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From Convexity to Strong Convexity and Beyond:
Bridging The Gap In Convergence Rates
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Abstract—In this paper, we re-examine the role of convexity
and smoothness on gradient-based unconstrained optimization.
While existing literature establishes the fundamental limits for
gradient-based optimization algorithms for the class 7 of
L-smooth convex functions and the subclass 7, 1 of L-smooth
and p-strongly convex functions, there is a notable gap
in the stark transition from their respective sublinear and
linear/exponential convergence rates that persists even as p — 0.
This gap is notable since the classical rate of O(1/k) for gradient
descent in F7, is often overly conservative compared to what is
observed in practice for convex functions that are not strongly
convex. In this work, we partially close the aforementioned
gap by leveraging the notion of uniform smoothness and
convexity, and their respective moduli, to quantify and more
comprehensively characterize the smoothness and convexity of
a given function. We show how, through a simple rescaling
of gradient descent informed by the modulus of smoothness,
we can recover the classic rates as edge cases and establish
novel rates for a wide variety of functions. Further, we examine
how uniform convexity can be replaced with the Kurdyka-
Lojasiewicz inequality, with the so-called ‘‘desingularizing
function” replacing the role of the modulus of convexity in
the novel rates. This characterization yields novel geometric
insights on the relationship between the optimization landscape
and the attainable convergence rates.

I. INTRODUCTION

Large-scale optimization and convex optimization are
integral to applications in a vast range of areas such as
deep learning, supply chain management, power systems,
scientific computation, and many more [1], [2]. Theoretical
understanding of the computational effort needed to solve
optimization problems informs us about bottlenecks and
scalability concerns, and ultimately provides intuition on
how to best tackle these issues [3], [4]. Complexity analysis
in optimization is, therefore, crucial for the effective resource
management in a multitude of critical applications.

Convexity plays a key role in large-scale optimization,
both at the practical and theoretical level, since it is one of
the simplest properties, while still broadly applicable, that
ensures we can find global minimizers numerically for generic
functions [5], [6]. Further, convexity enjoys a variety of
amenable properties that allows us to efficiently analyze the
convergence rate of gradient-based optimization algorithms,
particularly when paired with smoothness assumptions [7].

It is well established that, for the class F;, of L-smooth
convex functions, the gradient descent (GD) algorithm
1 = 2 —nV f(xy) with fixed learning rate 7 > 0 achieves
a convergence rate O(1/k), provided that n < 1/L [7]. On
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the other hand, in the class F, 1. of L-smooth and p-strongly
convex functions, the same GD algorithm attains a much faster
linear rate O ((1 — nu)k) with p = 1 — nu [7], [8]. While
the optimization algorithm did not change in the two cases
discussed above, the convergence rate is remarkably different.
This abrupt transition motivates us to more generally examine
the role that smoothness and convexity play in establishing
convergence rates.

Related Work

In [8], the authors conduct a comprehensive overview of
several alternatives to strong convexity found in the literature
at the time, in order to establish linear convergence. It is
established that the Polyak-Lojasiewicz (PL) inequality is
the weakest of all conditions considered that guarantees
linear convergence to global local minima, with the quadratic
growth condition being weaker but admitting non-global
minima to exist. Further, the authors establish that all
conditions considered are equivalent in the case of convexity.
Interestingly, the PL inequality yields to an almost trivial
proof of linear convergence, as the authors show. However,

1+~x
established in the class F,, ;, when using GD with learning
rate n = %ﬂ’ which is faster than the rate O (1 — %)k)
derived using the p-PL inequality for GD with learning rate
n=1/L.

In [9], the authors propose the notion of strong smoothness
of order p > 1 and exploit the notion of p-uniform convexity
of order p and the closely related u-gradient dominance of
order p (with p = 2 corresponding to p-strong convexity and
u-PE, respectively) to establish convergence rates on “descent
algorithms of order p”, which notably includes their proposed
rescaled gradient descent algorithm

ot = o — T — ) M
IV (i)l
with n > 0 and p > 1. We will consider a unified notion
of smoothness and convexity that generalizes the conditions
considered in [9], while also being both less restrictive and
simplifying the convergence analysis.

