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Abstract— This paper develops a physics-informed neural
network (PINN) for learning the parameters of commercially
implemented adaptive cruise control (ACC) systems. The con-
stant time-headway policy (CTHP) is adopted to emulate the
core functionality of stock ACC systems (proprietary control
logic and its parameters) which is not publicly available.
Multi-layer artificial neural networks is a class of universal
approximators, and thus the developed PINN can serve as a
surrogate approximator to capture the longitudinal dynamics
of ACC-engaged vehicles and efficiently learn the unknown
parameters of the CTHP. The ability of the PINN to infer
the unknown ACC parameters is tested on both synthetic
and empirical data of space-gap and relative velocity involved
ACC-engaged vehicles in platoon formation. The results have
demonstrated the superior predictive ability of the proposed
PINN to learn the unknown design parameters of stock ACC
systems of different vehicle makes. The set of ACC model
parameters obtained from the PINN revealed that the stock
ACC system of the considered vehicles in three experimental
campaigns is neither L2 nor L∞ string stable.

I. INTRODUCTION

The growing acceptance of partially automated vehicles

(up to SAE Level 2 of Driving Automation [1]) on public

roads gave birth to new traffic conditions, rising concerns

among the scientific community regarding their impact on

traffic flow and capacity. This created the need for a deeper

understanding of the fundamental principles underlying these

vehicles. Adaptive cruise control (ACC) equipped vehicles

serve as a typical example of such vehicles. ACC systems

have long been part of automotive equipment (optional or

standard). They provide additional assistance to the driver

by controlling the longitudinal movement of the vehicle

while monitoring the surrounding environment with several

onboard sensors (radar, lidar, etc.). More specifically, ACC

is an advanced driver-assistance system (ADAS) that auto-

matically adjusts the speed of the vehicle, accelerating or

decelerating it, to maintain a safe predefined distance from

the vehicle in front or to reach the user-specified speed.

However, ACC’s design (e.g., controller synthesis) remains

publicly unknown, making ACC systems not fully under-

stood yet. One of the key aspects behind ACC’s design is the

spacing policy (control law) adopted by ACC manufacturers,

and its unknown design parameters. The spacing policy

specifies the predefined desired distance (based on time or
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space) between an ACC vehicle and its vehicle in front.

The constant time-headway policy (CTHP) [2] is one of the

most remarkable spacing control strategies developed in the

literature [2]–[4]. Despite its simplicity, it can reproduce the

dynamics and driving behavior of ACC-engaged vehicles in

platoons, as shown in several field trials [5]–[7].

Among others, a major issue concerning the scientific

community for decades is whether ACC systems are string

stable inside a platoon in the presence of unknown but

bounded disturbances [8]–[12]. String stability is defined

as the elimination of propagating disturbances upstream the

platoon. String unstable platoons are intruding since their

dynamics can lead to phantom traffic shockwaves and thus

to traffic congestion and poor system throughput. In the

literature, it has been repeatedly reported that these systems

tend to be string unstable [5], [6], [13]–[15]. To better

understand such phenomena, a broader study of ACC’s

principles is required.

ACC system’s parameter identification is an important

step towards its better understanding. Several studies have

used different techniques based on synthetic or observed

data, such as batch optimization, recursive least-squares,

particle filtering, and unscented Kalman filtering [15]–[18].

However, the parameter identification problem of automated

vehicles using empirical observations is challenging, since

the underlying optimization problem is non-convex and it

might be ill-conditioned under equilibrium driving conditions

(i.e., where acceleration and space-gap reduce to zero), see

[15]. In the latter case, the ACC system parameters cannot

be uniquely identified, given input and output observations

from the platoon, since the problem lacks both linear and

nonlinear observability [18].

