
Data-Driven Reachability Analysis of Stochastic Dynamical Systems
with Conformal Inference

Navid Hashemi, Xin Qin, Lars Lindemann, and Jyotirmoy V. Deshmukh

Abstract— We consider data-driven reachability analysis of
discrete-time stochastic dynamical systems using conformal
inference. We assume that we are not provided with a symbolic
representation of the stochastic system, but instead have access
to a dataset of K-step trajectories. The reachability problem is to
construct a probabilistic flowpipe such that the probability that
a K-step trajectory can violate the bounds of the flowpipe does
not exceed a user-specified failure probability threshold. The
key ideas in this paper are: (1) to learn a surrogate predictor
model from data, (2) to perform reachability analysis using the
surrogate model, and (3) to quantify the surrogate model’s
incurred error using conformal inference in order to give
probabilistic reachability guarantees. We focus on learning-
enabled control systems with complex closed-loop dynamics that
are difficult to model symbolically, but where state transition
pairs can be queried, e.g., using a simulator. We demonstrate
the applicability of our method on examples from the domain
of learning-enabled cyber-physical systems.

I. INTRODUCTION

Reachability analysis of stochastic nonlinear dynamical
systems is a challenging problem that has been extensively
studied in the literature [1]–[13]. Most of the prior work
is model-based, i.e., it requires a symbolic model of the
dynamical system which can then be over-approximated to
obtain flowpipes or the set of reachable states of the system
over a given time horizon. In this paper, we explore the
notion of model-free reachability analysis, i.e., to compute
reachable sets of the stochastic dynamical system even when
we do not have the symbolic system dynamics, but have
access to a numeric simulator or actual behaviors sampled
from the system. A significant advantage of such a data-
driven technique is that we obtain not only (probabilistic)
reachable sets for the system or the simulation model from
which the trajectories are sampled, but we can get results
over the possibly infinite set of models/systems consistent
with the set of sampled trajectories. This provides us the
opportunity for an analysis technique that is robust to model
uncertainty.

There is growing literature on computing probabilistically
approximate reachable sets directly from data. The authors
in [14] utilize level sets of Christoffel functions and provide
a technique to compute a high accuracy probabilistic reach-
set for general nonlinear systems. On the other hand, as a

The authors are with the Thomas Lord Department of Computer Science,
University of Southern California, Los Angeles, USA. Emails: (navidhas,
xinqin, llindema, jdeshmuk)@usc.edu. The authors would like to thank the
anonymous reviewers for their feedback. This work was supported by the
National Science Foundation through the following grants: CAREER award
(SHF-2048094), CNS-1932620, FMitF-1837131, CCF-SHF-1932620, the
Airbus Institute for Engineering Research, and funding by Toyota R&D and
Siemens Corporate Research through the USC Center for Autonomy and AI.

comparison, we only have access to sampled trajectories. The
authors in [15] propose specific parametric models (linear or
polynomial), to identify the Markovian stochastic dynamics
of the system from data, and then perform reachability
analysis on the identified models. In contrast, we learn
non-parameteric surrogates (using neural networks), which
are not restricted to Markovian dynamics, and quantify
uncertainty using conformal inference. In [16], the authors
use an interesting approach based on a Gaussian process-
based classifier to separate reachable states from unreachable
states, and approximate the reach set by computing the
sublevel set of the classifier. We note that this approach
uses adaptive sampling of initial states where states are
chosen to reduce uncertainty of the surrogate. This may
require solving a high-dimensional optimization problem
and does not give probability guarantees. The authors also
propose an interval abstraction of the reach set, where sample
complexity bounds are provided; however, this approach
may suffer from conservatism and high computational cost
in high-dimensional systems. In [17], the authors assume
partial knowledge of the model, while using data to deal
with Lipschitz-continuous state dependent uncertainty. The
authors in [18] propose a method called DeepReach that uses
a neural PDE solver to perform Hamilton-Jacobi method-
based reachability analysis for high-dimensional systems.
Here, the complexity of the flowpipe computation scales with
the complexity of the flowpipe itself rather than the system
dimension. While this method uses neural methods to perform
reachability analysis, it still requires access to the system
dynamics. In [19], the authors combine simulation-guided
reachability analysis techniques with data-driven techniques.
Here, the authors estimate a discrepancy function using system
trajectories using a probably-approximately-correct learning
algorithm. The discrepancy function bounds the distance
between system trajectories as a function of the distance
between their initial states. This function is then used to
inflate the simulation trajectories to obtain reachtubes that are
then used to compute the approximate reachable set of states.
We remark that such an approach requires a parametric form
of the discrepancy function which could be hard to obtain.

Our approach to compute probabilistic reachable sets for
stochastic systems has the following main steps: (1) we
sample a number of system trajectories according to the
user-provided distribution on the set of initial states, (2) we
learn a data-driven surrogate model that predicts the next
K states of the system from a given state, (3) we perform
traditional set propagation-based reachability analysis on the
surrogate model, and (4) we inflate the resulting reachable

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 3102

sets in a systematic fashion to account for the uncertainty
induced by sampling from the user-provided distribution on
the set of initial states and system stochasticity.

