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Abstract— This paper focuses on the control design and anal-
ysis for nonstationary linear parameter-varying systems with
affine parameter dependence and uncertain initial conditions.
The uncertain initial state and the disturbance input are allowed
to reside in two separate norm balls. Convex analysis and
synthesis conditions are derived, and a reachability analysis
result for systems with pointwise-bounded inputs is developed,
enabling the construction of ellipsoids in which the state or
some output of interest lies at specified time instants. The
usefulness of the proposed approach is demonstrated through
an illustrative example involving a two-mass rotational system.

I. INTRODUCTION

This paper provides control analysis and synthesis results
for nonstationary linear parameter-varying (NSLPV) systems
with affine parameter dependence and uncertain initial condi-
tions. These results are complementary to the ones provided
in [1] for NSLPV systems formulated in a linear fractional
transformation (LFT) framework and build on the works
in [2], [3]. As in [1], the proposed approach focuses on
eventually periodic systems [4], [5], i.e., systems composed
of a finite horizon part and a subsequent periodic part, and
involves solving a square `2 problem, where `2 denotes the
space of square summable sequences. This problem has been
addressed for linear time-invariant (LTI) systems in [6] and
linear time-varying (LTV) systems in [7], [8]. The approach
allows constraining the uncertain initial state to a Euclidean
ball and the disturbance input to a separate `2-norm ball, and
provides an upper bound on the `2-norm of the performance
output. As demonstrated in our previous works [8], [9],
[1] and the illustrative example herein, when dealing with
eventually periodic systems with uncertain initial conditions,
it may be possible to significantly improve the closed-loop
performance by designing controllers that have a larger finite
horizon length than the plant.

The analysis and synthesis conditions derived in this paper
are in the form of linear matrix inequalities (LMIs) [10]. In
addition, the paper gives a result on reachability analysis for
NSLPV systems with inputs bounded pointwise in time. This
result is achieved by expressing the system with a pointwise-
bounded disturbance input as an unforced system with an
uncertain initial state, where the input is viewed in this new
formulation as a static linear time-varying perturbation (see,
for instance, [11]). Then, invoking the analysis result for
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NSLPV systems with uncertain initial conditions leads to the
reachability analysis result, which determines an ellipsoid
in which the state or a subset of the state variables is
guaranteed to reside at some specified time instant. The paper
also provides an illustrative example involving a two-mass
rotational system, based on similar examples given in [8],
[1], to demonstrate the utility of the proposed approach.
Lastly, the paper includes an appendix which gives necessary
and sufficient analysis conditions for eventually periodic
LTV systems with an uncertain initial state. This result
can be easily deduced from the work in [8]; however, it
is not explicitly stated there. The appendix also provides a
version of the reachability analysis result for NSLPV systems
formulated in an LFT framework. Further analysis results for
uncertain time-varying systems can be found in [12].

The outline of the paper is as follows. The notation and
problem formulation are presented in Section II. The analysis
and synthesis results are provided in Section III, along with
the result on reachability analysis for systems with pointwise-
bounded inputs. An illustrative example demonstrating the
usefulness of the approach is given in Section IV. Section V
concludes the paper.

II. PRELIMINARIES

A. Notation

The sets of nonnegative integers, real vectors of size n,
real n×m matrices, and real symmetric n× n matrices are
denoted by N0, Rn, Rn×m, and Sn, respectively. The block-
diagonal augmentation of matrices A1, . . . , AN is denoted by
diag(A1, . . . , AN ). The n ×m zero matrix, n × n identity
matrix, and vector of ones in Rn are denoted by 0n×m, In,
and 1n, respectively. The transpose of a matrix X is denoted
by XT . Given a matrix X ∈ Sn, we write X ≺ 0 (X � 0)
to indicate that X is negative definite (negative semidefinite)
and X � 0 (X � 0) to indicate that X is positive definite
(positive semidefinite). The Hilbert space `n2 is defined as
the space of sequences v = (v(0), v(1), . . .), where v(k) ∈
Rn(k), such that

∑∞
k=0 v(k)T v(k) < ∞. The symbol `n2 is

abbreviated to `2 when the dimensions are clear from the
context. The `2-norm of a sequence v ∈ `2 is defined as
‖v‖2`2 :=

∑∞
k=0 v(k)T v(k), and the Euclidean norm of a

vector d ∈ Rm is denoted by ‖d‖2, i.e., ‖d‖22 = dT d. The
image and kernel of a linear map M are denoted by ImM
and KerM , respectively.

A matrix sequence X = (X(0), X(1), . . .) is said to be
(h, q)-eventually periodic for some integers h ≥ 0 and q ≥ 1
if X(h+ k) = X(h+ q+ k) for all k ∈ N0. A discrete-time
LTV system is (h, q)-eventually periodic if all its state-space
matrix sequences are (h, q)-eventually periodic [4], [5]. The
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class of eventually periodic systems contains finite horizon
and periodic systems as special cases. An NSLPV system is
defined by state-space equations of the form

x(k + 1) = A(δ(k), k)x(k) +B(δ(k), k)w(k),

z(k) = C(δ(k), k)x(k) +D(δ(k), k)w(k),

where the scheduling parameter δ is not given a priori but is
known to lie in some set δ, and the state-space matrix-valued
functions have explicit dependence on both the scheduling
parameter and time. An NSLPV system is (h, q)-eventually
periodic if all its state-space matrix-valued functions are
(h, q)-eventually periodic with respect to the explicit time
dependence [13], i.e., Q(δ, h+ k) = Q(δ, h+ q + k) for all
k ∈ N0, Q = A,B,C,D.