The notion of smoothness and convexity that we will
consider is borrowed and adapted from the older works [10]
and [11], but it should also be noted that [12] recently revisited
these conditions (and more), modernized them, and provided
new insights (notably, in connection to generalization bounds
in statistical learning). A consequence of uniform convexity
is the Kurdyka-Lojasiewicz (KL) inequality, which has been

2k
it is known that a rate O (1’—") with Kk = % can be
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extensively studied in [13]. The KL inequality has recently
been used by [14], [15] to establish new iteration complexity
bounds on the stochastic gradient descent algorithm (SGD).
In this paper, we will also consider the KL inequality, with
our results extending those of [14], [15] in the deterministic
setting, but with the novelty of now allowing for cost functions
that need not be L-smooth.

Contributions

In this work, we revisit the notions of uniform smoothness
and uniform convexity and seek to establish a gradient-based
optimization algorithm with provable convergence rates that

subsumes the classical rates of O (%) and O ((1 — %)k>

for GD with learning rate n = % over the classes J;, and

F,..1, respectively. More concretely, our contributions are:

o We leverage uniform smoothness to propose a new
gradient-based optimization algorithm, in terms of the
modulus of smoothness o, which we call o-rescaled
gradient descent (c-RGD).

o Next, we establish a descent lemma and a generalization
of the PL inequality.

o Using these tools, we establish the linear conver-
gence rate f(zy) — f* = O g(l - %)k)
RGD under o-smoothness and ¢-convexity, where

_ . 97(s)
€= sup —
5>0 0*(8)

e Next, we revisit GD under L-smoothness and reduce

¢-convexity to o-KL. With this, we establish the rate

o) = < B3 (Eolfao) - £+ ).

for o-

> 1 1is a generalized condition number.

where E(s) is a function that we introduce as the
desingularizing energy. This rate allows novel geometric
interpretations on the relationship between the optimiza-
tion landscape and the rates achieved by GD.

 Lastly, we state our most comprehensive result: under
o-smoothness and p-KL, our ¢-RGD algorithm satisfies
the convergence rate

f@n) = 1" < Byl (B (F(x0) = ) + k),
where Ey ,(s) = [ mdr.
II. PROBLEM FORMULATION

We consider the unconstrained optimization problem

min f(z) 2
of minimizing f : X — R using a gradient oracle. We
will assume that (X, || - ||) is a real Banach space with dual
space (X*,| - |l«) and duality pairing (-,-) : X* x X = R
so that ||g||« = sup, =1 (g, ) for g € X*. We will assume
continuous Gateaux differentiability, meaning that the Gateaux
differential df (x;v) := lim;_, w is well defined,
continuous (in both x € X and v € X), and linear in v,
and thus df (x;-) is an element of X*. We will re-brand
it as the gradient, denoted as usual by V f(x), interpreted
as the (assumed to exist and be unique) element of X'*

for which (Vf(x),v) = lim;_, ZEH=IE) holds for all
v € X. We will always assume that f is bounded from below,
ie. f*:=inf f > —o0.

Recall that a class /C function is a continuous and strictly
increasing function « : [0,7) — R, for some 0 < r < oo,
such that «(0) = 0. Let o’ denote the derivative of «, when
differentiable. With this, we introduce the main properties
that will be used to study the optimization problem discussed
above. The following definitions are based on [12], [11], [10].

Definition 1. We say that f is o-smooth if
f@) < fly) + (V) e -y +o(lz—yl), 3

holds for every z,y € &, for some differentiable and convex
class K function o such that ¢'(0) = 0.

Definition 2. We say that f is ¢-convex if
f@) = fy) + (V). z—y) +o(lz—yll), @

holds for every z,y € X, for some differentiable and convex
class K function ¢ such that ¢'(0) = 0.

y x

Fig. 1: The Bregman divergence D(x,y) := f(z) — f(y) —
(Vf(y),z—y) can be used to characterize ¢-convexity and o-
smoothnesss. More precisely, f is o-smooth and ¢-convex if
and only if ¢(||lz — y[) < Ds(z,y) < o([lx — yl|). They
characterize the optimization landscape by bounding the
curvature of the function.

Let us denote the family of o-smooth convex functions
as F,, and the subclass of o-smooth and ¢-convex functions
as F, 4. With these definitions, we are ready to state the
problem we seek to solve:

Problem 1. Design a 1-step gradient-based optimization
algorithm x4 = Fy(zy, V f(xy)) for the class F,, with a
provable convergence rate f(zy) — f* < Ry »(k, f(zo) — f*)
over the class Fy . In particular, the algorithm and conver-
gence rate should subsume the rates f(zx) — f* = O (£)
and f(zx) — f*=0((1- %)k) for GD with leargning rate
n= % over the classes Fr, and F, j, respectively.

