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Abstract— This paper presents an online parameter update
algorithm in the context of composite model reference adap-
tive control based on intermittent signal holding to improve
convergence properties of the parameters representing the un-
structured uncertainties in the absence of persistent excitation.
The present study extends the algorithm which was previously
developed by considering only the structured uncertainties for
which the basis functions are known a priori. The proposed
extension utilises the Gaussian radial basis function neural
network as the model for the uncertainty assuming appropriate
placement of the local basis functions in the state space.
A notable distinction from the case with full knowledge of
the features constituting the linearly-parameterised uncertainty
model is that the extended algorithm introduces a robustifying
modification in the earlier phase of operation to deal with the
inevitable learning residual.

I. INTRODUCTION

Online model learning endows an autonomous system with
the capability to improve its state prediction accuracy over
time, enabling more precise and efficient planning/control
using the learned model. In general, a parametric control-
oriented model for the system dynamics can be optimised
either separately or jointly with a parametric controller for
the system-level performance with respect to a given task,
bearing a wide range of possibilities in the definition of
objective. In this perspective, online model learning can be
formulated as the problem of minimising the state prediction
error described using the online acquired trajectory data.
Recent studies clearly show that an accurate dynamic model
is not necessary but sufficient for optimal downstream task
performance [1], [2]. The optimality of predictive planning
and control methods directly benefit from the improved
accuracy of the learned model parameters.

Robustly stable and accurate online model learning re-
quires a careful design for both exploration and exploitation
aspects. In the context of adaptive control, online model
learning is often referred to as long-term learning or slow
adaptation to highlight the point that a system needs certain
period of time to collect enough information for identifying
the uncertain part of the model and to process the informa-
tion. Regarding the exploration side of the task, the trajectory
data should be rich enough to provide a large information
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gain. Regarding the exploitation side of the task, the loss
function associated with the model learning objective should
be constructed to enforce strict convexity with respect to the
parameter, provided that the optimiser employed is capable
of converging to a local minimum of the loss function
supplied.

From the perspective that views parameter evolution over
time according to an update algorithm as the result of an
optimisation problem solver unrolled in time, the non-strict
convexity of the loss function associated with the model
learning task with respect to the parameter is detrimental
to the stability and convergence characteristics of the overall
closed-loop system. The non-uniqueness of the solution to
the optimisation problem, i.e., the multitude of local minima
of the loss function, which can essentially be the infinitude
of feasible fitting solutions manifests itself as the parameter
staying at an undesired point or even drifting along the
connected set of feasible points possibly in an unbounded
manner.

On one hand, explicit regularisation as a remedy can
enforce strict convexity and enhance robustness, however, at
the cost of possibly shifting the minimum point from the true
parameter to an arbitrary value. On the other hand, assuring
persistent excitation as a remedy does not change the loss
function itself, however, relying on persistent excitation for
convergence of parameters in classical estimation algorithms
is unreasonable since stable control precedes accurate learn-
ing in most practices.

To overcome the difficulties arising from the stringent
requirement of persistent excitation, various methods have
been developed to ensure parameter convergence under a
more relaxed condition such as the finite excitation in
the initial interval in the context of composite adaptive
control [3]–[5]. The effectiveness of composite adaptation
for stable simultaneous learning and control in an adaptive
control system has already been well understood in the
earlier studies [6]–[8]. However, classical parameter estima-
tion schemes for linearly-parameterised models such as the
instantaneous gradient-based or the recursive least squares
estimators depend on the persistency of excitation in order to
guarantee parameter convergence. In the classical methods,
the information matrix given by the rank-deficient outer
product of the basis function at each instance is the main
cause rendering the loss function to be non-strictly convex.
The concurrent learning algorithm presented in [9]–[11]
addressed the rank-deficiency by utilising a set of recorded
historical data together with the current measurement to
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populate the information matrix to full rank over time. The
composite adaptation algorithm presented in [12] utilised
the Kreisselmeier’s memory regressor extension scheme as
reviewed in [4] together with an intermittent signal holding
algorithm to avoid ill-conditioned information matrix. Ex-
ponential parameter convergence could be guaranteed in the
structured uncertainty case assuming only finite excitation.

This study mainly aims to extend the design and analysis
of the adaptation algorithm developed in [12] only for the
case of structured uncertainties to deal with unstructured
uncertainties. The extended algorithm considers a shallow
learning model known as the Gaussian radial basis function
neural network for the approximate representation of the
uncertainty. The key difference from the structured uncer-
tainty case lies at the presence of the inevitable learning
residual, leading to the necessity of robustifying modification
in the design as well as the changes in the stability analysis
concluding uniform ultimate boundedness.

