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Abstract— This paper characterizes the graphical properties
of an optimal topology with minimal Laplacian energy under
the constraint of fixed numbers of vertices and edges, and
devises an algorithm to construct such connected optimal
graphs. These constructed graphs possess maximum vertex and
edge connectivity, and more importantly, generically exhibit
large algebraic connectivity of an optimal order provided they
are not sparse. These properties guarantee fast and resilient
consensus processes over these graphs.

I. INTRODUCTION

Over the past two decades, consensus has achieved great
success and attracted significant attention [2]–[5], being ap-
plied to a wide range of distributed control and computation
problems [6]–[10].

A continuous-time linear consensus process over a simple
connected graph G can be typically modeled by a linear
differential equation of the form ẋ(t) = −Lx(t), where
x(t) is a vector in IRn and L is the “Laplacian matrix”
of G. For any simple graph G with n vertices, we use
D(G) and A(G) to denote its degree matrix and adjacency
matrix, respectively. Specifically, D(G) is an n×n diagonal
matrix whose ith diagonal entry equals the degree of vertex
i, and A(G) is an n × n matrix whose ijth entry equals
1 if (i, j) is an edge in G and otherwise equals 0. The
Laplacian matrix of G is defined as L(G) = D(G)−A(G).
It is easy to see that any Laplacian matrix is symmetric
and thus has a real spectrum. It is well known that L(G) is
positive-semidefinite, its smallest eigenvalue equals 0, and its
second smallest eigenvalue, called the algebraic connectivity
of G and denoted as a(G), is positive if and only if G
is connected [11]. It has been shown that the convergence
rate of continuous-time linear consensus is determined by
the algebraic connectivity, in that the larger the algebraic
connectivity is, the faster the consensus can be reached [3].

With the preceding facts in mind, a natural and funda-
mental research problem is how to design network topology
to achieve faster or even the fastest consensus. The problem
has been studied for many years [12]–[17], to name a few.
Notwithstanding these developments, the following question
is still largely unsolved: Given a fixed number of vertices
and edges, what are the optimal graphs that achieve maximal
algebraic connectivity?

*The proofs of all assertions in this paper are omitted due to space
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The above question presents a challenging combinato-
rial optimization problem, and thus, it was only partially
answered for some special cases in [17]. Even though a
powerful computer can execute such a combinatorial search,
identifying the graphical properties of optimal graphs with
maximal algebraic connectivity remains a mystery, not to
mention the associated computational complexity.

In this paper, we propose approximating the maximal
algebraic connectivity by minimizing the “Laplacian energy”
defined as follows.

Definition 1: The Laplacian energy of a simple graph
G with n vertices is E(G) =

∑n
i=1 λ

2
i , where λi, i ∈

{1, . . . , n} are eigenvalues of the Laplacian matrix of G.

The above concept was first proposed in [18] and finds
applications/connections to ordinary energy for π-electron
energy in molecules [19] and the first Zagreb index [20]. It is
worth mentioning that there have been various mathematical
definitions for network energy [21], including the earliest
version of Laplacian energy [22].

We are motivated to appeal to the concept of Laplacian
energy for designing fast/optimal consensus network topolo-
gies due to the following observations: We list all maximal
algebraic connectivity graphs under the constraint of fixed
numbers of vertices and edges for the cases where the vertex
number n ranges from 4 to 7. These are respectively given
in Figures 1 through 4.1 We omit the case of n = 3 as
well as some complete graphs, as these graphs are unique.
For n ≥ 8, it will be very computationally expensive to
go through all possible graphs. For each of these graphs,
we list its corresponding Laplacian energy E, and for each
pair of vertex number n and edge number m, we list the
minimal Laplacian energy Emin among all possible graphs.
It is readily apparent that among all simple graphs with
a fixed number of vertices and edges, maximal algebraic
connectivity and minimal Laplacian energy coincide in most
cases. The non-matching cases, highlighted in orange, are
always centered in sparse cases and occasionally scattered
in medium-density cases. This suggests that we may design
fast consensus topologies by minimizing Laplacian energy
for most scenarios. It turns out that, given a fixed number of
vertices and edges, minimizing Laplacian energy is a much
easier task and considerably more computationally efficient.

