of EV i is given by

SoCi(k + 1) = βi · SoCi(k) + ∆t · ui(k) (3)
with state of charge SoCi(k) and charge/discharge rate ui(k)
at time instant tk, and ∆ the charge/discharge interval. Here,
constants βi ∈ (0, 1] represent efficiencies for self-discharge
conversion, respectively. Given the recursive structure of
the individual system equation (3), the future SoCi(k),
k = 1, ..., N , are determined only by inputs ui(k − 1) =
[ui(0), ..., ui(k − 1)]⊤ and the initial state SoCi(0), in
particular

SoCi(k) = βk
i · SoCi(0) + ∆t ·

k−1∑
j=0

βk−j−1 · ui(j). (4)

Moreover, we consider the economic cost for each time stage
Li(ui(k), αn(k)) = αn(k) ·∆t · ui(k) + σi · ui(k)

2,

which is parametric over the electricity price αn(k) at time
instant tk. In this scenario, we assume that vehicle i ∈ Mn
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is connected via the charge station at bus n. Therefore, the
first term represents the cost of charging if ui(k) > 0, and it
is the income from selling electricity to the grid otherwise.
The second term penalizes the charge/discharge efforts with
σi > 0. We further consider state and input constraints

SoCi(k) ∈ [0, Ci], ui(k) ∈ [ui, ui], (5)
where Ci is the battery capacity, ui ≤ 0 and ui ≥ 0 define the
bounds of the charging and discharging rates, respectively.
To guarantee the recursive feasibility of the MPC scheme,
we propose to transform (5) into the cost by using a
relaxed logarithmic barrier function b̃(SoCi(k), ui(k)) with
weighting parameter ρi > 0 and
b̃i(SoCi(k + 1),ui(k)) := wi,1 · b(SoCi(k + 1))

+ wi,2 · [b(Ci − SoCi(k + 1)) + ln(Ci)]

+ wi,3 · [b(ui(k)− ui(k)) + ln(−ui(k))]

+ wi,4 · [b(ui(k)− ui(k)) + ln(ui(k))]

with weights wi,k > 0, k = 1, 2, 3, 4, which are chosen to
ensure ∇b̃i(0, 0) = 0. Here, function b denotes the relaxed
logarithmic barrier function by

b(z) =


− ln(z) if z > δ

1

2

((
z − 2δ

δ

)2

− 1

)
− ln(δ) if z ≤ δ

(6)

with relaxation parameter δ > 0, which is globally twice
continuously differentiable and convex. The function b(·)
approximates the standard log-barrier function with δ → 0.
More details about b(·) refers to [3, Chapter 3].

Now, we can summarize the relaxed MPC problem into
the following unconstrained convex nonlinear program,

∀ i ∈ Mn, u⋆
i (αn) := argmin

ui

Vi(ui;αn) (7)

with the objective
Vi(ui;αn) := ηK · (SoCi(K)− SoCc

i )
2

+

K−1∑
k=0

Li(ui(k), αn(k)) + ηi · b̃i(SoCi(k + 1), ui(k))

parametric over the price sequence αn = [αn(0), ..., αn(N−
1)]⊤, and K the length of prediction horizon. Here, we
consider a terminal cost with SoCc

i the expected SoC of EV
i at the end of the prediction horizon, ηi for all i ∈ ZK

0 are
positive weighting parameters, the solution map u⋆

i (·) is a
function of αn. Here, Vi is also parametric over the initial
state SoCi(0) but for notation simplification, we ignore it in
the arguments of Vi.

Remark 2 By the definition of Li, for any given αn, we
have the objective function Vi(·;αn) of (7) is strongly convex
and twice continuously differentiable while its gradient is
Lipschitz continuous, i.e., we have B ·IN ⪯ ∇2

uVi(ui;αn) ⪯
B · IN with B,B > 0.