This paper introduces, for the first time in the relevant

literature, physics-informed neural networks (PINNs) for the

parameter learning of commercially implemented ACC sys-

tems using empirical observations of space-gap and relative

velocity. The CTHP, which is speculated that is implemented

in stock ACC systems of various makes, is adopted to

emulate the longitudinal motion of ACC vehicles flocking

in homogeneous platoons. The pursued PINN is a deep

learning data-driven approach subject to the physical model

of the CTHP derived from first physical principles (double

integrator) and control theory (a PID-like control law).

PINNs are semi-supervised artificial neural networks of

dynamical systems governed by ordinary or partial differ-

ential equations (ODEs or PDEs) and observed data [19]–

[22]. A PINN consists of two ingredients: An artificial

neural network representing a physics-uninformed surrogate
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predictor (parameterized by weights and biases); and (b) a

residual network representing a physics-and-data-informed
set of ODEs or PDEs. PINN’s implementation expands into

solving both forward and inverse non-linear problems [20].

The remainder of the paper is structured as follows. Sec-

tion II reviews the CTHP and briefly presents the L2 and L∞
criteria for string stability in platoons. Section III introduces

the proposed PINN for parameter learning. Section IV illus-

trates the application of PINN to both synthetic and empirical

data obtained from three real-life campaigns. It also presents

the inferred parameters of stock ACC systems for various

makes and discusses their string stability conditions. Section

V outlooks the potential of this work.

Notation: The field of real numbers is denoted by R. The

space of Lebesgue measurable functions f : R → R such

that t → |f(t)|p is integrable over R is denoted by Lp, here

p = 2,∞ is used to discuss string stability. For p = ∞ no

integration is used, and instead, the norm on L∞ is given by

the essential supremum.

II. MODELING ADAPTIVE CRUISE CONTROL SYSTEMS

In the sequel, the CTHP, embedded in a simplified dy-

namic vehicle model, is considered to imitate the longitudinal

motion of ACC-engaged vehicles flocking in homogeneous

platoons. The vehicle dynamics of the ACC vehicles are

described by a double integrator, while acceleration is gov-

erned by the CTHP. Despite its simplicity, this model is able

to reproduce the dynamics and driving behavior of ACC-

engaged vehicles in platoons as shown in field trials [5]–[7].

A. ACC Platooning with Constant Time-Headway Policy

Consider a platoon of M homogeneous ACC-engaged ego

vehicles, where vehicle i (follower) follows vehicle i − 1
(leader). The leader of the platoon is indexed by i = 0 and

might be affiliated to a human-driven vehicle (HDV). The

longitudinal dynamics of the ACC equipped vehicles can be

described by the following system of ODEs [2], [9]:

ṗi(t) = Δvi(t), i = 1, 2, . . . ,M, (1)

v̇i(t) = α
[
pi(t)− τvi(t)

]
+βΔvi, (2)

where pi(t) [m] is the space-gap between two vehicles i and

i− 1, i.e., the distance between the follower’s front bumper

and the leader’s rear bumper; and Δv = vi−1(t)−vi(t) is the

relative velocity between the vehicle i and the vehicle i−1 in

a platoon. In the control law (2), τ [s] represents the constant

time-headway the ACC-engaged vehicle i strives to maintain

with its leader i−1, which in turn indicates the desired space-

gap, τvi(t), between the two vehicles. The two non-negative

gains, α [1/s2] and β [1/s], control the trade-off between the

space-gap difference, pi(t)−τvi(t), and the relative velocity

Δvi. Finally, parameter τ [s] can also be considered as the

time-gap under equilibrium driving conditions:

vi−1(t)− vi(t) = 0 and pi(t)− τvi(t) = 0, ∀ i. (3)

The CTHP parameters α, β and τ that characterize the

ACC equipped vehicles are constant but unknown. Thus, the

model (1)–(2) can be re-written in compact form as:

ξ̇i(t) = f [ξi(t),ω], i = 1, 2, . . . ,M, (4)

where ξi(t) = [pi(t) vi(t)]
T is the state vector, ω =

[α β τ ]T is the parameters vector (to be learned), and

f = [f1 f2]
T is a vector function that reflects the right-

hand side of (1)–(2). Note that one set of parameters ω is

considered here for all vehicles within the platoon due to the

homogeneity assumption above.