In this paper, we first characterize the degree distribution
properties of minimal Laplacian energy graphs under the
constraint of fixed numbers of vertices and edges, and then
devise an algorithm to construct such connected optimal

1The maximal algebraic connectivity graphs depicted in Figures 2 through
4 are sourced from [17].
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Fig. 1: Maximal algebraic connectivity graphs with 4 vertices

Fig. 2: Maximal algebraic connectivity graphs with 5 vertices

Fig. 3: Maximal algebraic connectivity graphs with 6 vertices

graphs (cf. Section II). Next, we show that the minimal
Laplacian energy graphs generated by the proposed algo-
rithm exhibit strong resilience, featuring maximum vertex
and edge connectivity (cf. Section III). Finally, we investigate
the spectral properties of the Laplacian matrices of these
generated minimal Laplacian energy graphs, and show that
they generically possess large algebraic connectivity of an
optimal order, provided they are not sparse (cf. Section IV).
Overall, we propose a computationally efficient approach to
designing fast and resilient consensus topologies by mini-
mizing Laplacian energy.

II. MINIMAL LAPLACIAN ENERGY

It has been proved in [18] that E(G) =
∑n

i=1(d
2
i + di),

where di denotes the degree of vertex i. It immediately
implies that the Laplacian energy of a simple graph will in-
crease after adding any additional edge. Thus, the Laplacian
energy of an n-vertex graph achieves its maximum value,
n2(n − 1), when the graph is complete. Various upper and
lower bounds on E(G) have been established [23]. There has
been an effort in the literature to identify optimal topologies
that minimize the Laplacian energy for certain types of
graphs. For example, among all n-vertex connected graphs,
the Laplacian energy achieves its minimum value on the path

[18]. Another example is that among all connected graphs
with chromatic number χ, the Laplacian energy achieves its
minimum value, χ2(χ− 1), on the χ-vertex complete graph
[24]. Notwithstanding these results, the following question
has never been studied: Given a fixed number of vertices
and edges, what are the optimal graphs that achieve minimal
Laplacian energy?

This section solves the above open problem. To state our
main results, we use ⌊·⌋ to denote the floor function.

Theorem 1: Among all simple graphs with n vertices and
m edges, the minimal Laplacian energy is (k+1)(4m−nk)
with k = ⌊ 2m

n ⌋, which is achieved if, and only if, n(k +
1)−2m vertices are of degree k and the remaining 2m−nk
vertices are of degree k + 1.

The theorem states that the sequence of vertex degrees,
arranged in descending order, follows the following pattern:

(d1, . . . , dn) = ( k + 1, . . . , k + 1︸ ︷︷ ︸
2m−nk

, k, . . . , k︸ ︷︷ ︸
n(k+1)−2m

) (1)

In the special case when 2m
n is an integer, all n vertices are

of degree k = 2m
n . Thus, Theorem 1 implies that minimal

Laplacian energy graphs have an (almost) uniform degree
distribution, which is intuitive from the fact that E(G) =∑n

i=1(d
2
i + di) =

∑n
i=1 d

2
i + 2m. Such a graph, in which

the degree difference is at most 1, is called an almost regular
graph [25].

It is easy to check that the total degree sum of a minimal
Laplacian energy graph specified by Theorem 1 equals
k(n(k + 1) − 2m) + (k + 1)(2m − nk) = 2m, which is
consistent with the assumption of m edges. Moreover, it can
be proved that such a degree distribution always admits a
graph using the Erdős-Gallai theorem [26], [27].

The proof of Theorem 1 utilizes the following results.

Lemma 1: (Theorem 3 in [18]) For any simple graph G
with n vertices, E(G) =

∑n
i=1(d

2
i + di).

Lemma 2: (Erdős-Gallai Theorem [26], [27]) A nonin-
creasing sequence of nonnegative integers d1, . . . , dn con-
stitutes the degree sequence of an n-vertex simple graph if,
and only if,

∑n
i=1 di is even and

∑j
i=1 di ≤ j(j − 1) +∑n

i=j+1 min{j, di} for all j ∈ {1, . . . , n}.