The rest of the paper is organised as follows: The pre-
liminaries and problem formulation are given in Sec. II. In
Sec. III, the extended adaptation law is designed to deal
with unstructured uncertainty and its stability is analysed
assuming finite excitation. Concluding remarks are provided
in Sec. IV.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section describes the definitions of excitation con-
ditions and the formulation of a state feedback Model
Reference Adaptive Control (MRAC) problem.

A. Preliminaries

In the followings, let ∥·∥, ∥·∥max, and ∥·∥F denote the in-
duced 2-norm, the elementwise max norm, and the Frobenius
norm, respectively. Also, let (⃗·), λmin (·), and λmax (·) denote
the columnwise vectorisation, the minimum eigenvalue, and
the maximum eigenvalue of a matrix, respectively. Then, for
example, V (t) := 1

2e
TPe+ 1

2 tr
(
W̃TΓw

−1W̃
)

satisfies

1

2
λmin (P) ∥e (t)∥2 ≤ 1

2
eTPe ≤ V (t)

1

2
λmin

(
Γw

−1
) ∥∥∥W̃ (t)

∥∥∥
F

2

≤ 1

2
tr
(
W̃TΓw

−1W̃
)
≤ V (t)

(1)

Note that λmin (P) > 0 for P > 0, and λmin

(
Γw

−1
)
> 0

for Γw > 0.

Lemma 1 (Bounded-Input Bounded-State Stability of Linear
Time-Invariant System). For a linear time-invariant system
ẋ = Ax + Bu where x ∈ Rn×1 and u ∈ Rm×1, if A is
diagonal and Hurwitz, x (t0) = 0, and sup

τ∈[t0,t]

∥u (τ)∥ = ū,

then

∥x (t)∥ ≤ ∥B∥ ū
|λmax (A)|

(2)

The main objective of this study is to extend the parameter
estimation algorithm proposed in [12] assuming structured
uncertainty to unstructured uncertainty for improved param-
eter convergence characteristics under a limited degree of

excitation. The excitation conditions are formally defined as
below.

Definition 1 (Finite Excitation). A bounded vector signal
v (t) verifies Finite Excitation (FE) condition over a finite
time interval [ts, ts + T ], if there exist T > 0, ts ≥ t0, and
γ > 0 such that∫ ts+T

ts

v (τ)vT (τ) dτ ≥ γI > 0 (3)

Definition 2 (Persistent Excitation). A bounded vector signal
v (t) verifies Persistent Excitation (PE) condition, if there
exist T > 0 and γ > 0 such that∫ t+T

t

v (τ)vT (τ) dτ ≥ γI for ∀t ≥ t0 (4)

B. Problem Formulation

1) System Dynamics: Consider a class of uncertain linear
Multi-Input Multi-Output (MIMO) dynamic system given by

ẋp (t) = Apxp (t) +Bp (u (t) +∆ (xp (t)))

z (t) = Hpxp (t)
(5)

where xp (t) ∈ Rnp×1 is the state which is assumed to
be fully measurable, u (t) ∈ Rm×1 is the control input,
z (t) ∈ Rm×1 is the performance output, and ∆ (xp (t)) ∈
Rm×1 is the state-dependent uncertainty. Ap ∈ Rnp×np ,
Bp ∈ Rnp×m, and Hp ∈ Rm×np in Eq. (5) are known
constant matrices which satisfies i) controllability of the pair
(Ap,Bp), and ii) the linear independence of the columns in
Bp.

The objective is to achieve tracking of a given
bounded piecewise continuous command zcmd (t) ∈ Rm×1

with the performance output z (t). Augmenting Eq. (5)
with the integrated output tracking error ezI (t) ≜∫ t

t0
(z (τ)− zcmd (τ)) dτ yields the extended system as fol-

lows
ẋ (t) = Ax (t) +B (u (t) +∆ (xp (t))) +Brzcmd (t)

z (t) = Hx (t)
(6)

where x ≜

[
xp

ezI

]
∈ Rn×1 with n = np +m is the extended

state vector and

A ≜

[
Ap 0np×m

Hp 0m×m

]
∈ Rn×n, B ≜

[
Bp

0m×m

]
∈ Rn×m

Br ≜

[
0np×m

−Im×m

]
∈ Rn×m, H ≜

[
Hp 0m×m

]
∈ Rm×n

(7)

Note that (A,B) is controllable if and only if (Ap,Bp) is

controllable and det

([
Ap Bp

Hp 0m×m

])
̸= 0.