B. Problem Formulation

Consider an (h, q)-eventually periodic NSLPV system G,
defined by the following state-space equation:x(k+1)
z(k)
y(k)

=

A(δ(k), k) B1(δ(k), k) B2(k)
C1(δ(k), k) D11(δ(k), k) D12(k)
C2(k) D21(k) 0

x(k)
w(k)
u(k)

, (1)

where x(0) = x0. The symbols x, w, u, z, and y denote the
state, disturbance input, control input, performance output,
and measurement output, respectively, and their values at
each discrete instant k ∈ N0 are vectors of dimensions
n(k), nw(k), nu(k), nz(k), and ny(k), respectively. The
scheduling parameter δ takes values in a bounded, convex
polytope P ⊂ Rnp with vertices v1, v2, . . . , vr, i.e., δ(k) ∈
conv{v1, v2, . . . , vr} (convex hull of the set of vertices) for
all k ∈ N0. The set of parameter trajectories δ is defined as

δ={δ : N0 → Rnp | δ(k) ∈ conv{v1, v2, . . . , vr} ∀ k∈N0}.

For ease of exposition, given a matrix-valued function Q with
domain domQ = Rnp × N0, we define Qi(k) := Q(vi, k)
for i = 1, 2, . . . , r. The functions A, B1, C1, and D11 are
assumed to have affine dependence on the parameter δ. It
follows that Q(δ(k), k) ∈ conv{Q1(k), Q2(k), . . . , Qr(k)}
for all k ∈ N0 and Q = A,B1, C1, D11. For each δ ∈ δ, the
NSLPV system G reduces to an LTV system, denoted by Gδ ,
where the subscript indicates the specific parameter trajectory
δ at which system G is evaluated. Thus, the NSLPV system
G constitutes a set of LTV systems: G = {Gδ | δ ∈ δ}.

It is assumed that s of the state variables have uncertain
initial values for some positive integer s ≤ n(0); the initial
values of the remaining n(0)−s state variables are assumed
to be zero. Thus, x0 = Λx′0, where Λ ∈ Rn(0)×s has full
column rank and x′0 ∈ Rs comprises the uncertain initial
state values. The vector x′0 is assumed to reside in some
ellipsoid centered at the origin; namely, x′0 ∈ E = {e ∈
Rs | ‖Pe‖2 ≤ 1} for some P � 0. Defining ξ0 = Px′0, then
ξ0 takes values in a unit Euclidean ball centered at the origin,
i.e., ξ0 ∈ B = {e ∈ Rs | ‖e‖2 ≤ 1}. The initial state x0 can
then be expressed as

x0 = ΛP−1ξ0 = Γξ0. (2)

The plant G is assumed to be controlled by a feedback,
(N, q)-eventually periodic NSLPV controller K, for some
N ≥ h, defined by the following state-space equation:[
xK(k+1)
u(k)

]
=

[
AK(δ(k), k) BK(δ(k), k)
CK(δ(k), k) DK(δ(k), k)

] [
xK(k)
y(k)

]
, (3)

where xK(k) ∈ Rm(k), for some positive integer m(k) ≤
n(k), is the controller’s state, xK(0) = 0, and δ ∈ δ is the
same parameter as the one that affects the plant’s dynamics.
The closed-loop system L is (N, q)-eventually periodic and
defined by the state-space equation[

xL(k+1)
z(k)

]
=

[
AL(δ(k), k) BL(δ(k), k)
CL(δ(k), k) DL(δ(k), k)

] [
xL(k)
w(k)

]
, (4)

where xL(k) = [x(k)T xK(k)T ]T ∈ RnL(k) and nL(k) =
n(k) + m(k). The closed-loop state-space matrix-valued
functions can be expressed as follows:

AL = Â+BJC, BL = B̂ +BJD21, (5)

CL = Ĉ +D12JC, DL = D11 +D12JD21,

where the dependence on δ(k) and k is suppressed, and

J =

[
AK BK
CK DK

]
, Â =

[
A 0
0 0

]
, B̂ =

[
B1

0

]
, Ĉ =

[
C1 0

]
,

C=

[
0 I
C2 0

]
, B=

[
0 B2

I 0

]
, D12 =

[
0 D12

]
, D21 =

[
0
D21

]
.

The above block matrices have conformable partitions for the
multiplication and addition operations described in (5), and
so the dimensions of the 0’s and I’s can be easily deduced.

A feedback controller K is said to be a γ-admissible
synthesis for plant G if this controller ensures that the closed-
loop system Lδ is asymptotically stable for all δ ∈ δ and the
following performance inequality holds:

sup {‖z‖`2 | ‖w‖`2 ≤ 1, ‖ξ0‖2 ≤ 1, δ ∈ δ} < γ. (6)

Finding an admissible synthesis can be viewed as a square
`2 problem, which is treated for LTI systems in [6], LTV
systems in [7], [8], and NSLPV systems formulated in an
LFT framework in [1].

III. MAIN RESULTS

A. Analysis Result

For ease of exposition, the analysis result will be given
for the open-loop system, which will also be denoted by G
for simplicity, assuming that Gδ is asymptotically stable for
all δ ∈ δ. The state-space equation for this (h, q)-eventually
periodic NSLPV system can be expressed as[

x(k + 1)
z(k)

]
=

[
A(δ(k), k) B(δ(k), k)
C(δ(k), k) D(δ(k), k)

] [
x(k)
w(k)

]
, (7)

where x(0) = Γξ0 as defined in Equation (2) and its
preceding paragraph, δ ∈ δ, and the state-space matrix-
valued functions A, B, C, and D have affine dependence
on the parameter.