While our general technique can work with arbitrary
regression-based surrogate models, in this paper, we choose
feedforward neural networks as a data-driven model of the
system dynamics1. A key reason for choosing feedforward
neural networks is to use recently developed techniques
to perform set-propagation through neural networks [21].
However, since the surrogate model is learned by sampling,
we still need to account for this uncertainty. To do this, we rely
on conformal inference (CI) or conformal prediction [22], [23].
In the machine learning community, CI is a well-known data-
efficient framework for error analysis of predictive models.
Recently, CI has been employed for data-driven stochastic
verification [24]–[27]. For instance, in [25]–[27], the authors
obtain confidence intervals on the robustness degree of
system behaviors (for example based on the quantitative
satisfaction of a given signal temporal logic (STL) property).
A naïve adaptation of existing techniques for STL robustness
verification to reachability analysis would require training
surrogate models to predict each state variable independently
(effectively discarding the rich correlation between the state
variables) resulting in an analysis that is too conservative.
Instead, our approach preserves the structure of the dynamics
through our usage of a surrogate model, while still accounting
for uncertainty in a systematic fashion using CI.

The layout of our paper is as follows. In Section II,
we present the preliminaries and problem statement. Our
algorithm for probabilistic reachable set computation is
proposed in Section III. We demonstrate the efficacy of our
method on several numerical examples in Section IV, and
we finally conclude in Section V.

Notation. We use bold letters to indicate vectors and vector-
valued functions, and calligraphic letters to denote sets. We
denote the set {1, 2, · · · , n} with [n]. We present the structure
of a feedforward neural network (FFNN) with ℓ hidden layers
as an array [n0, n1, · · ·nℓ+1], where n0 denotes the number of
inputs nℓ+1 is the number of outputs and ni, i ∈ [ℓ] denotes
the width of the i-th hidden layer. We denote ei ∈ Rn as
the i-th base vector of Rn. The expression x ∼ X means,
the random variable x follows the distribution X . We denote
the cardinality of a set A with |A|. Zonotope(b, A) denotes
a zonotope [28] with center b and array of base vectors A.
The operator ⊕ denotes the Minkowski sum. We also denote
⌈x⌉ as the smallest integer greater than x ∈ R.

II. PROBLEM STATEMENT AND PRELIMINARIES

Stochastic Dynamical System. Estimating the set of reach-
able sets of stochastic dynamical systems starting from a
compact set of initial states I ⊂ Rn is a well-studied problem.

1There are many techniques to identify probably approximately correct
surrogate models, for example, using concentration bounds for system
identification [20]. In this paper, we eschew such methods, instead preferring
the data-efficient approach for uncertainty quantification provided by
conformal inference.

While this problem has been studied largely with model-
based techniques, we focus on bounded-time, model-free
reachability analysis of a black-box discrete-time stochastic
dynamical system M . A random trajectory of M can be
modelled as a sequence of time-stamped states σs0 =
[s⊤0 , · · · , s⊤K]⊤ ⊂ R(K+1)n. We denote the distribution over
the set of trajectories consistent with M as S, and use
σs0 ∼ S to denote that σs0 is sampled from S. The
distribution S could be induced due to a distribution on
the set of initial states of the system as well as stochastic
uncertainties in its dynamics. For example, the transition
dynamics could be Markovian, i.e., sk ∼ T (s′ | s = sk−1).
However, we remark that the techniques proposed in this
paper can work for systems with non-Markovian dynamics.
For convenience, we denote the distribution over the set of
initial states I as W , and assume that (Pr[s0 /∈ I] = 0). The
notation s0

W∼ I is used to denote that the state s0 is sampled
from I using the distribution W . A practical choice of W
may be to uniformly sample I.
Trajectory Datasets. We assume that we have access to a
dataset of independently sampled trajectories of M , where the
initial states are sampled with s0

W∼ I . We assume that each
trajectory has K time-steps. We split the trajectory dataset into
two separate datasets, denoted as Dtrain and Dtest. Here Dtrain
is our training dataset and is to be used for training a surrogate
model of M . On the other hand, Dtest is the test dataset, and
is to be utilized to generate the calibration dataset for deriving
statistical properties. Let Dtest = {s0,i, σs0,i}Li=1 where L is
the number of test trajectories. Our goal is now to compute
a probabilistic reach set such that σs0 is included inside with
a probability not lower than a user-defined threshold 1− ε,
where ε ∈ (0, 1).

We remark that although the data-points within a single
trajectory are not independent and identically distributed
(i.i.d.), we observe that the trajectory σs0 can be seen as a
vector σs0 ∈ Rn(K+1) so that entire trajectories within Dtrain
and Dtest can be viewed as i.i.d. samples in the Rn(K+1)-space.
This observation is crucially used later when we quantify
uncertainty using conformal prediction.
Surrogate Model. After obtaining the trajectory dataset, we
train a surrogate model F : Rn → R(K+1)n that maps a given
initial state to the predicted K-step trajectory of the system.
For instance, the surrogate model can be a feedforward neural
network with n inputs and (K+ 1)n outputs. Let σ̄s0 denote
the predicted trajectory, then, σ̄s0 = F(s0). Training such
a K-step predictive model can be difficult, especially when
the dynamics are nonlinear. Hence, in practice, we train
models that take as input trajectory fragments to predict
future trajectory fragments and then sequentially compose
such models to obtain a longer predicted trajectory. We remark
that this does not affect the probabilistic reasoning that we
perform later in the paper as the entire predictive model can
still be treated as a deterministic map that takes as input the
initial state s0 and outputs a K-step predicted trajectory.
Conformal Inference. Conformal inference [22], [23], [29]
is a statistical tool for uncertainty quantification that has