C. Bilevel Optimization Based Pricing Formulation

In this section, we propose a bilevel optimization-based
pricing formulation. For this purpose, we introduce pcn(k)
as decision variables at the time stage k. These variables
are based on the charge/discharge rate of EV i, we consider

additional constraints∑
i∈Mn

ui(k) ≤ pcn(k), n ∈ B (8)

in the OPF problem (2), similar to the budget constraint in
the resource allocation problem. Moreover, we bound pcn to
constrain the injection at bus n ∈ B by pcn ∈ [pc

n
, pcn].

Next, we rewrite the OPF problem into a compact form,
min

z(k),α(k)
f(z(k),α(k),u(k)) (9a)

s.t. (z(k),α(k)) ∈ Ω(k), (9b)
with objective function
f(z(k),α(k),u(k)) := ∆t ·

∑
n∈G

cn · pgn−

∑
n∈B

(
αn ·∆t · pcn − ωn · b

(
pcn(k)−

∑
i∈Mn

ui(k)

))
,

which is smooth and nonconvex, and weights ωn > 0. Here,
z stacks the decision variables (pg,qg,pc), u(k) stacks
all ui(k), i ∈ M :=

⋃
n∈B Mn, and we reformulate

the constraint (8) into the objective by using the relaxed
barrier function. The main motivation of this constraint
reformulation is to transfer the coupling between the upper-
and lower-level problems from the constraint to the objective.
As a result, the later algorithm design only requires DSO
and EVs to exchange the primal information but without
dual information. Constraint set Ω := Ω× [pc,pc] includes
the bounds of pc into Ω. This results in the following
proposition.

Proposition 1 Constraint set Ω is convex and compact.

It is obvious that Ω is convex due to the relaxed DistFlow
model (1). The compactness holds following the fact that we
have box constraints for every entry of z.

Remark 3 We consider power demand pdn, bounds for pg ,
qg , pc and α are time-varying such that Ω(k) is time-
varying.

Next, we take the action of EVs into account and construct
the following bilevel optimization for real-time pricing in
V2G systems,

min
(Z,A)∈Θ

F (Z,A,U∗) :=

K−1∑
k=0

f(z(k),α(k),u∗(k)) (10a)

subject to U∗ := argmin
U

V (U;A) (10b)

with V (U;A) :=
∑

i∈M Vi(ui;αn), where u(k) and u⊤
i

are the k-th column and i-th row of matrix U, respectively,
α(k) and α⊤

n are the k-th column and i-th row of matrix A,
Z = [z(0), ..., z(N − 1)] stacks z(k) for all k ∈ ZN−1

0 , and
constraint set Θ is given by Θ := Ω(0)× · · · × Ω(N − 1).

Dealing with (10) using the classical KKT-based approach
presents significant challenges. This approach requires in-
corporating the KKT optimality conditions of the lower-
level problems into the upper-level problem as additional
nonconvex constraints. In particular, managing the resulting
nonconvex optimization problem becomes difficult when a
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large number of EVs are connected to the distribution grid.
To this end, in the following section, we will propose a
distributed bilevel optimization to solve (10), which can be
easily scaled up.

III. REAL-TIME PRICING MECHANISM FOR V2G
In this section, we introduce a bilevel optimization algo-

rithm to deal with (10) in a distributed way, and based on
this algorithm, a real-time pricing mechanism for V2G is
then proposed in a receding horizon fashion.

A. Distributed Bilevel Optimization

The proposed algorithm has two main steps, the first step
constructs a hypergradient-based approximate solution map
for the lower-level problem and the second step then solves
the upper-level problem by substituting the approximate
solution into the problem. At κ-th iteration, each EV solves
the lower-level MPC problem (10b) to optimal based on
the current price ακ

n received from DSO in parallel for all
i ∈ M, i.e.,

uκ+1
i := argmin

ui

Vi(ui;α
κ
n). (11)

Based on the local solution uκ+1
i , we can construct the

approximation of solution map u⋆
i (·) by

ũκ
i (αn) = u⋆

i (α
κ
n) +

du⋆
i (α

κ
n)

dαn
(αn −ακ

n) (12)

with u⋆
i (α

κ
n) = uκ+1

i hyper-gradient du⋆
i (α

κ
n)

dαn
given by

du⋆
i (α

κ
n)

dαn
= −

[
∂2Vi(u

κ+1
i ;ακ

n)

∂u2
i

]−1 [
∂2Vi(u

κ+1
i ;ακ

n)

∂ui∂αn

]
.