Theorem 1 provides a simple graphical condition, de-
pendent solely on the degree distribution, that characterizes
minimal Laplacian energy graphs. The following example
shows that such a degree distribution condition does not
guarantee connectivity. Consider all simple graphs with 6
vertices and 6 edges (i.e., n = m = 6), Theorem 1 identifies
two minimal Laplacian energy graphs, as shown in Figure 5.

In many network applications, such as distributed control
and optimization [7], [28], connected graphs are often de-
sired. The following theorem states that a connected optimal
graph with the same minimal Laplacian energy always exists.

Theorem 2: Among all connected simple graphs with n
vertices and m edges, the minimal Laplacian energy is (k+
1)(4m−nk) with k = ⌊ 2m

n ⌋, which is achieved if, and only
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Fig. 4: Maximal algebraic connectivity graphs with 7 vertices

Fig. 5: All minimal Laplacian energy graphs with 6 vertices
and 6 edges

if, n(k+1)−2m vertices are of degree k and the remaining
2m− nk vertices are of degree k + 1.

The above theorem implicitly assumes that m ≥ n − 1;
otherwise, there is no such connected graph. In the special
case when m = n−1, all connected graphs are trees. It is not
hard to see that the following result is a direct consequence
of Theorem 2.

Corollary 1: Among all simple trees with n vertices, the
minimal Laplacian energy is 6n − 8, which is achieved on
the path.

For general pairs of n and m with m > n−1, the optimal
connected graph may not be unique. For example, for the
case when n = 6 and m = 8, two connected minimal
Laplacian energy graphs are illustrated in Figure 6.

Fig. 6: Two connected minimal Laplacian energy graphs with
6 vertices and 8 edges

We next present the following algorithm to generate a min-
imal Laplacian energy graph that is connected and satisfies
the degree distribution specified by Theorem 2.

Algorithm 1: Given n and m with m ≥ n−1 > 0, without
loss of generality, label n vertices from 1 to n. Set k = ⌊ 2m

n ⌋,
which implies that nk ≤ 2m < n(k + 1).

Case 1: The integer k is even.
(1) If 2m = nk, for each i ∈ {1, . . . , n}, connect

vertex i with each of vertices (i + j) mod n, j ∈
{±1, . . . ,±k

2}.
(2) If 2m = nk + l where l ∈ [1, n) is an even integer,

first construct the graph as done in Case 1 (1), and then
for each i ∈ {1, . . . , l

2}, connect vertex i and vertex
i+ ⌊n

2 ⌋.
Case 2: The integer k is odd.
(1) If n is even and 2m = nk, for each i ∈ {1, . . . , n},

connect vertex i with each of vertices (i+ j) mod n,
j ∈ {±1, . . . ,±k−1

2 , n
2 }.

(2) If n is even and 2m = nk + l where l ∈ [1, n) is an
even integer, first construct the graph as done in Case 2
(1), and then for each i ∈ {1, . . . , l

2}, connect vertex i
and vertex i+ n−2

2 .
(3) If n is odd and 2m = nk + 1, first for each i ∈

{1, . . . , n}, connect vertex i with each of vertices
(i + j) mod n, j ∈ {±1, . . . ,±k−1

2 }, and then for
each i ∈ {1, . . . , n+1

2 }, connect vertex i and vertex
i+ n−1

2 .
(4) If n is odd and 2m = nk+ 1+ l where l ∈ [1, n− 1)

is an even integer, first construct the graph as done in
Case 2 (3), and then for each i ∈ {n+3

2 , . . . , n+1+l
2 },

connect vertex i and vertex (i+ n−1
2 ) mod n.

The computational complexity of Algorithm 1 is O(m),
as identifying the endpoints for each of the m edges takes
O(1) time.

It is worth noting that Algorithm 1 generates a specific
subclass of Harary graphs [29].

Theorem 3: Algorithm 1 constructs a connected simple
graph with n(k+1)−2m vertices of degree k and 2m−nk
vertices of degree k + 1.

It can be straightforwardly checked that in the case when
n = 6 and m = 5, Algorithm 1 will follow Case 2 (2)
and construct the 6-vertex path, which is consistent with
Corollary 1. We further present six tailored examples, each
corresponding to a distinct case outlined in Algorithm 1,
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as depicted in Figures 7 to 9. These examples collectively
validate Theorem 3.