3103

recently been used for analysing the uncertainty in the
predictions performed by complex machine learning models
[30]–[32]. Conformal inference/prediction performs error
quantification without making any assumption on the under-
lying data-generating distribution or the machine learning
model. Consider a regression model µ and the random
variables z1, z2, ..., zm+1 where zi = (xi, yi) ∈ Rn ×R with
i ∈ [m + 1] which are all independently sampled from the
same distribution. Given a miscoverage level α ∈ (0, 1),
conformal inference enables us to compute a prediction
interval C(xm+1) = [µ(xm+1)− R∗, µ(xm+1) + R∗] ⊂ R
from z1, z2, ..., zm such that,

Pr[ym+1 ∈ C(xm+1)] ≥ 1− α.

More formally, define the residual Ri =| yi−µ(xi) | for all zi
with i ∈ [m+1]. Since the random variables z1, z2, ..., zm+1

are independent and identically distributed, the same applies
to the residual R1, . . . , Rm+1. Under the assumption that m
satisfies ℓ = ⌈(m + 1)(1 − α)⌉ ≤ m, it holds that R∗ can
be chosen to be the ℓ-th smallest residual [33, Lemma 1].
Without loss of generality, if R1, . . . , Rm are sorted in non-
decreasing order, then R∗ = Rℓ and it holds that Pr[Rm+1 ≤
R∗] ≥ (1− α). By the choice of the residual, it hence holds
that

Pr
[
ym+1 ∈ [µ(xm+1)−R∗, µ(xm+1) +R∗]

]
≥ 1− α.

We also refer to δ = 1− α as the confidence probability.
Problem Definition. Our probabilistic reachability analysis
can be formally stated as follows. Given the stochastic
dynamical system M with initial state s0

W∼ I and trajectory
distribution S, training and test datasets Dtrain and Dtest
consisting of K-step trajectories independently sampled from
M , and a user provided failure probability threshold ε ∈
(0, 1), compute a probabilistic reach set (also called flowpipe)
X such that:

Pr [σs0 ∈ X] ≥ 1− ε (1)

III. SCALABLE DATA-DRIVEN REACHABILITY

In the setting described in the previous section, we now
show how to compute a reach set or a flowpipe X ⊂ Rn(K+1)

using reachability analysis and conformal inference. This
flowpipe will contain the trajectory σs0 of M sampled with
initial state s0

W∼ I with the confidence level of ∆ = 1− ε.
We hence denote this flowpipe as ∆-confident flowpipe and
define it as follows.

Definition 1 (∆-confident flowpipe): For a given confi-
dence probability ∆ ∈ (0, 1) and a random trajectory
σs0 ∼ S with initial state s0

W∼ I , we say that X ⊂ Rn(K+1)

is a ∆-confident flowpipe if

Pr[σs0 ∈ X] ≥ ∆ (2)
In this work, we are interested in computing X while our
access to M is limited to the datasets Dtrain and Dtest. We
will show that we can compute X with valid guarantees by
employing reachability analysis on the surrogate model trained
from Dtrain and error analysis of this model by applying
conformal prediction on Dtest.

A. Computing Reachsets for Surrogate Models

1) ReLU Surrogate Model: We start with training a neural
network surrogate model F : Rn → Rn(K+1) over the
training dataset Dtrain. The surrogate model is trained to
approximate the trajectory σs0 ∈ Rn(K+1) of the stochastic
system M sampled with initial state s0

W∼ I. We denote the
prediction σ̄s0 ∈ Rn(K+1) of σs0 as,

σ̄s0 = F(s0) =

[
s⊤0 F1(s0) · · · Fn(s0) · · ·

F(n−1)K(s0) · · · FnK(s0)

]⊤
where Fj(s0) is the (j+n)-th component of the vector F(s0).

Recent works in the literature have had great success
on obtaining accurate bounds for the reachability analysis
of ReLU neural networks using polyhedral sets [21], [34],
[35]. The accuracy of these techniques motivates us to use
ReLU activation functions for training neural networks as the
surrogate models. These surrogate models will be used for
deterministic reachability analysis which provides surrogate
flowpipes which we formally define next.

Definition 2 (Surrogate flowpipe): The surrogate flowpipe
X̄ ⊂ Rn(K+1) contains the image of F(I). Formally, for all,
s0 ∈ I it has to hold that F(s0) ∈ X̄ .

The reachability analysis methodology for ReLU neural
networks in [21] introduces two different approaches known
as the exact-star and approx-star techniques. These are used
to compute a surrogate flowpipe X̄ . The exact-star technique
proposes exact reachability analysis using star sets, but can
be slower due to its inherent computational complexity. On
the other hand, the approx-star technique computes over-
approximation of the flowpipe and is thus runtime-efficient,
although it may make the surrogate model reachable set
estimation conservative. The computational complexity of the
exact-star technique and the conservatism of the approx-star
technique can both be noticeably reduced using the idea of
set partitioning [21]. In this approach, we partition the set of
initial conditions I into N different sub-partitions,

Ii ⊂ I,
N⋃
i=1

Ii = I,

and perform reachability analysis on every single sub-region
with parallel computing. The inclusion of set-partitioning
results in noticeable improvement in the computational
efficiency and helps us compute more accurate ∆-confident
flowpipes.