Here, the Hessian matrix is always invertible as Vi is strongly
convex and twice continuously differentiable over ui. Once
the DSO receives Ũκ(·) from all EVs, the upper-level
problem is solved

(Zκ+1,Aκ+1) := argmin
(Z,A)∈Θ

F̃κ
ρ (Z,A, Ũκ(A)), (13)

where the objective is given by the quadratic function
F̃κ
ρ (Z,A, Ũκ(A)) :=

⟨∇ZF (Zκ,Aκ, Ũκ(Aκ)),Z− Zκ⟩+ ρ

2
∥Z− Zκ∥2F

+⟨∇AF (Zκ,Aκ, Ũκ(Aκ)),A−Aκ⟩+ ρ

2
∥A−Aκ∥2F .

with penalty parameter ρ > 0 and the hyper-gradient
∇AF (Zκ,Aκ, Ũκ(Aκ)) is given by

∂AF (Zκ,Aκ, Ũκ)⊤ +
〈dŨκ(Aκ)

dA , ∂UF (Zκ,Aκ, Ũκ)⊤
〉
.

Lemma 1 Solving Problem (13) is equivalent to one step of
the projected gradient descent method with step size 1/ρ for
solving the original problem

min
(Z,A)∈Θ

Φ(Z,A) := F (Z,A,U⋆(A)). (14)

This follows the fact of dŨκ(Aκ)/dA = dU⋆(Aκ)/dA
given by (12). To analyze the convergence of the proposed
algorithm, we introduce the equivalent projected gradient
step following Lemma 1 using the notation[

Zκ+1

Aκ+1

]
= ProjΘ

([
Zκ − 1/ρ · ∇ZΦ(Z

κ,Aκ)

Aκ − 1/ρ · ∇AΦ(Zκ,Aκ)

])
(15)

Now, we can summarize the convergence result as follows.

Theorem 1 Let ρ chosen satisfying ρ > τ/2. If one execute
κ iterations of (11) and (13) to deal with bilevel optimization
problem (10), there exists a constant µ > 0 such that the
following inequality holds,

1

κ

κ−1∑
κ=0

∥∥∥∇̂Φ(Zκ,Aκ)
∥∥∥2 ≤ Φ(Z0,A0)− Φ∗

µ · κ (16)

with Φ∗ = min(Z,A)∈Θ Φ(Z,A) and ∇̂Φ(Zκ,Aκ) :=

ρ ·
(
ProjΘ

([
Zκ − 1/ρ · ∇ZΦ(Z

κ,Aκ)

Aκ − 1/ρ · ∇AΦ(Zκ,Aκ)

])
−
[
Zκ

Aκ

])
the generalized projected gradient at κ-th iteration [11].

The proof of Theorem 1 can be found in the appendix.
This theorem implies that the iteration (Zκ,Aκ) converges
to a stationary point (Zs,As) with

s := argmin
κ

∥∥∥∇̂Φ(Zκ,Aκ)
∥∥∥2

for the constrained bilevel optimization problem (10), whose
generalized projected gradient norm sublinearly decays. No-
tice that we adopt the stationary point as the convergence
criterion here due to the nonconvexity of the upper-level
objective function Φ.