B. Parameter Identification and String Stability

For the CTHP, the following conditions for string stability

in the sense of L2 and L∞ norms are well-established in the

relevant literature [23], [24]. The CTHP model parameters

α, β and τ must satisfy,

1) L2 Strict String Stability:

α2τ2 + 2αβτ − 2α ≥ 0. (5)

As can be seen, as τ approaches ∞ the system is L2 strict

string stable for all non-negative gains α and β of the CTHP,

while as τ approaches zero the system becomes unstable.

2) L∞ Strict String Stability:

(ατ + β)2 − 4α ≥ 0. (6)

Subtracting (5) from (6) yields [24]:

β2 ≥ 2α ⇒ (L∞ stability ⇔ L2 stability) , (7)

suggesting that L2 stability is stronger than the L∞ stability.

This is realistic since even if the L2 energy of a signal is

small, it may occasionally contain large peaks, provided the

peaks (i.e., the L∞ norm) are not too frequent and do not

contain too much energy.

III. PHYSICS-INFORMED NEURAL NETWORKS

A. Architecture of Multi-layer Neural Networks

Consider a fully-connected feed-forward artificial neural

network (ANN or NN), NL(x) : Rn → R
m of L (or L− 1

hidden) layers, with N� denoting the number of artificial

neurons at layer � = 1, 2, . . . , L− 1, while for the input and

output layers N0 = n and NL = m holds, respectively. Thus,

the input layer has the dimension of the raw training data

x ∈ R
n, while the dimension of the output layer is defined by

the context. Each neuron at layer � is equipped with a (user-

defined) nonlinear activation function, σ(x) : Rn → R
n, to

transform the weighted linear sum input of various neurons

at layer � − 1 into an output that is passed (neuron fires)

on to the next (hidden or output) layer � + 1. The weights

and bias of the weighted sum input at layer � = 1, 2, . . . , L
are organized in the matrices A� ∈ R

N�×N�−1 and vectors

b� ∈ R
N� , respectively; or in a single parameters vector

θ = {A�,b�}1≤�≤L. The architecture of the ANN can then

be summarized as the following compositional function:

Input layer: N 0(x) = x ∈ R
n,

Hidden layers: N �(x) = σ(A�N �−1(x) + b�) ∈ R
N�

,

Output layer: NL(x) = ALNL−1(x) + bL ∈ R
m,
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where � = 1, 2, . . . , L− 1 for the hidden layers.

The goal is to optimize the weighting matrices A� and

bias vectors b� connecting the NN from the �-th to (�+1)-th
layer using labeled pairs of input (see Input layer) and output

(see Output layer) data. This procedure, which is known

as training in the NN nomenclature, involves automatic
differentiation [25] over the compositional function NL(x)
and nonlinear optimization, and thus is computationally

expensive. Stochastic gradient descent (SGD) [26], [27] and

back-propagation [28] are two important algorithms that can

be used for the efficient training of such multi-layer ANN.

B. ACC Parameter Learning via PINNs

Consider the parameterized ODEs (1)–(2) that characterize

the CTHP of ACC equipped vehicles. Assume that a solution,

ξi(t) on the time domain t ∈ [t0, te] = Ω, of the ODEs exists,

given some boundary conditions Bi(ξi, t) = 0 on ∂Ω:

Fi(ξi, ξ̇i,ω, t) = ξ̇i(t)−f [ξi(t),ω] = 0, i = 1, . . . ,M, (8)

where Fi ∈ R
2 is a nonlinear operator (residual of (4))

parameterized by ξi, ξ̇i, and ω (to be learned).