B. Computation of a guaranteed ∆-confident flowpipe

When we train neural network surrogate models, typically
we minimize a loss function defined as the difference between
the K-step trajectory predicted by the surrogate model and
the actual trajectory. Depending on the dynamics of the
underlying stochastic system M and depending on how well
the surrogate model is trained, there is potential for error
when predicting the trajectory from a previously unseen initial
state. To give probabilistic bounds on this error, we utilize
conformal prediction. We formally define the notion of the
residual error as follows.

3104

Definition 3 (Residual Error): Given a realization
(s0, σs0) sampled from the stochastic black-box system M ,
the residual Rj ∈ R>0 is the distance between the (j+n)-th
component of the trajectory and Fj(s0)

2 Formally, we define

Rj =
∣∣e⊤j+nσs0 − Fj(s0)

∣∣
where, ej ∈ Rn(K+1) is the jth base vector of Rn(K+1).
We consider the component-wise residual Rj since every
single component e⊤j+nσs0 in σs0 may represent a different
quantity at a different time. For example, it would not make
sense to define a joint error of the position and velocity of a
system at some time, which motivates the definition of the
component-wise error. Now that we have defined the residual
Rj for a component j, let us compute this residual for all
calibration trajectories from Dtest, i.e., for σs0,i , i ∈ [L].

Definition 4 (Calibration Dataset): For a given test
dataset Dtest, the calibration dataset Rj

Dtest
, j ∈ [nK], is a

collection of pairs (s0,i, R
j
i), i ∈ [L], such that

Rj
Dtest

=
{(

s0,i, R
j
i

)
| (s0,i, σs0,i) ∈ Dtest, i ∈ [L]

}
.

where Rj
i =| e⊤j+nσs0,i − Fj(s0,i) |.

As our access to the underlying system M is limited to a
finite number of pre-recorded trajectories, it is not possible to
exactly compute the distribution of the residual Rj , j ∈ [nK].
Consequently, we cannot compute the δ-quantile of Rj , j ∈
[nK].3 However, we can utilize the method of conformal
prediction [22] to compute an upper bound on the δ-quantile
of Rj . Based on the technique introduced in Section II, we
sort the residuals Rj

i in non-decreasing order. For simplicity
and without loss of generality, let us re-index the values of
Rj

1, . . . , R
j
L so that Rj

1 ≤ Rj
2 ≤ · · · ≤ Rj

L. We can now
apply conformal prediction and define Rj∗ = Rj

ℓ where
ℓ = ⌈(L+ 1)δ⌉. Consequently, we know that

Pr[Rj ≤ Rj∗] ≥ δ.

In other words, the ℓ-th smallest residual Rj∗ is an upper
bound for the δ-quantile of the random variable Rj .

Recall that our ultimate goal is to compute a ∆-confident
flowpipe X for trajectories σs0 from M with distribution
s0

W∼ I . To that end, we compute the vector of upper bounds
for all components of residual’s δ-quantile from conformal
inference, and we denote it by R∗ =

[
R1∗, · · · , RnK∗]⊤.

Theorem 1: Let X̄ be a surrogate flowpipe of the surrogate
model F for the set of initial conditions I. Let Rj∗ be
computed from the calibration dataset Rj

Dtest
, j ∈ [nK] with

confidence probability δ ∈ (0, 1) where Rj
Dtest

is based on i.i.d.
test trajectories in Dtest from the stochastic system M with
initial state s0

W∼ I. Define the inflated surrogate flowpipe,

X = X̄ ⊕ Zonotope(0,diag([01×n, R∗])),

R∗ =
[
R1∗, · · · , RnK∗] .

2Note that we denote the trajectory as a single row vector where
component-wise states at each time-stamp are concatenated. Thus, for the
ith state variable at time k, j will be equal to i · k + n (skipping the first
n component-wise values corresponding to the initial state s0).

3The δ-quantile of a random variable Rj is defined as inf{z ∈ R|Pr[Rj ≤
z] ≥ δ} for δ ∈ (0, 1).

Then, it holds that X is a ∆-confident flowpipe with ∆ =

1− nK(1− δ) for σs0 from M with initial state s0
W∼ I.

Proof: Based on the definition of the conformity score,
we have Pr

[
Rj ≤ Rj∗] ≥ δ. Therefore, we have that

Pr[Rj > Rj∗] < 1− δ.

By applying the union bound over probabilities, it follows
that

Pr

nK∨
j=1

(
Rj > Rj∗) < nK(1− δ).

The negation of this statement implies that

Pr

nK∧
j=1

(
Rj ≤ Rj∗) ≥ 1− nK(1− δ). (3)

We now denote ∆ = 1− nK(1− δ) so that we can rephrase
the above statement as,

Pr

nK∧
j=1

(
| e⊤j+nσs0 − Fj(s0) |≤ Rj∗) ≥ ∆.