B. Receding Horizon Based Real-Time Pricing

Algorithm 1 outlines the proposed real-time pricing
scheme. It is executed in a receding horizon fashion due
to the decision-making of the lower-level MPC-based EV
charging. One can see that the main idea of Algorithm 1
is approximately solving the bilevel pricing problem (10) at
each time stage using one iteration of the proposed algorithm
in Section III-A and then, shift the horizon with applying the
first control input of the lower-level MPC solution.

Algorithm 1 Real-Time Pricing Scheme for V2G
Initialization:

• DSO chooses ρ > 0 such that ρ > τ/2 and set cl = 0;
• initializes a feasible guess (Zcl,Acl) ∈ Θcl.

Online:
1) Lower-level phase: EVs connected to the distribution grid in

parallel,
a) based on the current price at the charge station and the

current SoC, solve
Ucl = argmin

U
V(U;Acl) :=

∑
i∈M

Vi(ui;α
cl
n );

b) construct the approximate solution map Ũcl(A) and
send it to DSO;

c) apply u∗
i (0) the first optimal input to charge or dis-

charge in one slot.
2) Upper-level phase: DSO deals with

(Zcl+1,Acl+1) := argmin
(Z,A)∈Θcl

F̃ cl
ρ (Z,A, Ũcl(A))

to update the price and set cl← cl + 1.

In Algorithm 1, DSO needs to start with a feasible point,
i.e., (Z0,A0) ∈ Θ0. This could be easily achieved by first
initializing a feasible price for a time window with length
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K > 0 and then, dealing with the OPF problem with
fixed prices and ignoring the EVs. During the closed-loop,
EVs connected with the distribution grid first deal with the
lower-level MPC problem (11) based on the current initial
value of SoC and the current price sequence αn at all bus
n ∈ B. In practice, this unconstrained convex nonlinear
program could be efficiently solved by using the Newton-
type method. The solution is then used to construct the
map Ũcl(·), where cl is the closed-loop index. At the same,
the first control input u∗

i (0) is applied to the process as a
fixed charge/discharge rate for a time slot ∆t. As the pricing
mechanism is essentially a leader-follower problem, the DSO
recomputes the shifted price by solving (13) after it receives
the local solution map approximation. Here, the constraint
set Θcl is adapted only such that it is time-varying.

IV. NUMERICAL CASE STUDY

In this section, we validate the proposed algorithms using
benchmark data and conduct analyses of the algorithm’s
performance in the closed-loop setting.

A. Experiment Setting

The distribution grid model is built based on the IEEE
15-bus benchmark using MATPOWER 7.1 toolbox, where
a generator is situated at the root node of the power grid.
At the upper level, generation coefficients are set to cn =
0.2 $/kW for all n ∈ G, and the electricity price is bounded
as α ∈ [0.5 $/kW · h, 1 $/kW · h]. In the lower-level MPC
problem, the parameter of the logarithmic barrier function
is δ = 0.0001. The capacity of each EV is given by Ci =
100 kW ·h. The initial SoC and expected SoCc

i are randomly
initialized. We conduct tests with different horizon lengths
with K ∈ {3, 5, 10} and different numbers of EVs |M| ∈
{10, 30, 100}. For the open-loop configuration, we assume
the initial value of the SoC for the EV remains constant
in each iteration. Then we analyze the convergence of the
algorithm. For the closed-loop configuration, the EV at the
lower level adjusts its behavior based on electricity prices
and modifies its SoC accordingly, implying that the initial
state differs in each iteration. We utilize CAsaDi to solve
the OPF problem as well as the MPC problem. Moreover,
we execute our experiment with different prediction horizons,
K = 5 and K = 10.

B. Closed-Loop Performance

In this section, we evaluate our model within a closed-
loop framework under various horizon settings. Specifically,
we operate under the assumption that across the entire
distribution grid, all charging stations adhere to a uniform
electricity pricing structure at each time interval. Our ex-
periments simulate a practical plug-and-play scenario, ac-
commodating the dynamic nature of electric vehicle (EV)
interactions—where certain EVs are compelled to depart
at predetermined times while others arrive at the charging
stations at specific moments. Here, we consider 10 EVs
connected to the IEEE 15-bus benchmark grid via 3 charge
stations.