Theorem 1: Consider a discrete-time (h, q)-eventually pe-
riodic NSLPV system G, defined by the state-space equation

3713



(7), where x(0) = Γξ0 as described in Equation (2) and its
preceding paragraph. Then, Gδ is asymptotically stable for
all δ ∈ δ and the performance inequality given in (6) holds
if there exist positive scalars e, f1, f2, and t and positive
definite matrices X(k) ∈ Sn(k) for k = 0, 1, . . . , N + q − 1
and some integer N ≥ h satisfying the following LMIs:

e+ f1 + f2 < 2γ, ΓTX(0)Γ ≺ f1I,

[
t 1
1 e

]
� 0, (8)

Hi(k)T
[
X(k + 1) 0

0 tI

]
Hi(k)−

[
X(k) 0

0 f2I

]
≺ 0, (9)

for k = 0, 1, . . . , N + q − 1 and i = 1, 2, . . . , r, where

X(N + q) = X(N) and Hi(k) =

[
Ai(k) Bi(k)
Ci(k) Di(k)

]
.

Proof: This result is proved in three steps. As in [8], [1],
the first step involves constructing an (h + 1, q)-eventually
periodic NSLPV system, denoted by Ḡ, that is isomorphic
to G, where the system Ḡ has a zero initial condition and
two input channels. The first input channel corresponds to the
uncertain initial state and has a value of ξ0 at time k = 0 and
then becomes irrelevant afterwards; so, the dimensions of the
values of this input for k > 0 are set to zero. The use of zero
dimensions may be viewed as an abuse of notation, but it is
allowed in our framework to simplify the presentation of the
results. Alternatively, the state-space matrix blocks that are
multiplied by this input for k > 0 can be set to zero to nullify
its effect. The second input channel is the disturbance, which
is only relevant at k > 0, and so its dimension is set to zero at
k = 0. The advantage of defining this isomorphic system is
that the performance inequality in (6) can now be expressed
in terms of the square `2-induced norm of the system Ḡδ̄
for δ̄ ∈ δ. The second step then entails utilizing a theorem
from [8], which is based on results from [6], [7], that relates
the square `2-induced norm of an LTV system to the `2-
induced norm of a scaled system. This theorem will be used
in conjunction with an analysis result for polytopic NSLPV
systems with zero initial conditions given in [3]. The last step
involves carrying out some algebraic manipulations to obtain
the linear matrix inequalities in the theorem statement.

The (h + 1, q)-eventually periodic NSLPV system Ḡ is
defined by the following state-space equation:[

x̄(k + 1)
z̄(k)

]
=

[
Ā(δ̄(k), k) B̄(δ̄(k), k)
C̄(δ̄(k), k) D̄(δ̄(k), k)

] [
x̄(k)
w̄(k)

]
,

where x̄(0) = 0, w̄ = (ξ0, w(0), w(1), . . .), x̄(k) ∈ Rn̄(k),
z̄(k) ∈ Rn̄z(k), δ̄(k+1) = δ(k), and Q̄(δ̄(k+1), k+1) =
Q(δ(k), k) for Q = A,B,C,D and k ∈ N0. The value
of δ̄(0) is irrelevant but constrained to lie in the set
conv{v1, v2, . . . , vr} so that δ̄ ∈ δ. All the state-space
matrices are set equal to zero at k = 0 except for the input
matrix which is set equal to Γ, i.e., B̄(δ̄(0), 0) = Γ. It is
not difficult to see that x̄ = (0, x) and z̄ = (0, z), and so,
n̄ = (n̄(0), n) and n̄z = (n̄z(0), nz), where the values of
n̄(0) and n̄z(0) are inconsequential.

The inequality in (6) can be expressed in terms of the
square `2-induced norm of Ḡδ̄ for δ̄ ∈ δ, which is defined as

‖Ḡδ̄‖sq = sup
‖ξ0‖2≤1, ‖w‖`2≤1

‖Ḡδ̄(ξ0, w)‖`2 ,

where the symbol Ḡδ̄ is not merely used here to refer to the
LTV system in question but also to denote the corresponding
linear operator mapping Rs⊕`nw

2 to `n̄z
2 . Then, the inequality

in (6) is equivalent to ‖Ḡδ̄‖sq < γ for all δ̄ ∈ δ.
Invoking [8, Theorem 3], for each δ̄ ∈ δ, ‖Ḡδ̄‖sq < γ if

and only if there exist positive scalars e, f1, and f2 such that
e+ f1 + f2 < 2γ and ‖E− 1

2 Ḡδ̄F
− 1

2 ‖`2→`2 < 1, where

E = diag(eIn̄z(0), eInz(0), eInz(1), . . .),

F = diag(f1Is, f2Inw(0), f2Inw(1), . . .).

In addition, applying Theorem 3(i) and Proposition 5(i) from
[3] to the (h + 1, q)-eventually periodic NSLPV system
E−

1
2 ḠF−

1
2 , along with an appropriate permutation, the

Schur complement formula, and some algebraic manipu-
lations, we get ‖E− 1

2 Ḡδ̄F
− 1

2 ‖`2→`2 < 1 for all δ̄ ∈ δ
if there exist positive definite matrices X̄(k) ∈ Sn̄(k) for
k = 0, 1, . . . , N + q and some integer N ≥ h such that

H̄i(k)T
[
X̄(k+1) 0

0 e−1I

]
H̄i(k)−

[
X̄(k) 0

0 f(k)I

]
≺ 0, (10)

for k = 0, 1, . . . , N+q and i = 1, 2, . . . , r, where f(0) = f1,
f(k) = f2 for k > 0, X̄(N + q + 1) = X̄(N + 1), and

H̄i(k) =

[
Āi(k) B̄i(k)
C̄i(k) D̄i(k)

]
.