III. PRELIMINARIES

Before we can study convergence for the gradient-based
algorithm that we will propose, let us establish two useful
lemmas that will ensure well-behavedness.

Recall that, for a function f: X - RU {—o0, +00} with
co-domain on the extended real line, its domain is given

5485



by dom f = {z € X : f(z) € R}. When discussing a
class K function « : [0,7) — oo, we will implicitly extend
itto a : R - RU {400}, by setting a(s) = +oo for
s € [0,7). Additionally, recall that the convex conjugate of
f: X = RU{—o00,+00} is given by

[*(y) = sup{(y,z) — f(z)}
reX

for y € X*.

Lemma 1. If « is a differentiable class IC function such that
o/ (0) = 0, then o* is also a differentiable class K function.

Proof. Since « is differentiable in its domain, then so is o*
in its domain. Note that a*(0) = max;{0-t — a(t)} =0
because a(t) > 0 with «(0) = 0. Let [0,r) be the domain
of o, with 0 < r < o0. Let s € [0,r). By the maximizing
argument property, we have

(@) (s)

and thus, noting that st — «(t) = 0 for ¢ = 0, it follows
that (a*)’(s) > 0. Now, note that if (a*)'(s) = 0, then
0=s-0—a(0) > st — «(t) for all ¢t. Therefore, s < a(t)/t
for ¢ > 0. Taking ¢ — 0, we conclude that s < o/(0) = 0,
and thus s = 0. Thus, (a*)’(s) > 0 for all s € [0,7), with
equality only at s = 0. Therefore, a* is strictly increasing
over its domain. ]

€ argmax {st — a(t)}
o<t<r

Lemma 2. If a : R — RU{+o0} has domain within [0, o),
then (o || - [))* =a” o - |

Proof. Let g € X'*. Then,
(aoll-)*(g) = sup {{g,2) —a([lz])}

=sup sup {(g,tx) — a(t)}

£20 o) =1
= sup {t sup (g, x) — a(t)}
a(t)}

>0 | |[z||=1

sup  {t]lgll« —
tedom(a)

a*(llgll+)
= (o[- [l)(9)-

Assuming o-smoothness with known o, we propose the
following algorithm, similar in spirit to Nemirovski’s mirror
descent, which we call o-rescaled gradient descent (0-RGD):

Th+1 = Tk — 2k

z, € argmax {(V f(zx),
zEX

A-o(lzl)y  ©®

Therefore, by the maximizing argument property of convex
conjugates, we have

Tpy1 € o — 0o o - [)*(Vf (k) ©)

where 0 applied to a convex function denotes its subgradient.
For the important case of X = R? with the Euclidean norm
-1l =1"l2, we thus have

VIV (i) ) o B

Wik

Tpt1 =2k — (0

Vf(z) =0

with the convention that (¢*)'(||Vf(x)]2 o7

when z is a stationary point of f.

IV. MAIN RESULTS

Similar to the typical analysis of gradient descent, let us
first establish a useful descent lemma.

Proposition 1 (o-descent lemma). If f is o-smooth, then the
0-RGD algorithm (6) satisfies the descent condition

f@ri) < flar) = o™ (IVf(zi)l)
for ke {0,1,...}.

Proof. By definition of o-smoothness, we have
F@sr) = Flan) = (V@) 2) = o(l1])
2 flax) — (ool 1) (Vf(n)),

and the result follows by invoking Lemma 2. ]

A. Linear Rate for o-RGD

In the generalized framework we have adopted, the analysis
that leads to a linear convergence rate is less technical and
more intuitive, so we will start there. Before we proceed, let
us establish a generalization of the Polyak-t.ojasiewicz (PL)
inequality.

Proposition 2 (¢-Polyak-tojasiewicz). If f is ¢-convex, then

IVF(@)l > (6*) 7" (f(z) = f7)
for every x € X.
Proof. For every y € X', we have
F = inf (@)
z;gﬁf{f (VI@)z—y)+o(le—yl)}
= fy) —sw { VI),y—z)+o(ly — =)}

=f(y) = (eell- )" (Vi)
=fy) =" IV (®)Il) -

Relabeling y and rearranging terms, we find that

" (IVF(@)lls) = fz) = f,

and the result follows by invoking Lemma 1. ]

Vee X

Equipped with this generalization of the PL inequality, we
can readily combine it with the descent lemma to establish a
linear rate of convergence, provided that o and ¢ satisfy a
relationship that is akin to L > p in the class F, 1.