Next, we define the interval Cj(s0) =[
Fj(s0)−Rj∗ , Fj(s0) +Rj∗]. Accordingly, we have

Pr

nK∧
j=1

(
e⊤j+nσs0 ∈ Cj(s0)

) ≥ ∆

Based on this, we can now see that

Pr [σs0 ∈ Zonotope (F(s0),diag ([01×n, R∗]))] ≥ ∆ (4)

Since s0
W∼ I and X̄ is a surrogate flowpipe for the surrogate

model F on I, i.e., s0 ∈ I implies F(s0) ∈ X̄ , we can
conclude,

Zonotope (F(s0),diag ([01×n, R∗]))

⊂ X̄ ⊕ Zonotope (0,diag ([01×n, R∗])) = X
(5)

This fact implies that Pr[σs0 ∈ X] ≥ ∆, i.e., X is a ∆-
confident flowpipe, which completes the proof.

Theorem 1 tells us how to obtain a ∆-confident flowpipe
given the K-step datasets Dtrain and Dtest. We can now
compute a lower bound on the minimum size of the calibration
dataset that we need given a confidence probability ∆ ∈ (0, 1).
Specifically, we note that ∆ = 1−nK(1− δ) is equivalent to
δ = 1− 1−∆

nK . The minimum required size L of the calibration
dataset has to satisfy ⌈(L + 1)δ⌉ ≤ L which gives us the
explicit lower bound L ≥ ⌈ 1+δ

1−δ ⌉. In this work, we defined the
residual component-wise, recall Definition 3. As observed in
the proof of Theorem 1, we thus had to apply the union bound
over all residuals Rj . This may in some cases be conservative,
i.e., for large system dimension n or large trajectory horizon
K. However, there are possible ways to define a residual in
a way that removes this conservatism. For example, in our
recent work [36] we show how to obtain tight conformal
prediction regions for time series. Applying this method will
also result in better data efficiency. We intend to explore this
method in the context of this paper in future work and refer
the reader to [36] for more details.

3105

Failure Conformal inference Reachability
Probability Run-time Run-time

0.10 2.9439 sec 9.8059 sec
0.09 2.8511 sec 9.0679 sec
0.08 2.7367 sec 10.0502 sec
0.07 2.8785 sec 9.7935 sec
0.06 2.9341 sec 9.7988 sec
0.05 2.8783 sec 10.7457 sec
0.04 2.7901 sec 10.0033 sec
0.03 3.096 sec 9.4364 sec
0.02 3.3982 sec 10.0027 sec
0.01 2.8536 sec 9.7945 sec

TABLE I: Adaptive Cruise Control: Computation times of
our method for different user-provided failure probabilities ε.
The reachability run-time is the overall time for reachability
analysis over the surrogate model and constructing the
probabilistic flowpipe with conformal inference. The run-
time for training a surrogate ReLU model was 2 hours and
the run-time for test data-generation was 122 seconds.

IV. EXPERIMENTAL RESULTS

We consider an adaptive cruise controller, a quadcopter,
and the Laubloomis benchmarks in [6]. In all case studies, we
train 1-step surrogate models that we combine into a K-step
surrogate model for trajectory prediction. For reachability
analysis of the surrogate model we use the approx-star
algorithm from [21] for the Laubloomis case study, while
we use the exact-star algorithm from [21] for the adaptive
cruise controller and the quadcopter. The underlying system
is described by an ordinary differential equation (ODE),
potentially affected by noise, and we consider the system at
discrete time points. Therefore, we let the control input and the
noise be fixed over the sampling time [kδt, (1+k)δt], k ∈ [K].
The star-sets that we obtain are n > 3 dimensional. Illustration
of our results is thus demonstrated through their projection
onto state components. This is important to keep in mind
when assessing the tightness of the obtained star-sets.

Adaptive Cruise Control. We consider a 6-dimensional system
consisting of a leader and a follower vehicle that is equipped
with an adaptive cruise controller. The underlying black-box
model is described by the ODE model
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

 =

x2

x3

−2x3 − 4− µx2
2

x5

x6

−2x6 + 2u− µx2
4

+ v, I =

s0

∣∣∣∣∣∣∣∣∣∣∣∣

90
32
0
10
30
0

 ≤ s0 ≤

110
32.2
0
11
30.2
0

(6)

where v ∼ N (0, d2) with standard deviation d =
diag([1, 0.1, 0.05, 1, 0.1, 0.05]). The friction coefficient is
µ = 10−4. The state components x1, x2, x3 are the position,
velocity, and hidden state of the lead vehicle, while the
components x4, x5, x6 are the position, velocity, and hidden
state of the ego vehicle. The surrogate model is a neural

network with ReLU activation functions and with layers
[6, 32, 32, 32, 6]. The surrogate model is trained from a
training dataset generated from Eq. (6) where the control input
u is generated by the adaptive cruise controller. To perform
conformal inference, we generate L = 40000 i.i.d. 50-step
trajectories from Eq. (6) with sampling time δt = 0.1 sec
that we collect within the test dataset Dtest. Fig. 1 shows
the projections of our probabilistic flowpipe onto its state
components by setting ε = 0.01. To visualize the tightness
of the probabilistic flowpipe, we generate 100000 additional
i.i.d. trajectories from Eq. (6) and include their projection on
their state components in Fig. 1 as well. Table I shows the run
time of our experimental results for the range ε ∈ [0.01, 0.1].