At k = 0, inequality (10) simplifies to ΓT X̄(1)Γ ≺ f1I .
Notice that the value of the positive definite matrix X̄(0) is
inconsequential. Defining the matrix sequence X(k) for k =
0, 1, . . . , N + q − 1 such that X(k) = X̄(k + 1), inequality
(10) can be equivalently expressed as ΓTX(0)Γ ≺ f1I and

Hi(k)T
[
X(k+1) 0

0 e−1I

]
Hi(k)−

[
X(k) 0

0 f2I

]
≺ 0. (11)

Introducing a variable t ≥ e−1 > 0, or equivalently,[
t 1
1 e

]
� 0,

it is not difficult to see that (9), along with the aforemen-
tioned condition on t, is equivalent to (11).

B. Synthesis Result

Theorem 2: Consider (h, q)-eventually periodic NSLPV
plant G defined in (1), where x(0) = Γξ0 as described in
Equation (2) and its preceding paragraph. Then, there exists
a γ-admissible (N, q)-eventually periodic NSLPV synthesis
K for G for some scalar γ > 0 and integer N ≥ h if there
exist positive scalars e, f1, f2, p, t, and positive definite
matrices R(k), S(k) ∈ Sn(k) for k = 0, 1, . . . , N + q − 1
such that the following LMIs hold:

e+ f1 + f2 < 2γ, ΓTS(0)Γ ≺ f1I, (12)
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NR(k)T
{
Mi(k)

[
R(k) 0

0 pI

]
Mi(k)T

−
[
R(k + 1) 0

0 eI

]}
NR(k) ≺ 0, (13)

NS(k)T
{
Mi(k)T

[
S(k + 1) 0

0 tI

]
Mi(k)

−
[
S(k) 0

0 f2I

]}
NS(k) ≺ 0, (14)[

R(k) I
I S(k)

]
� 0,

[
p 1
1 f2

]
� 0,

[
t 1
1 e

]
� 0, (15)

for k = 0, 1, . . . , N + q − 1 and i = 1, 2, . . . , r, where

R(N + q) = R(N), S(N + q) = S(N),

ImNR(k) = Ker
[
B2(k)T D12(k)T

]
, NR(k)TNR(k) = I,

ImNS(k) = Ker
[
C2(k) D21(k)

]
, NS(k)TNS(k) = I,

and Mi(k) =

[
Ai(k) B1i(k)
C1i(k) D11i(k)

]
.

Proof: For an (N, q)-eventually periodic NSLPV sys-
tem K with a zero initial state to be a γ-admissible synthesis
for plant G, the resulting closed-loop system for each δ ∈ δ,
i.e., Lδ , defined in (4), must be asymptotically stable and
the performance inequality in (6) must hold. Since B2, C2,
D12, and D21 are not parameter dependent, then AL, BL,
CL, and DL, defined in (5), have affine dependence on the
parameter, and so Theorem 1 can be applied to the closed-
loop system L. Thus, L satisfies the aforementioned stability
and performance requirements if there exist positive scalars
e, f1, f2, and t and positive definite matrices XL(k) ∈
SnL(k) for k = 0, 1, . . . , N+q−1 satisfying the LMIs in (8)
and (9) equivalently expressed for the closed-loop system as

e+ f1 + f2 < 2γ,

[
Γ

0m(0)×s

]T
XL(0)

[
Γ

0m(0)×s

]
≺ f1I, (16)

−XL(k+1)−1 ALi(k) BLi(k) 0
ALi(k)T −XL(k) 0 CLi(k)T

BLi(k)T 0 −f2I DLi(k)T

0 CLi(k) DLi(k) −eI

≺ 0, (17)

for all k = 0, 1, . . . , N + q − 1 and i = 1, 2, . . . , r, where
XL(N + q) = XL(N).

The rest of the proof follows the same approach used in
[14] to obtain the synthesis conditions for LTV systems,
which is based on the methods developed in [15], [16].
Namely, inequality (17) can be equivalently expressed as

Ti(k) + V (k)TJi(k)TU(k) + U(k)TJi(k)V (k) ≺ 0, (18)

where, using the closed-loop parametrization from (5),

Ti(k) =


−XL(k+1)−1 Âi(k) B̂i(k) 0

Âi(k)T −XL(k) 0 Ĉi(k)T

B̂i(k)T 0 −f2I D11i(k)T

0 Ĉi(k) D11i(k) −eI

,
U(k) =

[
B(k)T 0v1(k)×nL(k) 0v1(k)×nw(k) D12(k)T

]
,

V (k) =
[
0v2(k)×nL(k+1) C(k) D21(k) 0v2(k)×nz(k)

]
,

Ji(k) =

[
AKi(k) BKi(k)
CKi(k) DKi(k)

]
,

with v1(k) = m(k + 1) + nu(k) and v2(k) = m(k) +
ny(k). From [15], [16], there exists a matrix Ji(k) satisfying
inequality (18) if and only if

WU (k)TTi(k)WU (k)≺ 0, WV (k)TTi(k)WV (k)≺ 0, (19)

for k = 0, 1, . . . , N + q − 1 and i = 1, 2, . . . , r, where
ImWU (k) = KerU(k), WU (k)TWU (k) = I , ImWV (k) =
KerV (k), and WV (k)TWV (k) = I .

The matrix XL(k) and its inverse are partitioned as

XL(k) =

[
S(k) X12(k)

X12(k)T X22(k)

]
,

XL(k)−1 =

[
R(k) Y12(k)
Y12(k)T Y22(k)

]
,

(20)

where S(k), R(k) ∈ Sn(k) and X22(k), Y22(k) ∈ Sm(k).
From [15], given positive definite matrices S(k) and R(k)
in Sn(k) and a positive integer m(k), there exists a positive
definite matrix XL(k) satisfying (20) if and only if[
R(k) I
I S(k)

]
� 0 and rank

[
R(k) I
I S(k)

]
≤ n(k)+m(k).

