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Abstract—In this paper, we study the system identification
problem for linear time-invariant dynamics with bilinear obser-
vation models. Accordingly, we consider a suitable parametric
description for the system model and formulate the identifica-
tion problem as estimating the parameters characterizing the
mathematical representation of the system through input-output
measurement data. To this end, we employ a probabilistic frame-
work aiming to obtain the maximum likelihood estimates of the
parameters. Accordingly, we propose utilizing the expectation-
maximization approach to improve the tractability of the
identification procedure. Through the numerical experiments,
we verify the efficacy of the proposed scheme and demonstrate
its performance.

I. INTRODUCTION

System identification, as initially introduced in [1], is
an active area of research [2] focusing on the theory and
methods for data-driven modeling of dynamical systems [3].
Due to the ubiquitous nature of dynamical systems across
various science and technology domains and considering the
significance of models for prediction and control, system
identification has received extensive attention [4]. As a result,
numerous methodologies are developed for diverse categories
of systems, spanning from linear dynamics to nonlinear dy-
namical systems [5–8]. The complexity of real systems poses
a significant challenge in accurately capturing their behaviors,
necessitating the utilization of various tools introduced in
statistics and optimization theory, such as different parametric
and nonparametric estimation techniques [9–14].

Parametric system identification is a common method that
considers a rich class of models with specific structures, and
subsequently, the parameters characterizing the model are
estimated using measurement data. In this context, various
classes of parametric models and a broad range of systems are
considered, and different parameter estimation methods are
employed. For example, the prediction error method (PEM)
[11] is widely used in identification of linear time-invariant
systems, which adjusts the parameters iteratively to minimize
the norm of the losses, evaluated based on the difference
between the model’s predicted output and the actual out-
put from the real system. For estimating the parameters,
probabilistic frameworks are also commonly utilized. For
instance, the Bayesian approach [15] treats parameters as
random variables with probability distributions of specific
forms. With sufficient data, the Bayesian approach obtains
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accurate probability distributions of the parameters of inter-
est. As an example, maximum likelihood (ML) estimation
[16] is commonly used in system identification, aiming to
find parameter values that maximize the likelihood function
(i.e., the probability of observing the given measurement data
given the parameter values). Another widely used method
is maximum a posteriori (MAP) estimation [17]. The MAP
estimation method is similar to the ML estimation method,
but instead of maximizing the likelihood function, it finds
the parameter values that maximize the posterior distribution.
MAP estimation is more robust than ML estimation when
informative prior is available.

In addition to linear system identification, there is a
growing interest in methods for identifying nonlinear systems
[18, 19]. For example, in [20], the authors proposed an ML-
based algorithm for Hammerstein-Wiener models. Also, in
[21], a Bayesian approach-based method is introduced to
identify Wiener-Hammerstein models. Besides the study of
general nonlinear systems, bilinear systems, as a special and
simple case of nonlinear systems, are also widely studied
due to their technical tractability and their relevance in
various fields [22]. The characteristics of bilinear systems
can be exploited in designing effective identification methods.
For instance, in [23, 24], subspace techniques are used to
identify bilinear state space systems. Additionally, in [25]
and [26], a bilinear system in the observability canonical
form is considered. In the former paper, the authors proposed
an approach using the Kalman filter to estimate the system
states and a gradient-based iterative algorithm to identify
system parameters. In the latter one, the authors use the
Rauch–Tung–Striebel smoother (RTS) to estimate the state
variables and the Expectation-Maximization (EM) algorithm
to identify parameters. These papers consider systems with
bilinear dynamics and linear observation models. Inspired by
the Wiener-Hammerstein models and Hammerstein–Wiener
models, in the current paper, we consider bilinear systems
with linear dynamics and bilinear observation models.

In this paper, we propose a scheme for identifying systems
with linear dynamics and bilinear observation models, based
on the RTS smoother [27] and the EM algorithm [28]. The
system matrices, together with the mean and covariance of
noise distributions, are treated as parameters. The scheme
consists of two steps. In the first step, state estimates are
computed, and a log-likelihood function of the parameters
is defined. To estimate the states, we employ a Kalman
filter [29], which recursively updates the state estimates

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy 

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 7190



by combining the information from previous measurements
and new measurements. There are several extensions of
Kalman filter to enhance estimation accuracy[30, 31]. In this
paper, the RTS smoother is considered. Rather than utilizing
only the previous and current measurement data, the RTS
smoother also employs estimates of future measurements to
smooth the estimates, resulting in more accurate estimation
results compared to using the Kalman filter alone. After
obtaining these estimates, the expected value of the log-
likelihood function of the parameters can be defined. In the
second step, with the estimation of states, we compute an
optimal parameter that maximizes the mentioned expected
value based on the partial derivatives. These two steps are
executed iteratively until convergence. The contributions of
this paper are summarized as follows.