Theorem 1. If f is o-smooth and ¢-convex, with o, ¢ such
that, there exists some ¢ > 1 for which ¢(cs) > co(s) holds
for all s > 0, then the o-RGD algorithm (6) satisfies

k
fa)-r<(1-1) U -1 ®

Sforall k € {0,1,...}.
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Proof. The proof closely resembles the argument used in [8]
for the linear convergence of vanilla gradient descent under
L-smoothness and the p-Polyak-Lojasiewicz inequality.

Since ¢(cs) > co(s), then, by the order reversing
and scaling properties of the convex conjugate (which are
straightforward to prove), it follows that ¢*(s/c) < co*(s/c).
By a straightforward change of variables, we can see that
¢*(s) < co*(s). With this, we have that &y := f(zx) — f*
satisfies

Okr1 < 0 — " (IV f(zr)l4)
5, IVl

(o-descent lemma)

< (¢p* < co™)
c
)
<G — £ (¢-Polyak-Lojasiewicz)
c
1
c
and the result follows by direct recursion. ]

Remark 1. We can show that

o P(s)
T o (s)

&)

is the tightest ¢ > 1 for which the relationship ¢(cs) >
co(s) holds. Therefore, ¢ can be understood as a generalized
condition number. However, such ¢ need not be finite, with
the rate (8) becoming vacuous when ¢ = oo.

To illustrate the aforementioned vacuousness, let us con-

sider the class Fr, by analyzing F, ; as p — 0. For F, 1,

we have o(s) = £s? and ¢(s) = £s2, and thus

(2u)'s* L
cC=8up —+——5 = —.
w0 (20) 182 g

Clearly then, as ¢ — 0, we find that ¢ — oco. This means
that the linear rate (8) becomes vacuous as p — 0, which is
entirely expected since there is a known sublinear worst-case
bound Q(1/k?) on the class . At the end of this section,
we will obtain a non-vacuous rate that subsumes the rates
O(L/k) and O((1 — p/L)*) in Fy, and F,,;, for vanilla GD
with learning rate n = 1/L.

Example 1. Suppose that f is and (L, p)-smooth, i.e.
£0) < £(@) + (Vf @)y = o)+ o~ P

and (p, p)-convex, i.e.
Flo) > () + (Y f()y =)+l =yl

for some L > 1 > 0 and p > 2. Then, the RGD algorithm

V f(zx)
IV f ()| 7=

Tht+1 = T — 1)

converges at a linear rate

Lnp~1 1 k
5k§|:1_77(1_ 7 )plﬂl} do,

where 0, = f(xy) — f*, provided that 0 < n < (p/L) =
1

For the optimal choice of ) > 0, which is n = 1/L?-T, the

rate becomes

k
o) = 1= (1= =) (flao) = 1),
where k := L/p.

B. Novel Rates for Gradient Descent

Let us now consider the case when X = R? is equipped
with the usual Euclidean norm, and o(s) = £s%. This way,
our proposed RGD algorithm reduces to vanilla gradient
descent with the optimal learning rate n = % The results
presented in this paper do not heavily depend on the convexity
of f, and instead largely follow from the descent inequality
in combination with the generalization of the PL inequality
discussed earlier. This generalization can be seen as a
particular case of the more general standalone condition
known as the Kurdyka-f.ojasiewicz (KL) inequality, which
notably does not require convexity (much like PL). However,
in both cases, the condition does require invexity, meaning
that every stationary point is a global minimizer (assuming
that the conditions are to hold globally).

Definition 3 ([13]). We say that f satisfies the Kurdyka-
Lojasiewicz (¢-KL) condition if

V(o (f =)l =1

holds pointwise for some class K function ¢ such that ¢(s)
is continuously differentiable except at s = 0. The function ¢
will be referred to as a desingularizing function for f at x*.