Furthermore, it is not difficult to show that the inequalities
in (19) are, respectively, equivalent to

NR(k)T
{
Mi(k)

[
R(k) 0

0 f−1
2 I

]
Mi(k)T

−
[
R(k + 1) 0

0 eI

]}
NR(k) ≺ 0,

NS(k)T
{
Mi(k)T

[
S(k + 1) 0

0 e−1I

]
Mi(k)

−
[
S(k) 0

0 f2I

]}
NS(k) ≺ 0,

which themselves are equivalent to (13) and (14), along with
the last two LMIs in (15). Last, notice that the second LMI
in (16) is the same as the second LMI in (12).

The γ-admissible (N, q)-eventually periodic controller K
is constructed from the solutions e, f2, R(k), and S(k) for
k = 0, 1, . . . , N + q − 1 as follows. First, form the (h, q)-
eventually periodic NSLPV plant Gc, which is also (N, q)-
eventually periodic for any N ≥ h, where the state-space
matrix sequences for the LTV system Gci corresponding to
each vertex vi of the polytope P , for i = 1, . . . , r, are given
compactly below for k = 0, 1, . . . , N + q − 1: Ai(k) f

− 1
2

2 B1i(k) B2i(k)

e−
1
2C1i(k) (ef2)−

1
2D11i(k) e−

1
2D12i(k)

C2i(k) f
− 1

2
2 D21i(k) 0

 .
Following the procedure given in [14], use R(k) and S(k)
to construct a controller (AKi(k), BKi(k), CKi(k), DKi(k))
for each (N, q)-eventually periodic LTV system Gci. Then,
at each instant k, express δ(k) as δ(k) =

∑r
i=1 ηivi, where

ηi ∈ [0, 1] and
∑r
i=1 ηi = 1. The scheduled controller at

time k would then be (
∑r
i=1 ηiAKi(k),

∑r
i=1 ηiBKi(k),∑r

i=1 ηiCKi(k),
∑r
i=1 ηiDKi(k)).
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C. Reachability Analysis with Pointwise-Bounded Inputs

Consider the state equation

x(k + 1) = A(δ(k), k)x(k) +B(k)w(k), (21)

which defines an asymptotically stable system for all δ ∈ δ.
Suppose that x(0) = 0, nw is constant for simplicity, and
w(k) lies in the set Ωk ⊂ Rnw for all k ∈ N0, where

Ωk = {a = (a1, . . . , anw
) | |ai| ≤ w̄i(k), i = 1, . . . , nw},

for some w̄i(k). The disturbance input w resides in the set

W = {w = (w(0), w(1), . . .) |w(k) ∈ Ωk for all k ∈ N0}.

Introducing an additional state α, where α(k + 1) = α(k),
α(0) = 1, equation (21) can be equivalently expressed as

x̂(k + 1) = Â(δ(k), δw(k), k)x̂(k)

=

[
A(δ(k), k) B(k)E(k)δw(k)

0 1

]
x̂(k), (22)

where x̂(k) = (x(k), α(k)), E(k) is a scaling matrix defined
as E(k) = diag(w̄1(k), w̄2(k), . . . , w̄nw

(k)), and δw is a
static LTV perturbation that takes values in the set

δw = {δw : N0 → Rnw | δw(k) ∈ B∞(0, 1) for all k ∈ N0},

with B∞(0, 1) denoting a norm ball (in the ∞-norm) of
radius one centered about the origin, i.e.,

B∞(0, 1) = {a ∈ Rnw | ‖a‖∞ ≤ 1}.

The state equations (21) and (22) define equivalent systems
in the sense that the set of achievable state trajectories for
system (21) for x(0) = 0, δ ∈ δ, and w ∈ W is the
same as that for system (22) for x̂(0) = (0n(0)×1, 1) and
(δ, δw) ∈ δ × δw. The parameter values (δ(k), δw(k)) lie in
P × B∞(0, 1), where P is a closed, convex polytope with
vertices v1, . . . , vr. The norm ball B∞(0, 1) is a hypercube
with κ = 2nw vertices, denoted µ1, . . . , µκ. We define
I = {1, . . . , r} × {1, . . . , κ} and Â(i,j)(k) = Â(vi, µj , k)

for (i, j) ∈ I and k ∈ N0, where Â is defined in (22).
System (22) is an unforced NSLPV system with a nonzero

initial state. This NSLPV system is not asymptotically stable
in general because the state matrix in the new formulation
has an additional eigenvalue of one. However, reachability
analysis is conducted over finite time intervals, and finite
horizon LTV systems of finite horizon length h are viewed
as (h, 1)-eventually periodic systems where the state-space
matrices in the periodic part are all set to zero. Thus, finite
horizon LTV systems are asymptotically stable. The state
variable α has a constant value for all time instants, i.e.,
α(k) = α(0) for all k ∈ N0, and so the value of α(0) can be
regarded as a scaling factor of the parameter δw. In addition,
the parameter values δw(k) lie in B∞(0, 1), which is a hyper-
cube symmetric about the origin. Thus, the initial condition
α(0) = 1 can be replaced with the inequality |α(0)| ≤ 1
in reachability analysis without adding conservatism since
worst-case analysis would still correspond to the case where
α(0) = 1. We can now state the following result.