• This paper formulates a tractable approach to identify
systems with linear dynamics and bilinear observation
models. Additionally, using RTS smoother and EM
algorithm, a scheme is proposed to solve the problem.

• Suitable examples are provided to demonstrate the per-
formance of the proposed scheme. Moreover, simula-
tions are presented to study the performance of the
proposed scheme under different SNR levels.

The rest of this paper is structured as follows. In Section II,
the main notations used in this paper are listed. In Section III,
a tractable identification problem is formulated. In Section
IV, we present the proposed scheme and derive the EM-
based approach. Finally, in Section V, numerical examples
are provided to verify the performance of proposed scheme.

II. NOTATION

In this paper, we use Z, Z+, R, and Rn×m to denote, the
set of integers, the set of positive integers, the set of real
numbers, and the set of n by m matrices with real value
respectively. For a matrix A ∈ Rm×n, vec(A) is denoted as
a column vector in Rmn obtained from stacking the columns
of the matrix A. Additionally, we denote ⊗ as the Kronecker
product. The vector 2-norm of a vector x ∈ Rn is denoted
as ∥x∥. Finally, the conditional probability of A given B is
denoted as p(A|B) .

III. IDENTIFICATION OF LINEAR DYNAMICS WITH
BILINEAR OBSERVATION MODELS

Consider an unknown time-invariant random dynamical
system S with linear dynamics and a bilinear observation
model. More precisely, let the process model describing the
dynamics of S be as

xk+1 = Axk +Buk +wk, ∀k ∈ Z+, (1)

where xk ∈ Rnx , uk ∈ Rnu , and wk ∈ Rnx are respectively
the vectors of state variables, input, and process noise, at
time instant k ∈ Z+, and, A ∈ Rnx×nx and B ∈ Rnx×nu

are unknown matrices characterizing the dynamics of system.
Also, let the observation model of the system have a bilinear
form as

yk+1 =
(
C0+

nu∑
i=1

Ciuk,i

)
xk+Duk+vk, ∀k ∈ Z+, (2)

where uk,i denotes the ith entry of uk, ∀i = 1, . . . , nu, k ∈
Z+, yk ∈ Rny and vk ∈ Rny are respectively the vec-
tors of output observations and measurement noise, and,
C0,C1, . . . ,Cnu

∈ Rny×nx and D ∈ Rny×nu are unknown
matrices describing the observation model of the system.
Suppose the initial state x0, measurement noise

(
vk
)
k∈Z+

,
and process noise

(
wk

)
k∈Z+

are mutually independent Gaus-
sian random variables as

x0 ∼ N (µx0 ,Sx0), (3)
vk ∼ N (0,Sv), ∀k ∈ Z+, (4)
wk ∼ N (0,Sw), ∀k ∈ Z+, (5)

where µx0
∈ Rnx is an unknown vector and Sx0

∈ Rnx×nx

is an unknown positive definite matrix respectively denoting
the mean and covariance of x0, and, Sw ∈ Rnx×nx and Sv ∈
Rny×ny are unknown positive definite matrices representing
respectively the covariance of vector wk and the covariance
of vector vk, for any k ∈ Z+.

Assume a measurement dataset of nD ∈ N input-output
pairs is given as

D :=
{
(uk, yk) | k ∈ [0, nD − 1]}. (6)

Accordingly, we present the main problem as identifying
system S through estimating the unknown vector and ma-
trices mentioned above using the dataset D. For the ease of
discussion, assume D = 0 throughout this paper.

Problem (Identification Problem for Linear Dynamics
with Bilinear Observation Models). Given the measure-
ment set of data D, estimate A, B, C0, C1, . . ., Cnu

, µx0
,

Sx0 , Sw, and Sv.

To address this problem, we employ an expectation-
maximization (EM) approach [32] and obtain a tractable
procedure. More details are discussed in the next section.