2) Models of Uncertainty: The uncertainty ∆ (xp (t)) can
be modelled by function expansion using artificial basis
functions in the absence of structural knowledge. The only
thing available about the uncertainty is that it is known to be
continuous and defined over a compact domain Dp ⊂ Rnp×1.
A function approximator with the universal approximation
capability can be used to model the uncertainty in this case.
Among various function approximation schemes, the Radial
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Basis Function Neural Network (RBF NN) will be used
in this study, because better simplicity of further analysis
is expected owing to its linear-in-parameter structure. The
following assumption is satisfied for the unstructured uncer-
tainty.

Assumption 1 (Unstructured Uncertainty).
Let σi (xp (t)) denote a Gaussian RBF with its center at ci
and its width of µi, which is defined as follows,

σi (xp) = exp

(
−∥xp − ci∥2

µi

)
(8)

and let Σ (xp) =
[
1 σ2 (xp) · · · σq (xp)

]T ∈ Rq×1 be
the RBF vector. According to the universal approximation
capability of RBF NN [13], there exists a unique constant
ideal parameter W∗ ∈ Rq×m that approximates the uncer-
tainty ∆ (xp (t)) ∈ Rm×1 as closely as possible with a fixed
number of given RBFs such that

∆ (xp (t)) = W∗TΣ (xp (t)) + ω (xp (t)) (9)

holds for ∀xp ∈ Dp ⊂ Rnp×1. In Eq. (9), ω (xp (t)) is
the minimal approximation error vector. Note that ω ≜
sup

xp∈Dp

∥ω (xp (t))∥ can be arbitrarily small with sufficiently

large number of RBFs at the cost of computation load.

3) Model Tracking Error Dynamics: The MRAC design
philosophy is to synchronise the system state with the state
of a reference model representing the desired closed-loop
response. A reference model is the ideal closed-loop system
obtainable with the baseline control law for the nominal
system. Let us assume that there exists a full-state feedback
baseline control law ubase = −Kx such that the gain K
satisfies Ar = A − BK for a given Hurwitz matrix Ar.
Then, the reference model can be represented as

ẋr (t) = Arxr (t) +Brzcmd (t)

zr (t) = Hxr (t)
(10)

Given Ar is Hurwitz, there exists a symmetric positive
definite matrix P ∈ Rn×n satisfying the following Lyapunov
equation

Ar
TP+PAr +Q = 0 (11)

for any symmetric positive definite matrix Q ∈ Rn×n

The control law for the uncertain system of Eq. (6) can
be designed as

u = ubase − uad = −Kx− uad (12)

where ubase represents the baseline control law, and uad
represents the adaptive input. Then, the model tracking error
defined as e (t) ≜ xr (t)−x (t) evolves over time according
to

ė (t) = Are (t) +Bϵ (t) (13)

where ϵ (t) = uad (t) − ∆ (xp (t)) ∈ Rm×1 denotes the
uncertainty approximation error. The adaptive input can be

designed to cancel the uncertainty from the tracking error
dynamics as

uad (t) = ∆̂ (xp (t)) = ŴT (t)Σ (xp (t)) (14)

where Ŵ (t) denotes the estimated parameter. The estimate
Ŵ should be as close as possible to the ideal value W∗

to minimise the parameter estimation error denoted by
W̃ (t) ≜ Ŵ (t) − W∗. Note that ˙̃W =

˙̂
W. The model

tracking error dynamics given in Eq. (13) can be rewritten
as

ė (t) = Are (t)+B
[
W̃T (t)Σ (xp (t))− ω (xp (t))

]
(15)

Equation (15) shows that the parameter estimation error
enters into the tracking error dynamics. The interaction of
the two errors e and W̃ within the feedback loop should be
taken into account in the design of an adaptation law that
generates Ŵ.