(10)

Intuitively, the idea is that, when ¢ is applied to f —
f*, it “bends” the cost function f without changing the
location of its minimizer but making the function “sharp” (no
longer differentiable) near the minimizer. We can quantify
how much “energy” is needed to achieve this by introducing
the desingularizing energy function

B = [ (¢ ar

with domain s > 0. Clearly, E,(s) is strictly decreasing,
with s > 0 dictating the size of the neighborhood of z* to
discard in the desingularizing energy. For many functions of
interest, we will have F,(s) — oo as s — 0. If the improper
integral diverges even for s > 0, we can make some minor
adjustments to the definition above and the way we use it
later on'. For the sake of simplicity, let us assume that E,,(s)
is well defined.

(I

Example 2. Consider the function f(x) = c||lx — «*||? with
¢ > 0,and p > 2. We can easily verify that (s) = ¢~ 1/Ps!/P

and E,(s) = ;(772_/;)8_%;2’ with E,(s) = oo for p = 2.
Note that, as ¢ — 0, the function becomes flatter, thus

requiring more energy to bend it sharp, as reflected in

'We can replace the upper limit of the integration interval by a finite one,
but this will affect the sign and monotonicity of E, making the geometric
interpretation somewhat more difficult.
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—c=1.5

—c=1.0
c=0.8
c=10.6

—c=04

—c=0.2

(a)

—p=5.0
p=4.0
p=3.0

—p=25

—p=2.0

(b)

Fig. 2: f(z) = ¢||z — «*||? with varying ¢ > 0 and p > 2.

liH(l) E,(s) = oo for every s > 0. See Fig. 2a. Likewise,
c—

E,(s) ~ %1 as p — oo, which shows us that the function
p2 s

becomes sharper away from z* (as reflected by E,(s) — 0
as s — oo) and flatter near =* (as reflected by E,(s) = oo
as s —+ (). See Fig 2b.

We are ready to state our next main result:

Theorem 2. Suppose that f is L-smooth and p-K£E, with ¢
strictly concave. Then, the gradient descent (GD) algorithm
Tpt1 = xp — NV f(xg) converges at a rate

fo) - £ < B3 (Blro) - 19+ B)

Sorall k € {0,1,...}, provided that 0 < n < %

Proof. The condition (10) can be rewritten as |¢'(f(x) —
IV ()| > 1. Plugging this inequality in the descent
inequality obtained when o (s) = (L/2)s? yields

i 1

2 (¢'(0k)*

where 0y := f(xx) — f*. This difference inequality can be
seen as the forward-Euler discretization of the differential
inequality 6 < —«(4), with time steps ¢, = kh and step sizes
h = n/2, for some class K function «(+) (in this case, a(s) =
1/(¢'(s))?). The proof will consist of carefully comparing
{dx} with the solution of the worst-case ODE

5= —a(d)

Okt1 < O0p —

(13)

from one step to the next, and keeping track of the accumu-
lated error. Intuitively, if d(tg) =~ Jp, then §(¢;) ~ Jj. Let

us formalize this by considering the linear interpolation of
{(tk,0x) : k=0,1,...}, given by

. = t—t
o(t) = Z 1t€[tk»tk+1) |:5k + Tk(5k+1 - 616)] (14
k=0

as well as the piecewise solution with jumps, given by

3(t) = (sol. of (13) with () = 5k) L (15)

for each t € [tx,tx+1). Until otherwise specified, we will
now always assume ¢ € [tx, tx+1) With fixed (but arbitrary) k.
In order to proceed, let us first note that

5(t) = o +/t %S(s) ds

tr

by the Picard-Lindedf theorem. Therefore, we can bound the
local truncation error as follows:

5(6) — 5(t) = - ;Lt’“ (Gt — O) — /tt % 5(s) ds

- _(t_tk)a(ék)+/ a(d(s)) ds

—(t — ti)a(0r) + (t — ti)a(d(t))
—(t — tg)a(dk) + (t — tx)a(dk)
-0,

where the inequality originates by noting that a o § is non-
increasing. Subsequently, since k was arbitrary, we have
5(t) < b(t) for all t > 0.