Fig. 7: Left is the graph with 7 vertices and 14 edges,
generated by Algorithm 1 following Case 1 (1); right is the
graph with 7 vertices and 16 edges, generated by Algorithm 1
following Case 1 (2).

Fig. 8: Left is the graph with 6 vertices and 9 edges,
generated by Algorithm 1 following Case 2 (1); right is the
graph with 6 vertices and 11 edges, generated by Algorithm 1
following Case 2 (2).

Fig. 9: Left is the graph with 7 vertices and 11 edges,
generated by Algorithm 1 following Case 2 (3); right is the
graph with 7 vertices and 13 edges, generated by Algorithm 1
following Case 2 (4).

III. CONNECTIVITY RESILIENCE

The graphs generated by Algorithm 1 exhibit “optimal”
connectivity properties. To see this, we introduce two well-
known connectivity concepts in graph theory: vertex connec-
tivity, denoted as v(G), which is defined as the minimum
number of vertices whose removal would disconnect graph
G, and edge connectivity, denoted as e(G), which is defined
as the minimum number of edges whose removal would dis-
connect graph G. For the complete graph with n vertices, its
edge connectivity clearly equals n− 1. However, there is no
subset of vertices whose removal disconnects the complete
graph, so it is conventional to set its vertex connectivity as
n− 1 [30, page 149].

Theorem 4: Let G be the graph generated by Algorithm 1
with n vertices and m edges. Then, v(G) = e(G) = ⌊ 2m

n ⌋.

The theorem implies that the graphs constructed by Algo-
rithm 1 always have the maximum vertex and edge connec-
tivity. To see this, consider any graph G with n vertices and

m edges. Its minimum degree δ(G) is at most ⌊ 2m
n ⌋. Since

e(G) ≤ δ(G) by definition and v(G) ≤ e(G) [31, Theorem
5], it follows that v(G) ≤ e(G) ≤ δ(G) ≤ ⌊ 2m

n ⌋.
Recall that all graphs generated by Algorithm 1 are almost

regular graphs with the degree sequence specified in (1).
In general, almost regular graphs do not necessarily have
v(G) = e(G) = ⌊ 2m

n ⌋. To see this, consider two examples
in Figure 10. The left almost regular graph has n = 6 vertices
and m = 10 edges, but its vertex connectivity is 2 (by
removing vertices 2 and 5), which is less than ⌊ 2m

n ⌋ = 3.
The right almost regular graph has n = 6 vertices and m = 7
edges, but its vertex connectivity is 1 (by removing vertex
6), so is its edge connectivity (by removing the edge between
vertices 5 and 6), which are both less than ⌊ 2m

n ⌋ = 2.

Fig. 10: Two almost regular graphs

IV. FAST CONSENSUS

In this section, we study the algebraic connectivity of the
minimal Laplacian energy graphs generated by Algorithm 1.
We will show that the generated “dense” graphs possess large
algebraic connectivity, while the generated “sparse” graphs
do not. This finding is consistent with the observations from
the figures in the introduction.

Among all non-complete graphs with n vertices and m
edges, it is known that a(G) ≤ v(G) [11, Theorem 4.1].
From the preceding discussion, it follows that a(G) ≤
⌊ 2m

n ⌋ for all non-complete graphs. Theorem 5 gives a lower
bound on algebraic connectivity of graphs generated by
Algorithm 1.

Theorem 5: Let G be the graph generated by Algorithm 1
with n vertices and m ≥ n edges. Then,

a(G) ≥ k̄ − sin(k̄π/n)

sin(π/n)
, (2)

where k = ⌊ 2m
n ⌋ and k̄ = 2⌊k

2 ⌋ + 1, with equality holding
if the graph is constructed in Case 1 (1) or Case 2 (1).

Note that k̄ ≤ k+ 1 ≤ 2m
n + 1 ≤ n. We will use this fact

without special mention in the sequel.
The proof of Theorem 5 makes use of the following

concept and results. A circulant matrix is a square matrix in
which each row is rotated one entry to the right relative to
the preceding row. The spectrum of any circulant matrix can
be completely determined by its first row entries, as specified
in the following lemma.