Quadcopter. We consider a 12-dimensional Quadcopter model
that was introduced in [6]. The ODE model for the Quadcopter
is shown in Eq. (7). The additive noise v = [v1, v2, · · · , v12]
is Gaussian v ∼ N (0, d2) with standard deviation d =
diag([0.05× 1⃗1×6, 0.01× 1⃗1×6]). The controller is a neural
network controller that was presented in [6]. From this model,
we generate a test dataset with L = 40000 data-points by
sampling 50-step trajectories with sampling time δt = 0.1 sec.
We also train our surrogate model as a neural network with
layers [12, 20, 20, 20, 12] from an additional training dataset.
The run time for our data-driven reachability analysis is shown
in Table II and the projections of the probabilistic flowpipes
onto its state components for ε = 0.01 is shown in Fig. 2.

Laubloomis. Finally, we consider a 7-dimensional system
which is known as Laubloomis [6]. The ODE model for
Laubloomis is shown in Eq. (8). To provide a comparison
with deterministic reachability analysis techniques, we do not
add noise to the system in this case so that the system is
effectively deterministic. However, note that in our approach
we need to sample the initial conditions. We thus generate
a test dataset of size L = 160000 consisting of 200-step
trajectories with sampling time δt = 0.01.

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

=

1.4x3 − 0.9x1

2.5x5 − 1.5x2

0.6x7 − 0.8x3x2

2.0− 1.3x4x3

0.7x1 − 1.0x4x5

0.3x1 − 3.1x6

1.8x6 − 1.5x7x2

, I =

s0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1.05
0.9
1.35
2.25
0.85
−0.05
0.3

≤ s0 ≤

1.35
1.2
1.65
2.55
1.15
0.25
0.6

(8)

Again, we train a surrogate model as a neural network
with ReLU activation functions and layers [7, 20, 20, 20, 7].
Since the horizon length of trajectories is long, we utilize the
approx-star approach instead of the exact-star approach which
is more efficient at the cost of conservatism. The simulation
of the results for ε = 0.01 is also demonstrated in Fig.3.
The reachability run time for our data driven probabilistic
approach for a range of failure probabilities ε ∈ [0.01, 0.1]
is shown in Table III. Finally, we utilize the CORA toolbox
[37] to compare to our results, which is shown in Fig.3.
We emphasize that the CORA toolbox is only applicable to
deterministic systems and assumes access to the model, while
our approach only assumes availability of data.

3106

Fig. 1: Adaptive Cruise Control:
The black lines indicate the prob-
abilistic flowpipe computed using
the exact-star technique on the
learned surrogate model combined
with conformal inference with fail-
ure probability ε = 0.01. The
green shaded areas and blue lines
are computed from 100000 ran-
dom trajectories from the ODE
model. The green area shows the
maximum and minimum value of
the trajectory components over
this dataset, and the blue line
represents their average value.

Fig. 2: Quadcopter: The black
lines indicate the probabilistic
flowpipe computed using the exact-
star technique on the learned surro-
gate model combined with confor-
mal inference with failure proba-
bility ε = 0.01. The green shaded
areas and blue lines are computed
from 100000 random trajectories
from the ODE model. The green
area shows the maximum and min-
imum value of trajectory compo-
nents over this dataset, and the
blue line represents their average
value.

Failure Conformal inference Reachability Failure Conformal inference Reachability
Probability Run-time Run-time Probability Run-time Run-time

0.10 2.475 sec 7.3779 sec 0.05 2.4762 sec 7.5 sec
0.09 2.4754 sec 6.8911 sec 0.04 2.4822 sec 7.3542 sec
0.08 2.5894 sec 7.2825 sec 0.03 2.5316 sec 7.5548 sec
0.07 2.6046 sec 7.5339 sec 0.02 2.364 sec 7.2504 sec
0.06 2.4674 sec 7.1876 sec 0.01 3.5858 sec 7.4376 sec

TABLE II: Quadcopter: Computation times of our method for different user-provided failure probabilities ε. The reachability
run-time is the overall time for reachability analysis over the surrogate model and constructing the probabilistic flowpipe
with conformal inference. The data generation time for the test dataset is 273 sec and the run time for training the ReLU
model on training dataset is 2 hours and 25 minutes.

V. CONCLUSION

We proposed a data-driven approach to analyze the reacha-
bility of stochastic dynamical systems. Particularly, we studied
stochastic dynamical systems when no mathematical model
of the system is available, and the only information available
to us is data observed from the system. We showed how
to compute probabilistic reach sets, so called probabilistic

flowpipes, for this system from data. Probabilistic flowpipes
ensure that the probability of a new trajectory not being in the
flowpipe is upper bounded by a user-defined threshold. Our
approach consists of first learning a surrogate model of the
system from a training dataset. We then used the surrogate
model to perform reachability analysis over it using existing
tools for deterministic reachability analysis. To quantify

3107

Failure Conformal inference Reachability Failure Conformal inference Reachability
Probability Run-time Run-time Probability Run-time Run-time

0.10 89.9305 sec 93.8766 sec 0.05 71.3700 sec 49.7159 sec
0.09 72.0818 sec 53.0224 sec 0.04 67.8528 sec 50.1378 sec
0.08 74.2623 sec 50.0363 sec 0.03 72.8819 sec 50.1828 sec
0.07 71.7105 sec 49.7770 sec 0.02 85.9235 sec 49.7792 sec
0.06 69.4149 sec 50.7159 sec 0.01 91.9276 sec 92.9743 sec

TABLE III: Laubloomis: Computation times of our method for different user-provided failure probabilities ε. The reachability
run-time is the overall time for reachability analysis over the surrogate model and constructing the probabilistic flowpipe with
conformal inference. The data generation time for the test dataset is 19 minutes, and the run time for training the ReLU
model on the training dataset is 2 hours and 30 minutes.

