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Abstract— We consider the finite horizon optimal steering of
the joint state probability distribution subject to the angular
velocity dynamics governed by the Euler equation. The problem
and its solution amounts to controlling the spin of a rigid body
via feedback, and is of practical importance, for example, in
angular stabilization of a spacecraft with stochastic initial and
terminal states. We clarify how this problem is an instance
of the optimal mass transport (OMT) problem with bilinear
prior drift. We deduce both static and dynamic versions of the
Eulerian OMT, and provide analytical and numerical results
for the synthesis of the optimal controller.

I. INTRODUCTION

The controlled angular velocity dynamics for a rotating
rigid body such as a spacecraft, is given by the well-known
Euler equation

Jω̇ = −[ω]×Jω + τ , (1)

where the positive diagonal matrix J := diag(J1, J2, J3)
comprises of the principal moments of inertia, the vector
ω := (ω1, ω2, ω3)

⊤ ∈ R3 denotes the body’s angular
velocity (in rad/s) along its principal axes, the vector τ :=
(τ1, τ2, τ3)

⊤ ∈ R3 denotes the torque input applied about the
principal axes, and

[ω]× :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3).

As usual, so(3) denotes the Lie algebra of the three dimen-
sional rotation group SO(3). Motivated by the problem of
steering the probabilistic uncertainties in angular velocities
over a prescribed time horizon, we consider the deterministic
and stochastic variants of the optimal mass transport (OMT)
[1]–[3] over the Euler equation, which we refer to as the
OMT-EE.

Specifically, let P2(R3) denote the manifold of probability
measures supported on R3 with finite second moments.
Given two probability measures µ0, µT ∈ P2(R3), the
deterministic OMT-EE associated with (1) is a stochastic
optimal control problem:

inf
u∈U

∫ T

0

Eµu [q(xu) + r(u)] dt (2a)
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subject to ẋu = α⊙ f(xu) + β ⊙ u, i ∈ J3K := {1, 2, 3},
(2b)

µu(xu, t = 0) = µ0 (given), µu(xu, t = T ) = µT (given),
(2c)

where the fixed time horizon is [0, T ] for some prescribed
T > 0, and Eµu [·] denotes the expectation w.r.t. the
controlled state probability measure µu(xu, t) for t ∈ [0, T ],
i.e., Eµu [·] :=

∫
(·) dµu. The superscript u for a variable

indicates that variable’s dependence on the choice of control
u. The symbol ⊙ denotes the elementwise (Hadamard)
vector product.

The correspondence between (1) and (2b) follows by
noting that the controlled state xu ≡ controlled ω, the
control u ≡ τ , the vector field

f(z) := (z2z3, z3z1, z1z2)
⊤ for z ∈ R3, (3)

and the parameter vectors α,β ∈ R3 have entries

αi := (Ji+1 mod 3 − Ji+2 mod 3)/Ji, βi := 1/Ji, i ∈ J3K.
(4)

The cost-to-go in (2a) comprises of an additive state cost
q(·), and a strictly convex and superlinear (i.e., 1-coercive)
control cost r(·). Of particular interest is the case q(·) ≡ 0
and r(·) = 1

2∥ · ∥22 which corresponds to minimum effort
control. We suppose that q + r is lower bounded.

Let Ω be the space of continuous functions η : [0, T ] 7→
R3, which is a complete separable metric space endowed
with the topology of uniform convergence on compact time
intervals. With Ω, we associate the σ-algebra F = σ{η(s) |
0 ≤ s ≤ T}, and consider the complete filtered probability
space (Ω,F ,P) with filtration Ft = σ{η(s) | 0 ≤ s ≤
t ≤ T}. So, F0 contains all P-null sets and Ft is right
continuous. The stochastic initial condition xu(t = 0) in
(2) is F0 measurable. For a given control policy u, the
controlled state xu(t) is Ft-adapted (i.e., non-anticipating)
for all t ∈ [0, T ].