Multi-layer feed-forward ANN are a class of universal
approximators [29], thus a neural network, ξ̂i(t;θ), can

be developed as a surrogate of the solution ξi(t) for all

i = 1, 2, . . . ,M . Provided the availability of empirical data

of space-gap and relative velocity, D = {ξi(t)}t∈Ω, the

(output of the) neural network ξ̂i(t;θ) (predictor) can be

constrained to satisfy the physical model (8) of the CTHP

and its boundary conditions Bi(ξi, t) = 0 on ∂Ω. Additional

internal conditions, Ii(ξi, t) = 0 on some t ⊂ Ω, can be

also incorporated for readily solving the inverse parameter
optimization problem. In the inverse problem, the vector of

CTHP parameters is to be learned using training data, D,

such that (8) and boundary/internal conditions are satisfied.

Concluding, a PINN for each ACC vehicle i on a pla-

toon consists of (see Fig. 1): (a) the physics-uninformed
surrogate predictor ξ̂i(t;θ); (b) the physics-informed residual

constraints Fi(ξi, ξ̇i,ω, t) together with the boundary and

internal conditions Ri(ξi, t) = {Bi(ξi, t) ∪ Ii(ξi, t)}. Upon

training, the PINN is calibrated to predict the entire solution

of the system of ODEs (8), as well as the unknown CTHP

parameters that define the underlying dynamics in a platoon.

C. Training of the PINN

Training of the PINN requires discretization or sampling

of the continuous time domain on a sufficient small time

interval, resulting to the set of pseudo-points (or induced

points) T = {t1, t2, . . . , t|T |} ∈ Ω, where |T | is the

cardinality of set T . The set T = {Tf , Tb} includes all points

in the time domain Tf ⊂ Ω and its boundary Tb ⊂ ∂Ω where

evaluation of the residual (8) and boundary and internal

conditions Ri is necessary, given predictions of the surrogate

model ξ̂i(t;θ) and empirical data of space-gap and relative-

velocity, D = {ξi(t)}t∈T . Thus, the NN takes as input the

set T and provides predictions of ξ̂i = [p̂i v̂i]
T (see the input

and output layers, respectively, in Fig. 1).

To efficiently train the surrogate predictor ξ̂i(t;θ) and

simultaneously satisfy the residual and boundary constraints,

the following cost criterion of two terms is considered:

(a) a semi-unsupervised cost criterion, ΨODE|U, for the

residual (8) and its boundary and internal conditions; (b)

a supervised (data-driven) cost criterion, ΨD|S, governed by

the measurements ξi and the predictions ξ̂i. For the inverse

optimization problem the cost criterion reads:

Ψ(θ,ω) = ΨODE|U +ΨD|S
= ΨF (θ,ω) + ΨR(θ,ω)︸ ︷︷ ︸

ΨODE|U

+ΨD(θ)︸ ︷︷ ︸
ΨD|S

, (9)

where,

ΨF (θ,ω) =
1

|Tf | ×M

M∑
i=1

∑
t∈Tf

‖Fi(ξ̂i,
˙̂
ξi,ω, t)‖2Q, (10)

ΨR(θ,ω) =
1

|Tb| ×M

M∑
i=1

∑
t∈Tb

‖Ri(ξ̂i,ω, t)‖2R, (11)

ΨD(θ) =
1

|T | ×M

M∑
i=1

∑
t∈T

‖ψi(ξ̂i, ξi, t)‖2S, (12)

and ψ is a function that penalizes deviations of the NN

surrogate approximation from the empirical training data set

D = {ξi(t)}t∈T , e.g., for the mean square error (MSE),

ψi(ξ̂i, ξi, t) = ξ̂i − ξi. The positive-definite weighting

matrices Q, R, S are penalty terms for the unsupervised

and supervised cost functions, respectively. These matrices

can be selected via a trial-and-error procedure to speed up

convergence for a particular data set and application.

The optimal vectors of the inverse problem, NN weights

θ and CTHP parameters ω, can be obtained by solving the

following optimization problem during PINN training:

[θ∗,ω∗] = argmin
θ,ω

Ψ(θ, ω). (13)

This is a highly nonlinear optimization problem, and thus

is computationally expensive; but can be solved efficiently

using (batch) SGD or quasi-Newton methods using Hessian

information (e.g., Adam [30] and L-BFGS [31]).