Theorem 3: Consider the state equation in (21), which
defines an asymptotically stable system for all δ ∈ δ, where
x(0) = 0 and w ∈ W . Given some k′ ∈ N0\{0}, the state
at time k′ lies in the interior of the ellipsoid E = {a ∈
Rn(k′) | aT P̃ a ≤ 1}, i.e., x(k′) ∈ int E , where P̃ = (1/γ2)P
is obtained by solving the following convex optimization
problem for some c > 0:

minimize − log detP + c g (23)

subject to
[
0n(0)×1

1

]T
X(0)

[
0n(0)×1

1

]
< g,

Â(i,j)(k)TX(k+1)Â(i,j)(k)−X(k) ≺ 0

for k = 0, 1, . . . , k′ − 1,

Â(i,j)(k
′)TX(k′+1)Â(i,j)(k

′)

+ diag(P, 0)−X(k′) ≺ 0 for (i, j) ∈ I,
P � 0, X(k) � 0 for k = 0, 1, . . . , k′ + 1.

The variables of this optimization problem are g = γ2 ∈ R,
P ∈ Sn(k′), and X(k) ∈ Sn(k)+1 for k = 0, 1, . . . , k′ + 1.

Proof: To start, we construct a (k′ + 1, 1)-eventually
periodic system, as first discussed in [17]. The state equation
is expressed as in (22) for k = 0, 1, . . . , k′, and the output
equation is chosen as z(k) = 0 for k 6= k′ and z(k′) =
[P 1/2 0]x̂(k′) = P 1/2x(k′). For k > k′, all the state-space
matrices are set equal to zero. The initial state is x̂(0) =
(0, α(0)), with |α(0)| ≤ 1. Then, applying Theorem 1, we
conclude that ‖z‖`2 < γ for all (δ, δw) ∈ δ × δw and
|α(0)| ≤ 1 if the analysis conditions in the statement of
Theorem 1 hold. Notice that the eventually periodic system
in this case is not subjected to a forcing input, i.e., the
input and feedthrough matrices are empty for all k ∈ N0.
Also, based on how the performance output is defined, we
have ‖z‖`2 = ‖z(k′)‖2 = (x(k′)TPx(k′))1/2; thus, the
inequality ‖z‖`2 < γ can be equivalently expressed as
x(k′)TPx(k′) < γ2, i.e., x(k′) ∈ int E . The rest of this
proof centers around proving that the LMIs (8)− (9), along
with the constraints on their matrix variables, are equivalent
to the constraints of the optimization problem (23).

As the input and feedthrough matrices are empty for all
k ∈ N0, LMI (9), expressed for this system, simplifies to

Â(i,j)(k)T X̂(k+1)Â(i,j)(k) + e−1Ĉ(k)T Ĉ(k)− X̂(k) ≺ 0,

for (i, j) ∈ I and k = 0, 1, . . . , k′ + 1, where Ĉ(k) = 0
for k 6= k′ and Ĉ(k′) = [P 1/2 0], and t is set equal to
e−1, eliminating the need for the last inequality in (8) (see
the end of the proof of Theorem 1). Multiplying both sides
of the above inequality by e, defining X(k) = eX̂(k) for
all k, and setting all the state-space matrices equal to zero
for k > k′, we retrieve the corresponding inequalities in the
constraints of the optimization problem (23). As for the first
two inequalities in (8), they become in this case e+f1 < 2γ
and ΓT X̂(0)Γ < f1, where Γ = [01×n(0) 1]T ; the latter
inequality can be equivalently expressed as ΓTX(0)Γ < ef1

by multiplying both sides of this inequality by e. From the
preceding, it is not difficult to see that for a given value of the
sum e+ f1, we would like to choose the values of e and f1
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Fig. 1. Two-mass rotational system.

such that the product ef1 is maximized, which is achieved by
choosing e = f1. It follows that the inequalities, e+f1 < 2γ
and ΓTX(0)Γ < ef1, can be replaced with ΓTX(0)Γ < γ2.

Concerning the objective function in (23), originally we
wanted to minimize the volume of the ellipsoid E , that is, we
wanted the cost function to be log det P̃−1 or, equivalently,
− log detP +n(k′) log γ2. But this function is not convex in
γ2. As a viable alternative, we opted to minimize the convex
function, − log detP+c γ2, for some positive scalar c which
controls the trade-off between the two terms in the cost.

Remark 1: In Theorem 3, it is not difficult to modify the
convex optimization problem (23) to find an ellipsoid that
contains all the possible values of some output of interest, z,
at time k′. This ellipsoid constitutes an overapproximated
reachable set for the output z at time k′. Suppose that
z(k′) = C(k′)x(k′), where C(k′) ∈ Rnz(k′)×n(k′). The
required modification in this case can be deduced from the
proof and entails replacing the term diag(P, 0) that appears
in the constraints of the optimization problem (23) with the
term diag(C(k′)TPC(k′), 0), where the matrix variable P
is in Snz(k′).

Remark 2: In the optimization problem (23), the first term
in the objective function, i.e., log detP−1, could be replaced,
for instance, with trace(P−1) or the spectral norm ‖P−1‖2.
This change would generally lead to different ellipsoids.

IV. ILLUSTRATIVE EXAMPLE

The example is based on the ones given in [8], [1] and
deals with designing an LPV controller for a two-mass rota-
tional system, shown in Fig. 1, and conducting reachability
analysis. The semidefinite programs are solved using Yalmip
[18] with Mosek [19]. All computations are carried out in
Matlab R2022a on a Lenovo laptop with Intel Core i7-8650U
CPU and 16 GB of RAM running Windows 11 Pro.

A. Control Design

The symbols Ji and θi in Fig. 1 denote the moment of
inertia and the angular displacement of body i, respectively,
for i = 1, 2. The symbol ks denotes the spring constant,
and b denotes the damping coefficient. The control input u
is the torque applied to body 1. The values used for the
system parameters are as follows: J1 = 1, J2 = 0.1, and
b = 0.004. The spring constant ks is assumed to be not
known a priori but available for measurement at each time
instant, namely, ks(δ(k)) = 0.025δ(k) + 0.075, where the
scheduling parameter δ satisfies |δ(k)| ≤ 1 for all k ∈ N0.