C. Filtered System Dynamics

This section describes the regressor filtering scheme which
is similar to the one based on first-order filter as described
in [8]. From Eq. (13), we have

uad (t)−B† [ė (t)−Are (t)]

= ∆ (xp (t)) = W∗TΣ (xp (t)) + ω (xp (t))
(16)

where (·)† denotes the Moore-Penrose pseudoinverse. The
column linear independence of Bp assures full column rank
of B. Therefore, B† =

(
BTB

)−1
BT . Assuming e (t0) = 0

without loss of generality, the Laplace transform of Eq. (16)
can be written as

uad (s)−B† (sIn×n −Ar) e (s)

= ∆ (xp) = W∗TΣ (s) + ω (s)
(17)

Consider a stable linear first-order low-pass filter represented
as F (s) = 1

τfs+1 with τf > 0. Multiplying both sides of Eq.
(17) by F (s) yields the filtered uncertainty as

uadf (s)−B†
[
1

τf
e (s)−

(
1

τf
In×n +Ar

)
ef (s)

]
= ∆f (xp) = W∗TΣf (s) + ωf (s)

(18)

where the subscript f is used to denote a signal filtered
by F (s), i.e., αf (s) = F (s)α (s). The inverse Laplace
transform of Eq. (18) yields the filtered system dynamics as
follows:

χ (t) ≜ ξ (t)− 1

τf
B†e (t) = W∗Tη (t) + δ (t) (19)

ξ̇ (t) =
1

τf

[
uad (t) +B†

(
1

τf
In×n +Ar

)
e (t)− ξ (t)

]
(20)

η̇ (t) =
1

τf
(Σ (xp (t))− η (t)) (21)

δ̇ (t) =
1

τf
(ω (xp (t))− δ (t)) (22)

with ξ (t0) = 0m×1, η (t0) = 0q×1, δ (t0) = 0m×1

The output χ (t) is a function of known signals ξ (t) and
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e (t), and the filtered regressor η (t) is also a known signal.
Therefore, the system described by Eqs. (19)-(22) provides
the equations to perform linear regression.

III. UNCERTAINTY LEARNING UNDER FINITE
EXCITATION

This section develops a new adaptation law for the case
of unstructured uncertainty by extending the algorithm pre-
sented in [12] and discussed in [4] which was developed
assuming full knowledge of the basis function for the un-
certainty. Also, this section presents the analysis of stability
and performance of the overall closed-loop system under the
proposed scheme.

A. Design of Adaptation Law

Let us assume FE in the filtered regressor.

Assumption 2 (Finite Excitation of Filtered Regressor). The
filtered regressor η (t) verifies FE over [ts, te].

The learning residual δ is generally nonzero for the
unstructured uncertainties. It can be inferred from Eq. (19)
that the unknown parameter W∗ can be estimated with some
nonremovable amount of bounded error from the measurable
signals χ (t) and η (t). This intuition will be shown later as
the exponentially convergent ultimate uniform boundedness
around the neighborhood of

(
e,W̃

)
= (0,0).

Let the information matrix Ω (t) and the auxiliary matrix
M (t) be defined by

Ω̇ (t) = −k (t)Ω (t) + η (t)ηT (t)

Ṁ (t) = −k (t)M (t) + η (t)χT (t)
(23)

with Ω (t0) = 0q×q and M (t0) = 0q×m where k (t) is a
scalar forgetting factor satisfying 0 < kL ≤ k (t) ≤ kU .
One possible example introduced in [12] for the design of
forgetting factor is to set

k (t) = kL + (kU − kL) tanh (ϑ ∥η̇∥) (24)

where ϑ > 0 is a constant design parameter, and η̇ is
calculated according to Eq. (21).

Central to the adaptation algorithm of [12] is the idea
of intermittent signal holding which is to perform selective
update of the adequate information matrix Ωa (t) and the
adequate auxiliary matrix Ma (t) as follows:

ta ≜ max

{
argmax
τ∈[t0,t]

F (Ω (τ))

}
Ωa (t) ≜ Ω (ta)

Ma (t) ≜ M (ta)

(25)

where F (·) represents a chosen metric for quantifying the
quality of information matrix. The intention behind perform-
ing selective update as described in Eq. (25) is to ensure
monotonic increase in F (Ωa (t)), i.e., dF(Ωa(t))

dt ≥ 0 for
∀t ≥ t0. One representative example for the choice of the
information measure is to set F (·) = λmin (·).

The new adaptation law for the unstructured uncertainty
case is proposed as follows:

˙̂
W (t) =



−Γw

[
Σ (xp (t)) e

T (t)PB

+ R
(
Ωa (t)Ŵ (t)−Ma (t)

)
+ κŴ (t)

]
if rank (Ωa (t)) < q

−Γw

[
Σ (xp (t)) e

T (t)PB

+ R
(
Ωa (t)Ŵ (t)−Ma (t)

)]
if rank (Ωa (t)) = q

(26)

where Γw > 0 is a constant adaptation gain matrix, κ > 0
is a constant scalar gain for the robustification term, R > 0
is a scalar relative weight on the parameter-estimation-based
modification term, and P = PT > 0 is the solution of Eq.
(11) for a given Q = QT > 0.