IV. APPLICATION AND RESULTS

To demonstrate the effectiveness of the proposed data-

driven approach to learn the parameters of the CTHP of ACC

systems, a PINN is developed and tested to both synthetic

and empirical data of space-gap and relative velocity.

A. Empirical Data Description

The empirical data are taken from three car-following

experimental campaigns that took place in Autostrada A26

motorway in Ispra-Vicolungo (fleet of five vehicles in platoon

formation) and Ispra-Casale (car-following scenario with two

vehicles) routes in 2019 and 2020, respectively, Italy, and

AstaZero test track (five premium ACC equipped vehicles in

platoon formation) in mid 2019, Sweden. In all campaigns,

data acquisition was performed using high-accuracy on-board

equipment (e.g., U-blox GNSS receivers) with a sampling
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Loss
minimize

Fig. 1. Architecture of the proposed Physics-Informed Neural Network (PINN) for CTHP parameter learning. The NN on the left represents the physics-
uninformed surrogate predictor ξ̂(t;θ), while the right network depicts the physics-and-data-informed residual and boundary constraints of the CTHP.

frequency at 10 Hz (0.1 s). Data can be freely accessed

through the OpenACC database [13]. Table II provides

information (make and model) on the vehicles involved.

B. PINN Setup

Fig. 1 depicts the developed PINN for learning the un-

known design parameters of the CTHP, ω, for a particular

ego vehicle i in a car-following scenario (thus the index i
is omitted in the sequel), ξ̂(t;θ) ≡ NN(t,θ), consisting of

one (1) input layer with one (1) neuron t (the discretized

time domain), three (3) hidden-layers with sixty (60) neurons

each, and one (1) output layer with two (2) neurons, the

predictor ξ̂ = [p̂ v̂]T. Thus, L = 4, N0 = 1, N� = 60
for � = 1, 2, 3, and N4 = 2. The weights vector of the NN

reads θ = {A(1),A(2),A(3),A(4),b(1),b(2),b(3),b(4)} ∈
R

7562. Each neuron of the NN is equipped with a non-linear

hyperbolic tangent activation function, σ(x) = tanh(x).
For the inverse optimization problem for a car-following

scenario with two vehicles, M = 1 (the extension to M > 1
is straightforward), the cost criterion (9) reads:

ΨF (θ,ω) =
1

|Tf |
∑
t∈Tf

{[
ˆ̇p1(t)− v0(t) + v̂1(t)

]2

+
[
ˆ̇v1(t)− α[p̂1(t)− τ v̂1(t)]− β[v0(t)− v̂1(t)]

]2}
,

ΨD(θ) =
1

|T |
∑
t∈T

{
[p1(t)− p̂1(t)]

2
+ [v1(t)− v̂1(t)]

2
}
,

where v0 and v1 are the velocities of the leader and the ACC

follower, respectively; and p1 is the space-gap between the

two vehicles. Note that the term ΨR is absent above since

|Tb| = |T | and, thus, the internal and boundary conditions R
are included in ΨF and ΨD. To train the NN the learning rate

is set to 0.001 and the maximum number of iterations is set

to 60,000. In each iteration, the input of the NN is fed with a

set of |T | = |Tf | = |Tb| = 3000 collocation training pseudo-

points sampled inside the time domain of t = [0, 300] s at a

frequency of 10 Hz (0.1 s), i.e. T = {t1, t2, . . . , t|T |=3000}.

Training of the PINN takes about 7 CPU-minutes on an

11th Generation Intel(R) Core(TM) i7-11700K @ 3.60GHz

with 8 cores on Windows 10 Pro 64-bit. Best parameter

convergence is achieved in around 20,000 iterations for both

tests on synthetic and empirical data.