Lemma 3: (Theorem 6 in [32]) If C is an n×n circulant
matrix whose first row entries are c0, c1, . . . , cn−1, then its n
eigenvalues are λi =

∑n−1
p=0 cpe

j2piπ
n , i ∈ {0, 1, . . . , n− 1},

where j is the imaginary unit.
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Lemma 4: For any integers n ≥ 2 and 2 ≤ k ≤ n− 2,

max
i∈{1,2,...,n−1}

2

⌊ k
2 ⌋∑

p=1

cos

(
2piπ

n

)
=

sin(k̄π/n)

sin(π/n)
− 1,

where k̄ = 2⌊k
2 ⌋+ 1, and the maximum is achieved if, and

only if, i = 1 or i = n− 1.

From Theorem 5, the graphs constructed by Algorithm
1 in Case 1 (1) and Case 2 (1) have an explicit algebraic
connectivity expression, a(G) = k̄− sin(k̄π/n)

sin(π/n) , which can be
bounded as follows.

Lemma 5: For any graph G generated by Algorithm 1 in
Case 1 (1) or Case 2 (1),

π2(0.5k̄3 − k̄)

6n2 − π2
< a(G) <

k̄3π2

6n2
,

where k̄ = 2⌊k
2 ⌋+ 1 and k = ⌊ 2m

n ⌋.

Let us agree to call a graph with n vertices and m edges
sparse if its average degree 2m

n is much smaller than O(n),
and dense if 2m

n = O(n). Consider a generated sparse graph
for which k = ⌊ 2m

n ⌋ ≤ 3
√
6n2/π2 − 1. Then, k̄ ≤ k + 1 ≤

3
√
6n2/π2. From Lemma 5, a(G) < 1. We have thus proved

the following:

Corollary 2: Let G be any graph generated by Algorithm
1 in Case 1 (1) or Case 2 (1). If k = ⌊ 2m

n ⌋ ≤ 3
√
6n2/π2−1,

then a(G) < 1.

It is known that a(G) ≥ 2e(G)(1− cos(π/n)) [11, Theo-
rem 4.3]. Since e(G) ≤ n− 1, this lower bound for a(G) is
strictly less than 1 if n ≥ 9. Corollary 2 implies that when the
minimal Laplacian energy graph generated by Algorithm 1 in
Case 1 (1) or Case 2 (1) is sparse, its algebraic connectivity is
small. This suggests that small/minimal Laplacian energy and
large/maximal algebraic connectivity do not match for sparse
graphs. This observation is not surprising: for instance, in the
special case of trees where m = n−1, the maximal algebraic
connectivity graph is the star, while the minimal Laplacian
energy graph is the path, which are opposites. The maximal
algebraic connectivity graphs in special sparse cases were
theoretically identified in [17, Theorems 1, 2, 4].

In contrast to sparse graphs, the following result shows that
generated dense graphs have large algebraic connectivity of
an optimal order.

Corollary 3: Let G be the graph generated by Algorithm 1
with n vertices and m edges. If k = ⌊ 2m

n ⌋ ≥ n + 3 −
2
√
n− 1, then a(G) ≥ k + 1− 2

√
k.

Among all connected non-complete graphs with n vertices
and m edges, it is known that a(G) ≤ v(G) [11, Theorem
4.1]. From the discussion in Section III, a(G) ≤ v(G) ≤ k.
Note that n+1−

√
2n− 3 = O(n). Thus, Corollary 3 implies

that when the minimal Laplacian energy graph generated by
Algorithm 1 is dense, its algebraic connectivity is large. More
can be said. Recall that the graphs generated by Algorithm 1
are almost regular. Theorem 1 and the subsequent paragraph
in [33] imply that a(G) ≤ k + 1 − 2

√
k + 4

√
k−2

logk(n)−O(1) for

all almost regular graphs with n vertices and m edges [33,
Theorem 1]; thus, limn→∞ a(G) ≤ k+1−2

√
k for all almost

regular graphs with k = ⌊ 2m
n ⌋. Corollary 3 therefore implies

that the dense graphs generated by Algorithm 1 exhibit nearly
optimal algebraic connectivity when n is large.

Although both sparse and dense graphs have been ana-
lyzed, and the findings are consistent with the observations
in the introduction, the scattered non-matching cases for
medium-dense graphs (see Figures 3 and 4) have not been
addressed. Most of these graphs belong to the class of
complete bipartite graphs, which we will study next.