B. Stability and Performance Analysis

The solution of Eq. (23) can be written as

Ω (t) =

∫ t

t0

exp

(
−
∫ t

τ

k (ν) dν

)
η (τ)ηT (τ) dτ

M (t) =

∫ t

t0

exp

(
−
∫ t

τ

k (ν) dν

)
η (τ)χT (τ) dτ

(27)

From Eqs. (19) and (27), it is clear that

M (t) = Ω (t)W∗ +N (t) (28)

where

N (t) =

∫ t

t0

exp

(
−
∫ t

τ

k (ν) dν

)
η (τ) δT (τ) dτ (29)

Let us consider λmin (·) for F (·) in Eq. (25). It is obvious
from Eqs. (25) and (28) that

Ma (t) = Ωa (t)W
∗ +Na (t) (30)

where Na (t) ≜ N (ta).
In Lemma 2, the adequate information matrix is shown to

be positive definite after FE. Using this result, the stability
of the equilibrium point is shown in Theorem 1, and the
transient performance guarantee is given in Corollary 1.

Lemma 2 (Positive Definiteness and Minimum Eigenvalue
of Adequate Information Matrix). With the FE condition as
stated in Assumption 2 and the choice of F (·) by λmin (·),

• Ωa (t) ≥ 0 for ∀t ≥ t0.
• Ωa(t) > 0 for ∀t ≥ te.
• λmin (Ωa (t)) ≥ λmin (Ωa (te)) > 0 for ∀t ≥ te.

Proof. See [12].

In the unstructured uncertainty case, δ (t) is unknown, but
it is bounded as explained in Lemma 3. Using this result,
the boundedness of the mismatch term Na (t) is shown in
Lemma 4. The boundedness of unknown signals shown in
these Lemmas is essential in the following analysis.
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Lemma 3 (Uniform Boundedness of η (t) and δ (t)).
The signals η (t) and δ (t) are uniformly bounded as follows

∥η (t)∥ ≤ √
q

∥δ (t)∥ ≤ ω̄
(31)

Proof. It is obvious that ∥Σ (xp (t))∥ ≤ √
q, because the

Gaussian RBF given by Eq. (8) satisfies 0 < σi (xp) ≤ 1.
Also, we have ∥ω (xp (t))∥ ≤ ω̄ from Assumption 1. Then,
the bounds on η (t) and δ (t) can be obtained as Eq. (31) by
applying Lemma 1 to Eqs. (21)-(22).

Lemma 4 (Uniform Boundedness of Mismatch Term).
Let Dp be the compact set in which the RBF NN approx-
imation holds as explained in Assumption 1. If xp ∈ Dp

for ∀t ≥ t0, then the mismatch term Na (t) in Eq. (30) is
uniformly bounded as follows

∥Na (t)∥F ≤
ω̄
√
q

kL
(32)

Proof. Since 0 < kL ≤ k (t) ≤ kU , we have

0 < exp (−kU (t− τ)) ≤ exp

(
−
∫ t

τ

k (ν) dν

)
≤ exp (−kL (t− τ))

(33)

From Eq. (33) and Lemma 3, the upper bound on N (t) can
be obtained from the triangle inequality as follows:

∥N (t)∥F ≤
∫ t

t0

exp

(
−
∫ t

τ

k (ν) dν

)∥∥∥η (τ) δT (τ)
∥∥∥
F
dτ

=

∫ t

t0

exp

(
−
∫ t

τ

k (ν) dν

)
∥δ (τ)∥ ∥η (τ)∥ dτ

≤
∫ t

t0

exp (−kL (t− τ)) ω̄
√
qdτ ≤

ω̄
√
q

kL

(34)

Equation (32) is an obvious consequence of Eq. (34).

From Eqs. (15), (30), and (26), the closed-loop system
dynamics of the tracking error e and the parameter estimation
error W̃ can be written as follows:

ė = Are+B
[
W̃TΣ (xp)− ω (xp)

]
e (t0) = 0

˙̃W =


−Γw

[
Σ (xp) e

TPB+ (RΩa + κIq×q)W̃

− Na + κW∗] , if rank (Ωa (t)) < q

−Γw

[
Σ (xp) e

TPB+RΩaW̃ −Na

]
if rank (Ωa (t)) = q

(35)

The uniform ultimate boundedness of the closed-loop trajec-
tories around

(
e, ⃗̃W

)
= (0,0) is shown in Theorem 1, and

the ultimate bound is given as a performance guarantee in
Corollary 1.