IV. AN EXPECTATION-MAXIMIZATION APPROACH

This section presents an expectation-maximization (EM)
algorithm for identifying linear time-invariant dynamics with
bilinear observation models. The EM algorithm is a power-
ful iterative estimation scheme, particularly beneficial when
deriving the solution of maximum likelihood estimation is
computationally intractable. The EM approach has an itera-
tive procedure where each of its iterations consists of two
main steps: the expectation (E) step and the maximization
(M) step. In the expectation (E) step, given measurement data
and an initial estimation for the parameters of the system, a
probability distribution for the trajectory of state variables is
obtained, e.g., through Rauch-Tung-Striebel smoother [27].
Subsequently, in the maximization (M) step, using these state
estimates and the resulting distributions, the system param-
eter estimates are updated by maximizing the expected log-
likelihood function obtained from the distributions estimated
in the E step.
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A. Rauch–Tung–Striebel smoother

The RTS smoother is widely used in states variables
estimation, which adds an additional smoothing part using
the estimated states distributions computed by the Kalman
filter [29].

For the ease of discussion, we define vector of parameters,
denoted by θ, as

θ := [vec(A)T,vec(B)T,vec(C0)
T,...,vec(Cnu

)T,

vec(µx0
)T,vec(Sx0

)T,vec(Sw)T,vec(Sv)T].
(7)

Given measurement data D, we want to obtain the estimates
of θ, which is denoted as θ̂. From the Kalman filter, we can
compute the estimated mean

x̂t|t = E[xt|y0, ..., yt, θ̂], (8)

and, the estimated covariance

Pt|t = E[(xt − x̂t|t)(xt − x̂t|t)
T|y0, ..., yt, θ̂] (9)

using following iterative scheme

x̂t|t = x̂t|t−1 +Kt(yt − Ξ̂tx̂t|t−1),

Pt|t = (Inx −KtΞ̂t)Pt|t−1,

Kt = Pt|t−1Ξ̂
T
t [Ξ̂tPt|t−1Ξ̂

T
t + Ŝv]

−1,

x̂t+1|t = Âx̂t|t + B̂ut,

Pt+1|t = ÂPt|tÂ
T + Ŝw,

(10)

where Ξ̂t is defined as

Ξ̂t = Ĉ0 +

nu∑
i=1

Ĉiut,i. (11)

Define X := {x0, x1, .., xnD}, Y := {y0, y1, .., ynD−1}
and U := {u0,u1, ..,unD−1}. Using the RTS smoother, the
estimated mean x̂t|nD = E[xt|Y, θ̂] and estimated covariance
Pt|nD = E[(xt− x̂t|nD )(xt− x̂t|nD )

T|Y, θ̂] can be recursively
computed as

x̂t|nD = x̂t|t +Ht(x̂t+1|nD − x̂t+1|t),

Pt|nD = Pt|t +Ht(Pt+1|nD − Pt+1|t)H
T
t ,

Ht = Pt|tÂ
TP−1

t+1|t,

(12)

where the initial conditions x̂nD|nD and PnD|nD can be
obtained from the results of Kalman filter. Moreover, we can
further derive the following estimations [33]

E[xtxTt |Y, θ̂] = x̂t|nD x̂
T
t|nD

+ Pt|nD ,

E[xt+1x
T
t |Y, θ̂] = x̂t+1|nD x̂

T
t|nD

+ Pt+1|nDH
T
t ,

(13)

which will be used in EM algorithm as discussed in the
remainder of this section.

B. Parameters Estimation using EM algorithm

The EM contains two basic steps, which are discussed
in the sequel. The expectation step computes a log likeli-
hood function of parameters from the current estimates and
given data. The maximization step finds the parameters that
maximize the log likelihood function. In this work, we use

EM algorithm with RTS smoother to estimate parameters of
dynamical system S.

Denote θ̂k as the estimated parameters at iteration k and
define

Q(θ|θ̂k) = Ep(X|Y,θ̂k)

[
ln p(X,Y|θ)

]
, (14)

Instead of directly optimizing the log-likelihood ln p(Y|θ),
EM algorithm iteratively improves Q(θ|θ̂k) at each step [9],
which guarantees an improvement in ln p(Y|θ) at least as
much [12]. Consider the likelihood function

p(X,Y|θ) = p(X|θ)p(Y|X, θ). (15)

Using Markov property, p(X|θ) and p(Y|X, θ) can be de-
composed as

p(X|θ) = p(x0|θ)
nD∏
t=1

p(xt|xt−1, θ). (16)

and

p(Y|X, θ) =

nD−1∏
t=0

p(yt|X, θ) =

nD−1∏
t=0

p(yt|xt, θ), (17)

Thus, the log-likelihood function of (15) can be derived as

ln p(X,Y|θ) = ln p(x0|θ) +
nD−1∑
t=0

ln p(yt|xt, θ)

+

nD∑
t=1

ln p(xt|xt−1, θ).