A simple graph is called bipartite if its vertices can be
partitioned into two classes so that every edge has endpoints
in different classes. The complete bipartite graph Kp,n−p

is the bipartite graph with p vertices in one class, n − p
vertices in the other class, and all p(n − p) edges between
vertices of different classes [34, page 17]. It has been shown
in [17, Corollary 1] that Kp,n−p possesses maximal algebraic
connectivity if any of the following conditions hold:2

A) 3 ≤ n ≤ 7 and 1 ≤ p ≤ n/2;
B) n ≥ 8 and p = 1;
C) n ≥ 8 and (n+

√
n2 − 8n)/4 ≤ p ≤ n/2.

Case A explains the two medium-dense non-matching cases,
(n,m) = (6, 8) and (7, 10), as shown in Figures 3 and 4,
respectively. The following theorem addresses Case C.

Theorem 6: For complete bipartite graph Kp,n−p with
n ≥ 8 and (n +

√
n2 − 8n)/4 ≤ p ≤ n/2, there hold

E(Kp,n−p) − Emin ≤ n/4, Emax − Emin > n3/10 − n2 −
4n, and E(Kp,n−p)−Emin

Emax−Emin
< 5

2n2−20n−80 , where Emin and
Emax denote the minimum and maximum Laplacian energy,
respectively, among all simple graphs with n vertices and
p(n− p) edges.

The theorem implies that while the length of the interval
[Emin, Emax], which covers all possible Laplacian energy
levels, grows at least on the order of n3, the Laplacian energy
of Kp,n−p is at most n/4 larger than Emin. Thus, complete
bipartite graphs Kp,n−p with large or even maximal algebraic
connectivity tend to have relatively low Laplacian energy
compared to other graphs with the same number of vertices
and edges, under the theorem condition.

It is worth emphasizing that the remaining medium-density
non-matching graph, namely (n,m) = (7, 15) shown in Fig-
ure 4, is not a complete bipartite graph. Further investigating
such scattered medium-density non-matching cases will be a
critical step toward comprehensively constructing all optimal
graphs with maximal algebraic connectivity.

V. DISCUSSION

The graphs constructed by Algorithm 1 in Case 1 (1)
actually belong to the so-called regular lattices. A simple
graph with n ≥ 3 vertices is called a d-regular lattice, with
d being an even integer in the interval [2, n − 1], if each
vertex i is adjacent to each of those vertices whose indices

2Since p is an integer, the condition p ≤ n/2 is equivalent to p ≤ ⌊n/2⌋,
which was used in [17, Corollary 1].
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are (i+ j) mod n, j ∈ {±1, . . . ,±d
2} [35]. It is easy to see

that any graph with n ≥ 3 vertices generated by Algorithm 1
in Case 1 (1) is a k-regular lattice. Lemma 5 immediately
implies that the algebraic connectivity of a k-regular lattice
is of the order O(k3/n2).

Regular lattices are closely related to Watts-Strogatz small-
world networks, which are generated by randomly rewiring
edges in a regular lattice. The rewiring procedure involves
iterating through each edge, and with probability p, one
endpoint is moved to a new vertex chosen randomly from the
lattice. Double edges and self-loops are not allowed in this
process, so small-world networks are simple graphs [35].

The work of [36] defines the algebraic connectivity gain,
λ2(p)/λ2(0), as the algebraic connectivity of the small-world
network formed by rewiring with probability p divided by the
algebraic connectivity of the regular lattice [36, Definition 1].
Through simulations with k ≈ log(n), the paper conjectures
that the maximum λ2(p)/λ2(0) is on the order of O(n) [36,
Observation (ii), page 4], which implies that (sparse) small-
world networks can reach consensus significantly faster than
regular lattices.

Lemma 5 implies that λ2(0) is on the order of O(k3/n2).
Thus, if one can show that λ2(p) is on the order of O(k3/n),
then the conjecture in [36] would be mathematically verified.
Whether small-world networks can achieve algebraic connec-
tivity of order O(k3/n) has so far eluded us, but Lemma 5
provides a helpful first step in addressing this question.

In summary, this paper proposes a novel approach to
designing fast consensus topologies by minimizing Laplacian
energy, marking the first step in this direction.
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