0 5 10 15 20 25

time

-1

-0.5

0

0.5

1

Fig. 2. Time history of the state variable θ2.

The equations of motion of this system are given in [8].
These equations are discretized using the Euler method with
a sampling time T = 0.1 and then expressed in state-space
form, where the state x is chosen as x = (θ2, θ̇2, θ1, θ̇1).
As in [8], the disturbance input w is in the form of a torque
applied to body 1, designating the control input inaccuracies.
The measurement and performance outputs are chosen as
y = θ2 and z = (θ2, u), respectively. The system is assumed
to be initially at rest with θ1(0) = θ2(0) having uncertain
values, and so the initial state x0 can be expressed as x0 =
Γξ0, where Γ = [1 0 1 0]T and ξ0 = θ2(0).

Applying Theorem 2, the semidefinite program, minimize
γ subject to the synthesis conditions (12)–(15), is solved
for N = 0, 1, 5, 10, 100. The corresponding optimal values
obtained are γ∗ = 32.9080, 6.3845, 6.2155, 6.0868, 6.0295,
with the largest problem taking less than 3 seconds to solve.
Thus, just increasing the length of the finite horizon of the
controller by one, i.e., designing a (1, 1)-eventually periodic
NSLPV controller, results in a significant improvement in
performance over a stationary LPV controller. Increasing the
γ-values for the cases N = 0 and N = 1 by 5%, we re-solve
the corresponding synthesis feasibility problems and use the
obtained synthesis solutions to construct a stationary LPV
controller and a (1, 1)-eventually periodic NSLPV controller.

Simulations are then performed to compare the perfor-
mances of these two controllers. In these simulations, the
continuous-time LPV plant model is used, with the schedul-
ing parameter chosen as cos(t) for continuous time t. The
disturbance input is applied as the output of the zero-order
hold with a sampling time of T = 0.1 and uniformly
distributed pseudorandom values generated using the Matlab
function rand such that |w(k)| ≤ 0.1 for all k ∈ N0. The
significant improvement in performance achieved by using
the (1, 1)-eventually periodic NSLPV controller is evident
in Figures 2 and 3. Comparable outcomes are also observed
when applying the results of [1].

B. Reachability Analysis

Consider the (1, 1)-eventually periodic closed-loop sys-
tem obtained using the designed (1, 1)-eventually periodic
NSLPV controller, and assume that the initial state of this
closed-loop system is equal to zero. The formulation used in
Section III-C for analysis of finite horizon NSLPV systems
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Fig. 3. Time history of the control input u.

with pointwise-bounded inputs is adopted here. Expressing
the closed-loop state equation as in (22), where in this case
E = w̄ = 0.1 and |δw(k)| ≤ 1 for all k ∈ N0, and choosing
the output of interest z = (θ2, θ1), we apply Theorem 3 and
solve a modified version of the optimization problem (23) for
c = 10 and k′ = 100 (see Remark 1). The ellipse in which
the values of the state variables θ2 and θ1 lie at time instant
k′ is plotted in Fig. 4. The wall-clock time for solving the
optimization problem is about 4.5 seconds. By choosing the
performance output z = θi for i = 1, 2, bounds on the values
of θi at time k′ can be computed by applying Theorem 1.
These bounds are depicted in the rectangle shown in Fig. 4.
The region bounded by the ellipse and that bounded by the
rectangle, as well as the intersection of these two regions,
represent overapproximated reachable sets at discrete instant
k′ for the system under consideration.

Some values of the state variables θ2 and θ1 at discrete
instant k′ are also plotted. These points are evidently sym-
metric about the origin. Half of these points are obtained
by solving nonlinear optimization problems, based on the
discrete-time NSLPV closed-loop system, for the disturbance
and scheduling parameter sequences that would minimize the
objective functions θ2(k′), θ1(k′), and θ1(k′) for specific
values of θ2(k′), namely, θ2(k′) = 0,−0.1, 0.1, 0.2. The
rest of the points are also obtained from the solutions of
the aforementioned optimization problems by applying each
disturbance sequence found, multiplied by −1, along with
the associated parameter sequence. These points demonstrate
that the bounds computed using the proposed approach are
satisfactory. The nonlinear optimization problems are solved
using Yalmip, along with the solver fmincon [20].

V. CONCLUSIONS

This paper deals with designing controllers and analyzing
the performance of eventually periodic NSLPV systems with
affine parameter dependence and uncertain initial conditions.
Analysis and synthesis results involving convex conditions
are provided. A reachability analysis result for systems with
pointwise-bounded inputs is also given, and an example
demonstrating the usefulness of the approach is presented.
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APPENDIX

A. Analysis Result for LTV Systems

Computing the square `2-induced norm of the (isomor-
phic) closed-loop system for appropriate choices of δ ∈ δ
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can provide useful lower bounds on the performance index
in (6). Given a specific δ ∈ δ, an NSLPV system would
reduce to an LTV system. Suppose that the nominal model
of the NSLPV system is an (h0, q0)-eventually periodic
LTV system. Then, as long as the parameter trajectory δ
is chosen to be eventually periodic, say, (hδ, qδ)-eventually
periodic, i.e., δ(hδ + k) = δ(hδ + qδ + k) for all k ∈ N0,
the resulting LTV system will be (h, q)-eventually periodic,
where h = max(h0, hδ) and q is the least common multiple
of q0 and qδ . An LTV counterpart to Theorem 1 is provided
below, which gives necessary and sufficient conditions for
asymptotic stability and performance (as defined in (6) sans
the condition on δ).