(18)

From the dynamics function in (2), p(yt|xt, θ) is subject to
a Gaussian distribution N (µyt

,Sv), where

µyt =Ξtxt,

Ξt =C0 +

nu∑
i=1

Ciut,i.
(19)

Analogously from (1), p(xt|θ) is subject to a Gaussian dis-
tribution N (µxt ,Sw), where µxt = Axt−1 +But−1, ∀t ≥ 1.
Therefore, using these Gaussian distributions, Q(θ|θ̂k) can
be rewritten as

Q(θ|θ̂k) = Ep(X|Y,θ̂k)

{
− nD

2
ln det Sv −

1

2
ln det Sx0

− nD

2
ln det Sw −

1

2

nD−1∑
t=0

(yt − Ξtxt)
TS−1

v (yt − Ξtxt)

− 1

2

nD∑
t=1

(xt+1 −Axt − But)
TS−1

w (xt+1 −Axt − But)

− 1

2
(x0 − µx0)

TS−1
x0

(x0 − µx0)
}
.

(20)

For the convenience of notation, we define M = [A,B], C =

[C0,C1, ...,Cnu ], and zt =

[
xt
ut

]
, for all t = 0, . . . , nD − 1.
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Using the property that xTMx = tr(MxxT),∀M ∈ Rnx×nx ,
we can further simplify Q(θ|θ̂k) as

Q(θ|θ̂k) = Ep(X|Y,θ̂k)

{
− nD

2
ln det Sv −

1

2
ln det Sx0

− nD

2
ln det Sw −

1

2

nD−1∑
t=0

tr{S−1
v [yt − C(

[
1
ut

]
⊗ xt)]

[yt − C(

[
1
ut

]
⊗ xt)]

T} − 1

2

nD∑
t=1

tr{S−1
w (xt+1 −Mzt)

(xt+1 −Mzt)
T} − 1

2
tr{S−1

x0
(x0 − µx0)(x0 − µx0)

T}
}
.

(21)

To obtain the optimal θ which maximizes Q(θ|θ̂k), we
take the partial derivative of Q(θ|θ̂k) with respect to each
parameter and set it equal to zero. Based on the calculation
in Appendix A, the optimal parameters can be found as

Ĉk+1 =

nD−1∑
t=0

yt(

[
1
ut

]
⊗ x̂t|nD )

T

( nD−1∑
t=0

[
1
ut

] [
1
ut

]T
⊗ (x̂t|nD x̂

T
t|nD

+ Pt|nD )
)−1

,

Ŝv,k+1 =
1

nD

nD−1∑
t=0

yty
T
t −

1

nD

nD−1∑
t=0

yt(

[
1
ut

]
⊗ x̂t|nD )

T

( nD−1∑
t=0

[
1
ut

] [
1
ut

]T
⊗ (x̂t|nD x̂

T
t|nD

+ Pt|nD )
)−1

nD−1∑
t=0

(

[
1
ut

]
⊗ x̂t|nD )y

T
t ,

M̂k+1 =

nD∑
t=1

(
[
x̂t+1|nD x̂

T
t|nD

+ Pt+1|nDH
T
t x̂t+1|nDu

T
t

]
[
x̂t|nD x̂

T
t|nD

+ Pt|nD x̂t|nDu
T
t

utx̂
T
t|nD

utu
T
t

]−1

,

Ŝw,k+1 =
1

nD

nD−1∑
t=0

(x̂t+1|nD x̂
T
t+1|nD

+ Pt+1|nD )

− 1

nD

nD−1∑
t=0

[
x̂t+1|nD x̂

T
t|nD

+ Pt+1|nDH
T
t x̂t+1|NuTt

]
(

nD−1∑
t=0

[
x̂t|nD x̂

T
t|nD

+ Pt|nD x̂t|nDu
T
t

utx̂
T
t|nD

utu
T
t

])−1

nD−1∑
t=0

[
x̂t+1|nD x̂

T
t|nD

+ Pt+1|nDH
T
t x̂t+1|nDu

T
t

]T
,

µ̂x0,k+1 = x̂0|nD ,

Ŝx0,k+1 = P0|nD . (22)

Remark 1. Equation (22) implies there is one optimal param-
eter θ which let the partial derivatives to be zero. Intuitively, if
we only consider Sw and M and assume nx = 1, Q(θ|θ̂k) can
be simplified as Ep(X|Y,θ̂k)

− nD
2 ln Sw− 1

2

∑nD
t=1

(xt+1−Mzt)
2

Sw
.