Theorem 1 (Uniform Ultimate Boundedness of Errors).
Let D ≜

{
x |xp ∈ Dp ⊂ Rnp×1, ezI ∈ DI ⊂ Rm×1

}
be a

compact set where Dp is the compact set in which the RBF
NN approximation holds, i.e., ∥ω (xp)∥ ≤ ω in Dp, and DI

is an arbitrary closed bounded subset of Rm×1 containing
0m×1. Let α ≜ max

x∈D
∥x∥, and let Bα ≜ {∥x∥ ≤ α} so that

Bα ⊂ D. Consider the Lyapunov function defined by Eq.

(36), and let β be the minimum possible value of V such
that V̇ < 0 is guaranteed for all

(
e,W̃

)
outside of and at

the boundary of the set Ωβ ≜
{(

e,W̃
)∣∣∣ V (e,W̃)

≤ β
}

.

Let γ ≥ β and Ωγ ≜
{(

e,W̃
)∣∣∣ V (e,W̃)

≤ γ
}

.
Suppose that the following assumptions hold:

(i) x (t0) ∈ Bα;
(ii) V

(
e (t0) ,W̃ (t0)

)
∈ Ωγ;

(iii) The reference model is BIBO stable such that
∥xr (t)∥ ≤ α−

√
2γ

λmin(P) for ∀t ≥ t0.

Then, with the control law given by Eqs. (12) and (14),
the adaptation law given by Eq. (26), and the FE condition
as stated in Assumption 2, the trajectory e (t) and ⃗̃W (t) are
uniformly ultimately bounded for all t ≥ t0.

Proof. Consider the following positive definite and radially
unbounded Lyapunov candidate function.

V
(
e,W̃

)
=

1

2
eTPe+

1

2
tr
(
W̃TΓw

−1W̃
)

(36)

Note that V (0,0) = 0, and V
(
e,W̃

)
> 0 for ∀

(
e,W̃

)
̸=

(0,0). Let ξ ≜
[
eT ⃗̃W

T
]T

, then the Lyapunov candidate
function given by Eq. (36) is bounded from below and above
as follows:

1

2
min

{
λmin (P) , λmin

(
Γw

−1
)}

∥ξ∥2 ≤ V
(
e,W̃

)
≤ 1

2
max

{
λmax (P) , λmax

(
Γw

−1
)}

∥ξ∥2
(37)

Consider the positive definite and radially unbounded
Lyapunov candidate function given by Eq. (36). Let ξ ≜[
eT ⃗̃W

T
]T

, then the Lyapunov candidate function of Eq.
(36) is bounded from below and above as Eq. (37). As ex-
plained in Lemma 2, under the FE condition of Assumption
2, there exists te > t0 such that Ωa (t) > 0, ∀t ≥ te. There-
fore, the adaptation law given by Eq. (26) switches from
the first one to the second one at some te, as rank (Ωa (t))
becomes populated to the full rank.

Suppose that there exists the the boundary value of the
Lyapunov function, β > 0, as described in the statement of
this Theorem. The β will be clearly defined below. From
the assumption (ii), V

(
e (t0) ,W̃ (t0)

)
∈ Ωγ , it can be

shown that ∥e∥ ≤
√

2V
λmin(P) ≤

√
2γ

λmin(P) ,∀t ≥ t0, because

V
(
e,W̃

)
≥ 1

2λmin (P) ∥e∥2 for ∀t ≥ t0, Ωβ ⊆ Ωγ , and

V̇ < 0 outside Ωβ . Next, from the assumption (iii), it can
be shown that ∥x∥ = ∥xr − e∥ ≤ ∥xr∥ + ∥e∥ ≤ α for all
t ≥ t0, using the result shown above. Then, for all t ≥ t0,
x (t) ∈ D because Bα ⊂ D, and therefore the RBF NN
approximation holds.