C. CTHP Parameter Learning on Synthetic Data

Initially, synthetic data with known CTHP parameters, ω,

were generated and used to validate the proposed parameter

learning approach. To this end, consider a car-following-

scenario with two vehicles, a leader (HDV) and a follower

(ACC ego vehicle), a known set of design parameters ω∗ =
[α∗ β∗ τ∗]T = [0.08 0.12 1.5]T, and a predefined leader’s

velocity profile taken from the Ispra-Casale campaign (solid

blue line in Fig. 2b). Then, synthetic data of p(t) and v(t),
for t > 0, were generated from the system of ODEs (1)–(2)

(with M = 1), using the a priori known ω∗ and the initial

condition ξ(0) = [p(0) v(0)]T = [20.3 21.3]T (in m and

m/s, respectively). The data was generated for 300 s with a

frequency of 10 Hz (0.1 s).

Figs 2a–2b display the obtained trajectories of space-gap

p(t) and velocity v(t) (both in solid lines). As can be seen,

both equilibrium (3) and non-equilibrium driving conditions

are considered in the synthetic data set. Note that the known

set of design parameters, ω∗, corresponds to a string unstable

system in terms of both the L2 and L∞ norms, check (5) and

(6), respectively. Thus the ACC-engaged vehicle is expected

to amplify any random perturbations of the HDV leader.

The synthetic data were used to train the PINN described

in Section IV-B towards learning the a priori known vector of

CTHP parameters, ω∗, of the ACC-engaged vehicle. Fig. 3a

depicts the obtained results on the learning trajectories of α̂,

β̂, and τ̂ converging successfully to ω̂ = [0.0784 0.12 1.5]T

after 20,000 iterations. The PINN is also calibrated to predict

the entire trajectories of p(t) and v(t) corresponding to the

true parameter values. Fig. 2 presents the estimated values

of p(t) and v(t) in each point inside the entire time domain,

with mean absolute errors (MAEs) of 0.0939 m and 0.1509

m/s, respectively. This experiment underlines the ability of

the developed framework to successfully learn the true values

of the CTHP parameters and reconstruct the full range of

dynamics in the space-gap and velocity profiles.

D. CTHP Parameter Learning on Empirical Data

This section demonstrates the superior predictive ability of

the proposed PINN to learn the unknown design parameters

of stock ACC systems of different makes (see Table II),

using empirical data of space-gap and relative velocity from
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(a) Space-gap: Empirical data, solid line; PINN prediction, dashed line.

(b) Velocity: Empirical data, solid lines; PINN prediction, dashed line.

Fig. 2. Space-gap and velocity trajectories for the synthetic dataset.

(a) Synthetic data (b) Ispra-Casale (Exp. #1)

Fig. 3. CTHP parameter learning and convergence.

three experimental campaigns, namely Ispra-Casale, Ispra-

Vicolungo, and AstaZero. It also aims to examine whether

the stock ACC systems of various makes are strict string

stable inside platoons using the obtained ACC parameters

and the string stability criteria (5) and (6) from Section II.

Parameter Learning for Ispra-Casale: To investigate the

sensitivity of parameter learning on different initial points

ω̂(0), five different training trials of the PINN were carried

out. Fig. 4 displays the empirical data of space-gap and rel-

ative velocity (solid lines) used for training. As can be seen,

the leader is engaged in various acceleration perturbations,

while the follower seems to be string unstable. Table I shows

the obtained results from PINN’s training on five different

trials with α, β and τ starting from different initial values. As

we can see, α and β differ to the third decimal place, while

τ converges to the same value in each experiment. Inserting

these values in the string stability criteria, it turns out that the

ACC vehicle is neither L2 nor L∞ strict string stable. Fig. 3b

shows the parameters’ convergence from the first experiment

in Table I, while Fig. 4 displays the estimated trajectories of

space-gap and speed of the ACC vehicle, with their MAEs

being relatively low (see Table I).

TABLE I

PARAMETER ESTIMATION FOR ISPRA-CASALE CAMPAIGN.