As f(x) = a lnx + b
x ,∀a, b ∈ R− only has one maximum

Algorithm 1 An EM Approach for Identification of Linear
Dynamics with Bilinear Observation Models

Input: D.
Output: θ.

1: Initial guess: θ̂0
2: k ← 0
3: while 1 do
4: Current parameters estimates: θ̂ ← θ̂k
5: for t← 0 to nD do
6: Kalman Filter: (10)
7: for t← nD to 0 do
8: RTS smoother: (12)
9: EM approach: compute (22) to find a new parameters

estimates. θ̂k+1 ← argmaxθ Q(θ|θ̂k).
10: if ∥θ̂k+1 − θ̂k∥ < ϵ then
11: break
12: else
13: k ← k + 1

14: θ ← θ̂k

at x = b
a , there is only one optimal Sw. In addition, for

any given Sw, there is also only one optimal M. For other
parameters, using the similar method, there is one local
maximum which is also global maximum for Q(θ|θ̂k).

Algorithm 1 summarizes the introduced EM based ap-
proach for identification of linear dynamics with bilinear
observation models.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of Algorithm
1 through numerical examples. Accordingly, we consider a
time-invariant system as introduced in (1)-(2) with matrices
A, B, C0 and C1 as

A =

[
0.85 −0.4
0.35 0.65

]
, B =

[
0.5
−0.5

]
,

C0 =
[
0.5 −0.2

]
, C1 =

[
0.15 0.1

]
.

(23)

Additionally, for process and measurement noise covariance,
and prior of the initial state, we assume that

Sw =

[
0.052 0
0 0.052

]
, Sx0

=

[
0.052 0
0 0.052

]
,

Sv = 0.052, µx0 =

[
1
1

]
.

(24)

A random binary signal is generated as the control input
U for the system, with a length of nD = 1000. Following
the problem settings introduced in Section III, the process
noise and measurement noise are generated from Gaussian
distributions N (0,Sw) and N (0,Sv), respectively. In this
experiment, we set a stopping condition as ∥θ̂k+1− θ̂k∥ < ϵ,
where ϵ = 10−4.

Figure 1 illustrates the performance of Algorithm 1.
In this figure, we plot the trajectories of relative errors
∥Ĉ− C)∥/∥C∥ and ∥M̂ −M∥/∥M∥, where C =

[
C0 C1

]
and M =

[
A B

]
as defined in (21). It can be seen that,
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Figure 1. The relative error of system matrices estimates with respect to
iteration steps.
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Figure 2. Comparison of real system outputs and identified system outputs.

initially, the relative error is large due to the gap between the
initial guess and the true parameters. However, the relative
error diminishes with each iteration. The convergence rate is
fast in the initial iterations, however, it gets slower later. In
Figure 1, for the sake of clarity, we have shown the first 200
iterations. Nonetheless, for ϵ = 10−4, the algorithm stops
after about 650 EM steps. Figure 2 shows the performance
of the proposed algorithm. To this end, another random input
sequence with a length T = 100 is generated to validate the
identified system. It can be seen that the predicted trajectory
of outputs for the identified system is close to that of the real
system. The relatively error, computed as

∑T
t=0

∥yt−ŷt∥
∥yt∥ , is

approximately 0.02.

Remark 2. As shown in Figure 1, the convergence speed
for EM algorithm is relatively slow. As discussed after (14),
with each iteration step, improving Q(θ|θ̂k) will improve the
log-likelihood ln p(Y|θ). However, the rate of improvement
can be slow. Furthermore, there is no assurance that the log-
likelihood will reach the global optimum. More precisely,
the EM algorithm may converge to a local optimum. Conse-
quently, in simulations, it may be necessary to restart the
algorithm with different initial guesses to obtain accurate

Figure 3. Relative error of system matrices under four different SNRs.

parameter estimates.