Figure 1 provides a comprehensive view of the collective
power consumption by electric vehicles (EVs) at charging
stations. Figure 2 and 3 show the operation costs for the
DSO and the corresponding pricing strategies over the same
timeframe, with two predictive horizons, respectively. These
two plots illustrate how costs and pricing fluctuate in tandem
with power usage patterns. This reflects a dynamic pric-
ing model that adjusts in real-time to demand and supply
changes, a crucial mechanism for maintaining grid balance
and promoting energy consumption when it is most abundant
and least costly. Additionally, the pattern of these fluctuations
mirrors the dynamics of a Stackelberg game, where, at the
point of dynamic equilibrium, neither the DSO nor the
consumers reach an optimal point, highlighting the complex
interplay between supply, demand, and pricing strategies.
These fluctuations in cost and pricing harmonize with the
observed trends in power consumption, showcasing a closed-
loop pricing scheme that skillfully adapts to immediate
demand-side dynamics.
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Fig. 2. Operation cost of distribution system

V. CONCLUSION

This study addresses the challenges of integrating EVs
into the distribution grid, highlighting the limitations of
conventional pricing mechanisms in accommodating EVs as
both consumers and suppliers, as well as energy storage
units. We propose an innovative real-time pricing strategy
using distributed bilevel optimization, clearly defining the
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Fig. 3. Real-time electricity price

roles of the DSO and EVs, with both aiming to maximize
profits. Our model incorporates power flow constraints at the
DSO level for efficient and secure grid operation and uses
MPC to precisely manage EV charging and discharging. The
approach’s effectiveness and robustness are demonstrated
through detailed convergence analysis.

APPENDIX

As the objective Φ(Z,A) includes three terms, a linear term,
a bilinear term, and a relaxed barrier term such that it is twice
continuously differentiable and its gradient is Lipschitz, i.e., there
exists a constant τ > 0 such that

Φ(Zκ+1,Aκ+1)− Φ(Zκ,Aκ) (17)

≤ ⟨∇ZΦ(Z
κ,Aκ),Zκ+1 − Zκ⟩+ τ

2

∥∥Zκ+1 − Zκ
∥∥2

+

⟨∇AΦ(Zκ,Aκ),Aκ+1 −Aκ⟩+ τ

2

∥∥Aκ+1 −Aκ
∥∥2

.

Then, following Lemma 1, the nonexpansiveness of projection
operation yields〈[

Zκ − 1/ρ · ∇ZΦ(Z
κ,Aκ)− Zκ+1

Aκ − 1/ρ · ∇AΦ(Zκ,Aκ)−Aκ+1

]
,

[
Zκ − Zκ+1

Aκ −Aκ+1

]〉
≤ 0,

which can be rewritten as〈[∇ZΦ(Z
κ,Aκ)

∇AΦ(Zκ,Aκ)

]
,

[
Zκ − Zκ+1

Aκ −Aκ+1

]〉
≥ ρ

∥∥∥∥[ Zκ − Zκ+1

Aκ −Aκ+1

]∥∥∥∥2

.

Substituting this inequality and (15) into (17) yields

Φ(Zκ+1,Aκ+1)− Φ(Zκ,Aκ) ≤
(

τ

2 · ρ2 −
1

ρ

)∥∥∥∇̂Φ(Zκ,Aκ)
∥∥∥2

.

As ρ is chosen with ρ > τ/2, we define µ = 1
ρ
− τ

2·ρ2 > 0 such
that conducting the telescoping for the inequality above yields

µ ·
κ−1∑
κ=0

∥∥∥∇̂Φ(Zκ,Aκ)
∥∥∥2

≤ Φ(Z0,A0)− Φ(Zκ,Aκ)

≤ Φ(Z0,A0)− Φ∗.

Then, both side times κ/µ concludes the proof.
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