Experiment #1 #2 #3 #4 #5

α (1/s2) 0.0104 0.0104 0.0104 0.0102 0.0103
β (1/s) 0.0718 0.0712 0.0723 0.0709 0.0724
τ (s) 1.52 1.52 1.52 1.52 1.52
MAE space-gap (m) 0.4721 0.2653 0.4667 0.4519 0.3590
MAE speed (m/s) 0.1419 0.0871 0.1507 0.2183 0.1361
L2 strict string stability NO NO NO NO NO
L∞ strict string stability NO NO NO NO NO

(a) Space-gap: Empirical data, solid line; PINN prediction, dashed line.

(b) Velocity: Empirical data, solid lines; PINN prediction, dashed line.

Fig. 4. Space-gap and velocity trajectories for Ispra-Casale (Exp. #1).

Parameter Learning for AstaZero and Ispra-Vicolungo: In

both campaigns, data concerns the speed of each vehicle in

the platoon and the space-gaps between them for a duration

of 300 s. We aim to apply the suggested PINN to learn the

ACC design parameters of each follower and assess the string

stability of the platoons, examining whether the disturbances

entering the platoons are dissipated upstream or not.

Table II summarizes the obtained CTHP parameter esti-

mates from the application of the PINN in both experimental

campaigns. As can be seen, the ACC design parameters α,

β, and τ have relatively close values across the different

vehicle makes, with time-headways τ being close enough to

the true mean time-gaps (as estimated from real data). Time-

gap is specified as the fraction of the space-gap between two

vehicles to the speed of the following vehicle. The MAEs

between the estimated trajectories and the real ones are also

presented. The obtained MAEs are consistent to previous

works on the parameter identification of commercial ACC

systems [6], [15]. Finally, as shown in Table II, the ACC

followers are neither L2 nor L∞ strict string stable, except

the last vehicle in the AstaZero platoon which is only L∞
string stable. This is possible since L2 stability is stronger

than the L∞ stability, see (7). Also, the last follower in

Ispra-Vicolungo was driving manual, and hence, there are

no findings available.
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TABLE II

ASTAZERO AND ISPRA-VICOLUNGO CTHP PARAMETER LEARNING RESULTS.

Campaign Vehicle i α (1/s2) β (1/s) τ (s) Mean time-gap (s) MAE space-gap (m) MAE speed (m/s) L2 L∞ Make Model

AstaZero

1 0.0618 0.1120 1.19 1.25 0.1320 0.0852 NO NO Audi A6
2 0.1000 0.1510 1.17 1.23 0.1102 0.0979 NO NO BMW X5
3 0.0755 0.2220 1.16 1.20 0.2998 0.1772 NO NO Mercedes A-Class
4 0.0480 0.3870 1.18 1.30 0.2806 0.1815 NO YES Tesla Model 3

Ispra-Vicolungo

1 0.0767 0.1590 1.01 1.03 0.4140 0.2143 NO NO Ford S-Max
2 0.1930 0.3290 1.00 1.01 0.1873 0.1512 NO NO Peugeot 5008
3 0.0712 0.1890 1.13 1.18 0.0892 0.0897 NO NO Kia Niro
4 - - - 1.52 - - - - Mini Cooper

V. CONCLUSIONS

The parameter learning of commercially implemented

ACC systems is challenging since their core functionality

is not publicly available. This work unveiled that PINNs

can be used as a surrogate approximator to capture the

ACC vehicle longitudinal dynamics and efficiently infer

the unknown parameters of the CTHP, often implemented

in stock ACC systems of various makes. The findings of

this paper demonstrate the ease in which PINNs perform

in learning the unknown ACC design parameters. PINNs

may retrieve successfully the true ACC parameters based

on synthetic data, as well as to deliver estimates of the

unknown design parameters of stock ACC systems based

on empirical observations of space-gap and relative velocity.

This is confirmed by the similar ACC parameter values

found among the different ACC controllers in the three

experimental campaigns. Applying the string stability criteria

to the obtained results showed that ACC systems tend to be

string unstable inside the platoon.
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