ẋ1 = cos(x8) cos(x9)x4 + (sin(x7) sin(x8) cos(x9)− cos(x7) sin(x9))x5

+(cos(x7) sin(x8) cos(x9) + sin(x7) sin(x9))x6 + v1
ẋ2 = cos(x8) sin(x9)x4 + (sin(x7) sin(x8) sin(x9) + cos(x7) cos(x9))x5

+(cos(x7) sin(x8) sin(x9)− sin(x7) cos(x9))x6 + v2
ẋ3 = sin(x8)x4 − sin(x7) cos(x8)x5 − cos(x7) cos(x8)x6 + v3
ẋ4 = x12x5 − x11x6 − 9.81 sin(x8) + v4
ẋ5 = x10x6 − x12x4 + 9.81 cos(x8) sin(x7) + v5
ẋ6 = x11x4 − x10x5 + 9.81 cos(x8) cos(x7)− 9.81− u1/1.4 + v6
ẋ7 = x10 + (sin(x7)(sin(x8)/ cos(x8)))x11 + (cos(x7)(sin(x8)/ cos(x8)))x12 + v7
ẋ8 = cos(x7)x11 − sin(x7)x12 + v8
ẋ9 = (sin(x7)/ cos(x8))x11 + (cos(x7)/ cos(x8))x12 + v9
ẋ10 = −0.9259x11x12 + 18.5185u2 + v10
ẋ11 = 0.9259x10x12 + 18.5185u3 + v11
ẋ12 = v12

I =

s0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−0.2
−0.2
−0.2
−0.2
−0.2
−0.2
0
0
0
0
0
0

≤ s0 ≤

0.2
0.2
0.2
0.2
0.2
0.2
0
0
0
0
0
0

(7)

Fig. 3: Laubloomis: Shows our
data driven reachability analysis
from 200-step dataset along with
100 random trajectories generated
from M . We also included the
reachability analysis from CORA
toolbox that is based on the ideally
known model depicted as green
regions. The bounds in black line
shows the reachability analysis
with approx-star technique com-
bined with conformal inference
with prescribed failure probability
ε = 0.01.

the error between the surrogate model and the underlying
unknown system, we finally use conformal inference on a test
dataset. We illustrated our approach using three case studies.

REFERENCES

[1] A. P. Vinod and M. M. Oishi, “Stochastic reachability of a target tube:
Theory and computation,” Automatica, vol. 125, p. 109458, 2021.

[2] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic
reachability and safety for controlled discrete time stochastic hybrid
systems,” Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.

[3] A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry, “Com-
putational approaches to reachability analysis of stochastic hybrid
systems,” in International Workshop on Hybrid Systems: Computation
and Control. Springer, 2007, pp. 4–17.

[4] Y. Yang, J. Zhang, K.-q. Cai, and M. Prandini, “A stochastic reachability
analysis approach to aircraft conflict detection and resolution,” in 2014
IEEE Conference on Control Applications (CCA), 2014, pp. 2089–2094.

[5] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “Reachnn: Reachability
analysis of neural-network controlled systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[6] C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “Polar: A polynomial
arithmetic framework for verifying neural-network controlled systems,”
in International Symposium on Automated Technology for Verification
and Analysis. Springer, 2022, pp. 414–430.

[7] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in Computer Aided Verification: 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings 25. Springer, 2013, pp. 258–263.

[8] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari,

3108

“Sherlock-a tool for verification of neural network feedback systems:
demo abstract,” in Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, 2019, pp.
262–263.

[9] X. Koutsoukos and D. Riley, “Computational methods for reachability
analysis of stochastic hybrid systems,” in Hybrid Systems: Computation
and Control: 9th International Workshop, HSCC 2006, Santa Barbara,
CA, USA, March 29-31, 2006. Proceedings 9. Springer, 2006, pp.
377–391.

[10] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC). IEEE, 2017,
pp. 2242–2253.

[11] L. Bortolussi and G. Sanguinetti, “A statistical approach for computing
reachability of non-linear and stochastic dynamical systems,” in
International Conference on Quantitative Evaluation of Systems.
Springer, 2014, pp. 41–56.

[12] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model check-
ing,” Formal Methods for Performance Evaluation: 7th International
School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM 2007, Bertinoro, Italy, May 28-June 2,
2007, Advanced Lectures 7, pp. 220–270, 2007.

[13] A. Legay, A. Lukina, L. M. Traonouez, J. Yang, S. A. Smolka, and
R. Grosu, “Statistical model checking,” in Computing and software
science: state of the art and perspectives. Springer, 2019, pp. 478–504.

[14] A. Devonport, F. Yang, L. El Ghaoui, and M. Arcak, “Data-driven
reachability analysis with christoffel functions,” in 2021 60th IEEE
Conference on Decision and Control (CDC). IEEE, 2021, pp. 5067–
5072.