To proceed, we first adapt the argument in the proof of
Lemma 3.4 in [16] to note that

6(t) = B, (Ep(0k) + (t — tr))

for t € [tx,tgx+1). Indeed, such 6(t) must satisfy E,(0(t))
E,(6r) +t — ti. Differentiating, we find fES’D(é(t))(i(t)
1. Noting that E/,(s) = —(¢/(s))?, it follows that §(t) =
—womy? = —(d(t). Equipped with this solution, we

(' (
find that

0(t) < E;N (B (k) +t — ty)

for t € [tg,tr+1). Taking the limit ¢ — ¢;41 from below and
recalling that ¢ — ¢, = h = 2, we find

041 < E;1 <E¢(5k) + g)

by noting that g(t) — 011 as t — txy1. We can rewrite the
above inequality as E,(0r41) > E,(0x)+ 7 (note thet E, is
non-increasing) and subsequently, perform a telescoping sum
(since k was arbitrary), leading to E,(0x) > E,(d0) + %k
The result follows by rearranging the terms. ]

In essence, our result summarizes how the curvature
and overall shape of the function impacts the convergence
rate of gradient descent. Specifically, functions with larger
desingularizing energy, as induced by unfavorable geometric
landscapes (e.g. flatter functions), are likely force GD to
converge slower than functions with smaller desingularizing
energy (e.g. functions closer to a quadratic one).
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Corollary 1. If f is locally L-smooth and (p, p)-convex with
p > 2, then, in some neighborhood of the global minimizer
x*, the GD algorithm xj41 = x, — £V f(xr) converges at
a sublinear rate f(zy) — f* = O(1/k73).

Proof. The assumed convexity implies that the Lojasiewicz
gradient inequality
p—1 _P_ _1_ *
THVf(x)H’H = pr1(f(x) = f*) (16)
holds in some neighborhood of the global minimizer z*.
Therefore, f is ¢-KE with ¢(s) o s¥/P. Thus, E,(s)
p=2 P
1/577 and therefore E(s) o< 1/s7-2. Therefore, f(x) —
= 001/k73). [ ]

C. General Case

With the intuition from the previous two subsections, we
can now readily state the general rate for RGD under o-
smoothness and ¢-KEL.

Theorem 3. If f is o-smooth and p-KE with strictly concave
©, then the 0-RGD algorithm (6) satisfies the convergence
rate

f@w) = * < By (B (F(x0) = ) + k).

— [ 1

where Ea,cp(s) = fs W
Proof. The proof follows the same general steps as that
of Theorem 2, with only minor adjustments needed on

the differential inequality to account for the more general
smoothness function o. ]

If f is ¢-convex, then it is also ¢-KL with ¢’ = %.
Therefore, the integrand in E, ,(s) becomes o* o ¢, which
further simplifies to o* o(¢*)~!. Therefore, if o ~ ¢, then the
integrand becomes approximately 1/r. This makes E, (s)
diverge, but, similar to what was discussed for E,, we can
replace the upper bound by an arbitrary finite one. Let us
thus consider B, ,(s) = [+ m dr. Then, we have

a7

dr.

S
Eq(s) ~log(1+41/s) and E; (t) = —+—. Subsequently,
0-RGD converges at an approximately linear rate. Different
concrete linear rates can be obtained depending on the exact
relationship between o and ¢, particularly (9).

The moduli o and ¢ can both be understood as quantifiers
of upward curvature, serving respectively as a lower and upper
bound. With this, the result above shows concretely how an
increase in the “range” of curvature in the geometric landscape
of the cost function can, in the worst case, progressively
deteriorate the rate of convergence.

V. CONCLUSION AND FUTURE WORK

We analyzed the convergence of our proposed o-RGD
algorithm under o-smoothness and ¢-convexity or ¢-KE.. We
saw that, under a suitable relationship between o and ¢,
our algorithm converges at a linear rate. Further, under L-
smoothness and the Euclidean norm, our algorithm reduces
to vanilla gradient descent (GD), which allowed us to show
that the transition from sublinear to linear rate of GD under

convexity and strong convexity is not actually abrupt but
instead smoothly depends on ¢. Further, our analysis provides
insights into how to optimization landscape affects the
complexity analysis for gradient-based optimization. Lastly,
we provide a general rate under o-smoothness and the
Kurdyka-Lojasiewicz inequality.

For future work, we will extend some of our results to the
online and stochastic optimization setting, which will be used
to study and apply ¢-RGD in the context of deep learning,
as motivated by works such as [17], [18]. This will require
approximating, in some way, o or at least (¢*)" over the
optimization trajectory. We will also investigate the role of
smoothness and convexity on accelerated methods, as well
as establish lower bounds.
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