Consider first the case of rank (Ωa (t)) < q, which
corresponds to the time interval t0 ≤ t < te. From Eqs. (11),
and (35), the time derivative of Eq. (36) along the trajectory
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of the closed-loop system can be obtained as:

V̇
(
e,W̃

)
= eTP

(
Are+B

[
W̃TΣ (xp)− ω (xp)

])
− tr

(
W̃T

[
Σ (xp) e

TPB+ (RΩa + κIq×q)W̃

− Na + κW∗])

= −1

2
eTQe− tr

(
W̃T (RΩa + κIq×q)W̃

)
− eTPBω (xp) + tr

(
W̃T [Na − κW∗]

)
(38)

Ωa (t) is only positive semidefinite while rank (Ωa (t)) < q.
Using Eq. (34), the upper bound for Eq. (38) can be obtained
as follows

V̇
(
e,W̃

)
≤ −

[
1

2
λmin (Q) ∥e∥ − c1

]
∥e∥

−
[
κ
∥∥∥W̃∥∥∥

F
− (c2 + c3)

] ∥∥∥W̃∥∥∥
F

= −1

2
λmin (Q)

(
∥e∥ − c1

λmin (Q)

)2

− κ

(∥∥∥W̃∥∥∥
F
− c2 + c3

2κ

)2

+
c1

2

2λmin (Q)
+

(c2 + c3)
2

4κ

≜ fUB

(
∥e∥ ,

∥∥∥W̃∥∥∥
F

)
(39)

where c1 = ∥PB∥ ω̄, c2 = κ ∥W∗∥F , and c3 =
ω̄
√
q

kL
.

Therefore, V̇ < 0, ∀t < te, if
(
e,W̃

)
is outside of the com-

pact set Θ ≜
{(

e,W̃
)∣∣∣ fUB

(
∥e∥ ,

∥∥∥W̃∥∥∥
F

)
≥ 0
}

. The

boundary ∂Θ is a level set on which fUB

(
∥e∥ ,

∥∥∥W̃∥∥∥
F

)
=

0, and it is an ellipse centered at
(
∥e∥ ,

∥∥∥W̃∥∥∥
F

)
=(

c1
λmin(Q) ,

(c2+c3)
2κ

)
. The compact set Θ is inside of that

boundary, including the boundary itself. Let us define β as

β ≜ (1 + ζ) · max
(e,W̃)∈Θ

V
(
e,W̃

)
(40)

where 0 ≤ ζ ≪ 1 is an arbitrarily small number. The
boundary ∂Ωβ =

{(
e,W̃

)∣∣∣ V (e,W̃)
= β

}
is an ellipse

centered at
(
∥e∥ ,

∥∥∥W̃∥∥∥
F

)
= (0, 0). Note that Θ ⊆ Ωβ .

Also note that V̇ < 0 on ∂Ωβ for ζ > 0, or except the point
of contact between ∂Ωβ and ∂Θ for ζ = 0. Therefore, the
compact set Ωβ is positive invariant. Moreover, the solution(
e (t) ,W̃ (t)

)
that starts outside of Ωβ will ultimately

enter the set Ωβ within some finite time. Thus, the solution(
e (t) ,W̃ (t)

)
is uniformly ultimately bounded.

The analysis for the case of rank (Ωa (t)) = q, which
corresponds to t ≥ te, can be performed similarly. Using
Eqs. (11) and (35), the time derivative of Eq. (36) along
the trajectory of the closed-loop system can be obtained as
follows:

V̇
(
e,W̃

)
= eTP

(
Are+B

[
W̃TΣ (xp)− ω (xp)

])
− tr

(
W̃T

[
Σ (xp) e

TPB+RΩaW̃ −Na

])
= −1

2
eTQe−R tr

(
W̃TΩaW̃

)
− eTPBω (xp) + tr

(
W̃TNa

)
(41)

The upper bound for Eq. (41) can be obtained as follows

V̇
(
e,W̃

)
≤ −

[
1

2
λmin (Q) ∥e∥ − c1

]
∥e∥

−
[
Rλmin (Ωa (te))

∥∥∥W̃∥∥∥
F
− c3

] ∥∥∥W̃∥∥∥
F

= −1

2
λmin (Q)

(
∥e∥ − c1

λmin (Q)

)2

−Rλmin (Ωa (te))

(∥∥∥W̃∥∥∥
F
− c3

2Rλmin (Ωa (te))

)2

+
c1

2

2λmin (Q)
+

c3
2

4Rλmin (Ωa (te))

(42)

The rest of the proof to show the uniform ultimate bound-
edness is identical to the case where t0 ≤ t < te.

The geometrical representation depicted in Fig. 1 summa-
rizes the proof.
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Fig. 1. Geometrical Representation of the Stability Analysis

Corollary 1 (Performance Guarantee for the Case of Un-
structured Uncertainty). Let

α1 ≜
min {λmin (Q) , 2κ}

max
{
λmax (P) , λmax

(
Γw

−1
)} ,

α2 ≜
min {λmin (Q) , 2Rλmin (Ωa (te))}
max

{
λmax (P) , λmax

(
Γw

−1
)} ,

ψ1 ≜
c1

2

2λmin (Q)
+

(c2 + c3)
2

4κ
,

ψ2 ≜
c1

2

2λmin (Q)
+

c3
2

4Rλmin (Ωa (te))
.