[15] A. Alanwar, A. Koch, F. Allgöwer, and K. H. Johansson, “Data-driven
reachability analysis from noisy data,” IEEE Transactions on Automatic
Control, 2023.

[16] A. Devonport and M. Arcak, “Data-driven reachable set computation
using adaptive gaussian process classification and monte carlo methods,”
in 2020 American Control Conference (ACC). IEEE, 2020, pp. 2629–
2634.

[17] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based
control in uncertain robotic systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 7, pp. 2737–2752, 2018.

[18] A. Lin and S. Bansal, “Generating formal safety assurances for high-
dimensional reachability,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 10 525–10 531.

[19] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “Dryvr: Data-driven
verification and compositional reasoning for automotive systems,” in
International Conference on Computer Aided Verification. Springer,
2017, pp. 441–461.

[20] N. Matni and S. Tu, “A tutorial on concentration bounds for system
identification,” in 2019 IEEE 58th Conference on Decision and Control
(CDC). IEEE, 2019, pp. 3741–3749.

[21] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen,
W. Xiang, S. Bak, and T. T. Johnson, “Nnv: the neural network
verification tool for deep neural networks and learning-enabled cyber-
physical systems,” in Computer Aided Verification: 32nd International
Conference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020,
Proceedings, Part I. Springer, 2020, pp. 3–17.

[22] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a
random world. Springer, 2005, vol. 29.

[23] J. Lei and L. Wasserman, “Distribution-free prediction bands for non-
parametric regression,” Journal of the Royal Statistical Society: Series
B: Statistical Methodology, pp. 71–96, 2014.

[24] L. Bortolussi, F. Cairoli, N. Paoletti, S. A. Smolka, and S. D.
Stoller, “Neural predictive monitoring,” in Runtime Verification: 19th
International Conference, RV 2019, Porto, Portugal, October 8–11,
2019, Proceedings 19. Springer, 2019, pp. 129–147.

[25] F. Cairoli, N. Paoletti, and L. Bortolussi, “Conformal quantitative
predictive monitoring of stl requirements for stochastic processes,” in
Proceedings of the 26th ACM International Conference on Hybrid
Systems: Computation and Control, 2023, pp. 1–11.

[26] L. Lindemann, X. Qin, J. V. Deshmukh, and G. J. Pappas, “Conformal
prediction for stl runtime verification,” in Proceedings of the ACM/IEEE
14th International Conference on Cyber-Physical Systems (with CPS-
IoT Week 2023), 2023, pp. 142–153.

[27] X. Qin, Y. Xia, A. Zutshi, C. Fan, and J. V. Deshmukh, “Statistical
verification of cyber-physical systems using surrogate models and con-

formal inference,” in 2022 ACM/IEEE 13th International Conference
on Cyber-Physical Systems (ICCPS). IEEE, 2022, pp. 116–126.

[28] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reacha-
bility analysis,” in Hybrid Systems: Computation and Control: Third
International Workshop, HSCC 2000 Pittsburgh, PA, USA, March
23–25, 2000 Proceedings. Springer, 2002, pp. 202–214.

[29] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman,
“Distribution-free predictive inference for regression,” Journal of the
American Statistical Association, vol. 113, no. 523, pp. 1094–1111,
2018.

[30] A. N. Angelopoulos and S. Bates, “A gentle introduction to conformal
prediction and distribution-free uncertainty quantification,” arXiv
preprint arXiv:2107.07511, 2021.

[31] L. Lindemann, M. Cleaveland, G. Shim, and G. J. Pappas, “Safe
planning in dynamic environments using conformal prediction,” IEEE
Robotics and Automation Letters, 2023.

[32] R. Luo, S. Zhao, J. Kuck, B. Ivanovic, S. Savarese, E. Schmerling,
and M. Pavone, “Sample-efficient safety assurances using conformal
prediction,” in Algorithmic Foundations of Robotics XV: Proceedings
of the Fifteenth Workshop on the Algorithmic Foundations of Robotics.
Springer, 2022, pp. 149–169.

[33] R. J. Tibshirani, R. Foygel Barber, E. Candes, and A. Ramdas,
“Conformal prediction under covariate shift,” Advances in neural
information processing systems, vol. 32, 2019.

[34] H.-D. Tran, D. Manzanas Lopez, P. Musau, X. Yang, L. V. Nguyen,
W. Xiang, and T. T. Johnson, “Star-based reachability analysis of deep
neural networks,” in Formal Methods–The Next 30 Years: Third World
Congress, FM 2019, Porto, Portugal, October 7–11, 2019, Proceedings
3. Springer, 2019, pp. 670–686.

[35] H.-D. Tran, F. Cai, M. L. Diego, P. Musau, T. T. Johnson, and
X. Koutsoukos, “Safety verification of cyber-physical systems with
reinforcement learning control,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[36] M. Cleaveland, I. Lee, G. J. Pappas, and L. Lindemann, “Confor-
mal prediction regions for time series using linear complementarity
programming,” arXiv preprint arXiv:2304.01075, 2023.

[37] M. Althoff, “An introduction to cora 2015.” ARCH@ CPSWeek, vol. 34,
pp. 120–151, 2015.

3109