Theorem 4 (LTV case): Consider an (h, q)-eventually pe-
riodic discrete-time LTV system defined by the state-space
equations x(k + 1) = A(k)x(k) + B(k)w(k) and z(k) =
C(k)x(k) + D(k)w(k), where x(0) = Γξ0 as described
in Equation (2) and its preceding paragraph, and x(k) ∈
Rn(k). Then, this system is asymptotically stable and the
performance inequality given in (6) (sans the condition on
δ) holds if and only if there exist positive scalars e, f1,
f2, and t and positive definite matrices X(k) ∈ Sn(k) for
k = 0, 1, . . . , h+ q − 1 satisfying the following LMIs:

e+ f1 + f2 < 2γ, ΓTX(0)Γ ≺ f1I,

[
t 1
1 e

]
� 0, (24)

H(k)T
[
X(k + 1) 0

0 tI

]
H(k)−

[
X(k) 0

0 f2I

]
≺ 0, (25)

for k = 0, 1, . . . , h+ q − 1, where X(h+ q) = X(h) and

H(k) =

[
A(k) B(k)
C(k) D(k)

]
.

The proof of this result is deducible from that of Theorem 1
and so is omitted. Given any (hδ, qδ)-eventually periodic δ ∈
δ for some integers hδ ≥ 0 and qδ ≥ 1, the preceding result
can be applied to obtain the aforementioned lower bound,
which is the optimal value of the semidefinite programming
problem, minimize γ subject to (24) and (25).

B. Reachability Analysis for LFT Systems

A version of Theorem 3 for NSLPV systems with rational
dependence on the parameters, formulated in an LFT frame-
work [1], is given next. The system equations in this case are[

x(k + 1)
ϕ(k)

]
=

[
Ass(k) Asp(k) Bs(k)
Aps(k) App(k) Bp(k)

]x(k)
ϑ(k)
w(k)

 ,
ϑ(k) = diag(δ1(k)Ir1(k), . . . , δnp(k)Irnp (k))ϕ(k),

= ∆(k)ϕ(k)

(26)

where x(k) ∈ Rn(k), ϑ(k), ϕ(k) ∈ Rnϑ(k),
∑np

i=1 ri(k) =
nϑ(k), x(0) = 0, δ = (δ1, . . . , δnp

) ∈ δ, with

δ = {δ : N0 → Rnp | |δi(k)| ≤ 1 ∀ i = 1, . . . , np, k ∈ N0}.

The LFT system defined in (26) is assumed to be asymptot-
ically stable for all δ ∈ δ. The input matrix sequence of the
NSLPV system in this case may depend on the parameter δ,

unlike that in the state equation (21). Assuming a pointwise-
bounded input as described in Section III-C, the equations
in (26) can be equivalently expressed as[

x̂(k + 1)
ϕ̂(k)

]
=

[
Âss(k) Âsp(k)

Âps(k) Âpp(k)

] [
x̂(k)

ϑ̂(k)

]
,

ϑ̂(k) = diag(∆(k), δw,1(k), . . . , δw,nw(k))ϕ̂(k),

(27)

where nw is assumed to be constant for simplicity, x̂, δw =
(δw,1, . . . , δw,nw), and E (which appears below) are defined
in Section III-C, and

Âss(k) =

[
Ass(k) 0n(k)×1

01×n(k) 1

]
,

Âsp(k) =

[
Asp(k) Bs(k)E(k)

01×nϑ(k) 01×nw

]
,

Âps(k) =

[
Aps(k) 0nϑ(k)×1

0nw×n(k) 1nw

]
,

Âpp(k) =

[
App(k) Bp(k)E(k)

0nw×nϑ(k) 0nw×nw

]
.

A counterpart of Theorem 3 for NSLPV systems formulated
in an LFT framework can now be given based on the analysis
result of [1].

Theorem 5 (LFT case): Consider the system equations in
(26), which define an asymptotically stable system for all
δ ∈ δ, where x(0) = 0 and w ∈ W (as defined in Section III-
C). Given some k′ ∈ N0\{0}, the state at time k′ lies in the
interior of the ellipsoid E = {a ∈ Rn(k′) | aT P̃ a ≤ 1}, i.e.,
x(k′) ∈ int E , where P̃ = (1/γ2)P is obtained by solving
the following convex optimization problem for some c > 0:

minimize − log detP + c g

subject to[
0n(0)×1

1

]T
Xs(0)

[
0n(0)×1

1

]
< g,

M̂(k)T
[
Xs(k+1) 0

0 Xp(k)

]
M̂(k)−

[
Xs(k) 0

0 Xp(k)

]
≺ 0,

for k = 0, 1, . . . , k′ − 1, where M̂(k)=

[
Âss(k) Âsp(k)

Âps(k) Âpp(k)

]
,

M̂(k′)T
[
Xs(k

′ + 1) 0
0 Xp(k

′)

]
M̂(k′)

+

[
P 0
0 0v×v

]
−
[
Xs(k

′) 0
0 Xp(k

′)

]
≺ 0, v=nϑ(k′)+nw+1,

P � 0, Xs(k) � 0, for k = 0, 1, . . . , k′ + 1,

Xp(k)= diag(X(1)
p (k), . . . , X(np)

p (k),

X(1)
p,w(k), . . . , X(nw)

p,w (k)) � 0, X(i)
p (k) ∈ Sri(k),

X(j)
p,w(k) ∈ R, i = 1, . . . , np, j = 1, . . . , nw, k = 1, . . . , k′.

The variables of this optimization problem are g = γ2 ∈ R,
P ∈ Sn(k′), Xs(k) ∈ Sn(k)+1 for k = 0, 1, . . . , k′ + 1, and
Xp(k) for k = 0, 1, . . . , k′.

The proof uses [1, Theorem 1] and follows a similar argu-
ment to that in the proof of Theorem 3.
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