For some constant θ ∈ (0, 1), the bounds for the Lyapunov
function given by Eq. (36) can be derived as follows:

V (t) ≤



(
V (t0)−

ψ1

θ (1− θ)α1

)
exp (−θα1 (t− t0)) +

ψ1

θ (1− θ)α1

for t0 ≤ t ≤ te(
V (te)−

ψ2

θ (1− θ)α2

)
exp (−θα2 (t− te)) +

ψ2

θ (1− θ)α2

for t ≥ te

(43)
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where

V (t0) ≤
1

2
λmax

(
Γw

−1
) ∥∥∥W̃ (t0)

∥∥∥
F

2

V (te) ≤
(
1

2
λmax

(
Γw

−1
) ∥∥∥W̃ (t0)

∥∥∥
F

2

− ψ1

θ (1− θ)α1

)
· exp (−θα1 (te − t0)) +

ψ1

θ (1− θ)α1

(44)

The bounds for ∥e (t)∥ and
∥∥∥W̃ (t)

∥∥∥
F

can be obtained by
substituting Eqs. (43)-(44) into

∥e (t)∥ ≤

√
2V (t)

λmin (P)∥∥∥W̃ (t)
∥∥∥
F
≤
√

2V (t)

λmin

(
Γw

−1
) (45)

Proof. Let V (t) := V
(
e (t) ,W̃ (t)

)
. Consider first the

time interval in which Ωa is rank deficient, namely t ∈
[t0, te]. For some constant θ ∈ (0, 1), Eq. (39) can be
rewritten using Eq. (37) as:

V̇ (t) ≤ −θ
[
1

2
λmin (Q) ∥e∥2 + κ

∥∥∥W̃∥∥∥
F

2
]

− 1

2
(1− θ)λmin (Q)

(
∥e∥ − c1

λmin (Q)

)2

− (1− θ)κ

(∥∥∥W̃∥∥∥
F
− c2 + c3

2κ

)2

+
1

1− θ

[
c1

2

2λmin (Q)
+

(c2 + c3)
2

4κ

]
≤ −θ1

2
min {λmin (Q) , 2κ} ∥ξ∥2

+
1

1− θ

[
c1

2

2λmin (Q)
+

(c2 + c3)
2

4κ

]
≤ −θα1V (t) +

ψ1

1− θ

(46)

Eq. (43) for t0 ≤ t ≤ te can be derived by applying the
comparison lemma to Eq. (46).

Next, consider the right-infinite time interval in which Ωa

is full rank, namely t ≥ te. For some constant θ ∈ (0, 1),
Eq. (42) can be rewritten using Eq. (37) as follows:

V̇ (t) ≤ −θ
[
1

2
λmin (Q) ∥e∥2 +Rλmin (Ωa (te))

∥∥∥W̃∥∥∥
F

2
]

− 1

2
(1− θ)λmin (Q)

(
∥e∥ − c1

λmin (Q)

)2

− (1− θ)Rλmin (Ωa (te))

(∥∥∥W̃∥∥∥
F
− c3

2Rλmin (Ωa (te))

)2

+
1

1− θ

[
c1

2

2λmin (Q)
+

c3
2

4Rλmin (Ωa (te))

]
≤ −θ1

2
min {λmin (Q) , 2Rλmin (Ωa (te))} ∥ξ∥2

+
1

1− θ

[
c1

2

2λmin (Q)
+

c3
2

4Rλmin (Ωa (te))

]
≤ −θα2V (t) +

ψ2

1− θ

(47)

Applying the comparison lemma to Eq. (47) yields Eq. (43)
for t ≥ te.

IV. CONCLUSIONS

A composite model reference adaptive control algorithm
is extended to be capable of learning unstructured but
matched uncertainties without requiring excessive degree
of excitation. A selective update algorithm that performs
intermittent holding is combined with the memory-based
regressor extension scheme to avoid rank deficiency of the
information matrix after being encountered with a finite
amount of excitation. The proposed scheme updates the
adequate information matrix only when its quality in terms
a chosen metric can be improved. The closed-loop stability
analysis showed that the extended algorithm guarantees
exponentially convergent uniform ultimate boundedness of
the errors in the unstructured uncertainty case.
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