To further investigate the performance of Algorithm 1,
we analyze it under four different SNR levels and perform
a Monte Carlo experiment with respect to each of these
levels. Given the same system (23), prior knowledge (24)
and the same input sequences, 100 different noise sequences
are generated under four different SNR levels: 5 dB, 10 dB,
15 dB, and 20 dB. For each realization, the proposed algo-
rithm is used to identify the system. Figure 3 demonstrates
the performance for estimating system matrices. As shown
in Figure 3, in general, the mean relative errors of both
C and M are lower for scenarios with higher SNRs, and
consequently, the accuracy of identified parameters is higher.
When SNR = 5 dB, the estimated system matrices are the
worst. In this case, the performance depends considerably on
the initial guess. Indeed, for some realizations, the relative
errors are low; meanwhile, for other initial guesses, the
relative errors may be higher, resulting in higher covariance.
Moreover, for SNR = 15 dB or 20 dB, the covariance of
error is relatively small, indicating that the algorithm is less
dependent on the initial guess.

VI. CONCLUSION

In this paper, we have studied the identification problem
for unknown dynamical systems with linear dynamics and
bilinear observation models, and proposed a tractable identi-
fication procedure based on EM procedure. In the proposed
scheme, the RTS smoother is used to find the estimates of
the states, while the EM-based approach is introduced to
estimate the unknown system parameters. The performance
of the introduced scheme is evaluated through a numerical
example. Furthermore, we also compare the performance of
the proposed scheme under different SNRs through a Monte
Carlo numerical experiment.

APPENDIX

To obtain the optimal solution, we use first order neces-
sary condition. Accordingly, we compute the partial deriva-
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tives with respect to each parameter. Additionally, from
Kalman filter and RTS smoother in (12) and (13), we
can obtain Ep(X|Y,θ̂k)

[xt|Y, θ̂k], Ep(X|Y,θ̂k)
[xtx

T
t |Yθ̂k], and

Ep(X|Y,θ̂k)
[xt+1x

T
t |Y, θ̂k]. Thus, the partial derivatives are

∂Q(θ|θ̂k)
∂C

=S−1
v

{ nD−1∑
t=0

yt(

[
1
ut

]
⊗ x̂t|nD )

T − C

( nD−1∑
t=0

(

[
1
ut

] [
1
ut

]T
)⊗ (x̂t|nD x̂

T
t|nD

+ Pt|nD )
)}

,

∂Q(θ|θ̂k)
∂Sv

=
1

2

nD−1∑
t=0

{
− nDS

−1
v + S−1

v

[
yty

T
t

− C(

[
1
ut

]
⊗ x̂t|nD )y

T
t − yt(

[
1
ut

]
⊗ x̂t|nD )

TCT

+C
( nD−1∑

t=0

[
1
ut

] [
1
ut

]T
⊗ (x̂t|nD x̂

T
t|nD

+ Pt|nD )
)

CT
]
S−1
v

}
,

∂Q(θ|θ̂k)
∂M

=S−1
w

[ nD∑
t=1

(
[
x̂t+1|nD x̂

T
t|nD

+Pt+1|nDH
T
t x̂t+1|nDu

T
t

]
−M

[
x̂t|nD x̂

T
t|nD

+ Pt|nD x̂t|nDu
T
t

utx̂
T
t|nD

utu
T
t

]
)
]
,

∂Q(θ|θ̂k)
∂Sw

=
1

2

nD∑
t=1

{
−nDS

−1
w +S−1

w

(
(x̂t+1|nD x̂

T
t+1|nD

+Pt+1|nD )

−
[
x̂t+1|nD x̂

T
t|nD

+Pt+1|nDH
T
t x̂t+1|nDu

T
t

]
MT

−M
[
x̂t+1|nD x̂

T
t|nD

+ Pt+1|nDH
T
t x̂t+1|NuTt

]T
M

[
x̂t|nD x̂

T
t|nD

+Pt|nD x̂t|nDu
T
t

utx̂
T
t|nD

utu
T
t

]
MT
)
S−1
w ,

∂Q(θ|θ̂k)
∂µx0

=S−1
x0
{(x̂0|nD − µx0

)µT
x0
},

∂Q(θ|θ̂k)
∂Sx0

=
1

2
{−S−1

x0
+ S−1

x0
(x̂0|nD x̂

T
0|nD

+ P0|nD

− x̂0|nDµ
T
x0
− µx0

x̂T0|nD
+ µx0

µT
x0
)S−1

x0
}.

We set the partial derivatives to be zero, and obtain (22).
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