In (2), the set of feasible Markovian control policies

U := {u : R3 × [0, T ] 7→ R3 |
∫ T

0

Eµu [r(u)] dt <∞}. (5)

Thus, solving (2) amounts to designing an admissible Marko-
vian control policy u ∈ U that transfers the stochastic
angular velocity state from a prescribed initial to a prescribed
terminal probability measure under the controlled sample
path dynamics constraint (2b), and hard deadline constraint.
The initial and terminal measures can be interpreted as the
estimated and allowable statistical uncertainty specifications,
respectively, and therefore, problem (2) asks to directly
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control or reshape uncertainties in a nonparametric sense
[4]. The objective of this paper is to study problem (2), and
its stochastic version where (2b) may have additive process
noise (discussed in Sec. V).

Contributions: This work makes the following specific
contributions.

• We clarify the connections and differences of the OMT
over the Euler equation vis-à-vis the classical OMT,
from both static and dynamic perspectives.

• We present a numerical method to solve the mini-
mum energy steering problem via neural networks with
Sinkhorn losses for the probability density function
(PDF)-level nonparametric boundary conditions.

Organization: This paper is organized as follows. After
reviewing the OMT preliminaries in Sec. II, we study the
deterministic OMT-EE in Sec. III, i.e., when the Euler
equation has no additive process noise. Sec. IV discusses
the unforced PDF evolution subject to the (deterministic)
Euler equation. In Sec. V, we focus on the minimum energy
OMT-EE subject to the Euler equation with additive process
noise, and in Sec. VI that follows, we detail a neural network
framework to solve the corresponding necessary conditions
of optimality. Sec. VII provides numerical simulation results
for a case study. Sec. VIII concludes the paper.

Related Works: Continuous time deterministic optimal
control subject to the angular velocity dynamics given by the
Euler equation, has been studied in several prior works. In
the finite horizon setting, Athans et. al. [5] derived the mini-
mum time, minimum fuel (assuming free terminal time) and
minimum energy (assuming fixed terminal time) controllers–
all steering an arbitrary initial angular velocity vector to
zero. Considering free terminal state and no terminal cost,
Kumar [6] showed that a tangent hyperbolic feedback is
optimal for finite horizon problem w.r.t. quadratic state and
quadratic control cost-to-go. Again considering free terminal
state, Dwyer [7] derived the optimal finite horizon controller
w.r.t. quadratic state and quadratic control cost-to-go, as
well as quadratic terminal cost. Infinite horizon optimal
control problem w.r.t. quadratic state and control objective
was studied in [8].

Besides control design, systems-theoretic properties for (1)
are known too. Thanks to the periodicity of unforced motion,
(1) enjoys global controllability guarantees and it is known
[9, Thm. 4 and disussions thereafter], [10, Reamrk in p. 895]
that the controlled dynamics is reachable on entire R3. See
also [11].

Formulating and solving the OMT with prior dynamics is
a relatively recent endeavor, see e.g., [12]–[15]. To the best
of the authors’ knowledge, OMT over the Euler equation has
not been investigated before.

Notations: We use boldfaced small letters for vectors and
boldfaced capital letters for matrices. When a probability
measure µ is absolutely continuous, it admits a PDF ρ, and
dµ(·) = ρd(·). We use ♯ to denote the pushforward of a
probability measure or PDF (when the measure is absolutely
continuous). The symbol ∼ is used as a shorthand for
“follows the probability distribution”. We use ⟨·, ·⟩, ∇ and ∆

to denote the standard Euclidean inner product, the Euclidean
gradient and the Euclidean Laplacian, respectively. In case
of potential confusion, we put a subscript to ∇ to clarify
w.r.t. which variable the gradient is being taken; otherwise
we omit the subscript. We use N (m,Σ) to denote a joint
normal PDF with mean vector m and covariance matrix Σ.
The symbol I3 denotes the 3× 3 identity matrix.

II. OMT PRELIMINARIES

To ease the ensuing development, we now summarize
rudiments on classical OMT. Well-known references for this
topic are [2], [3]; for a brief summary see e.g., [16].

The static formulation of OMT goes back to Gaspard
Monge in 1781, which concerns with finding a mass preserv-
ing transport map θ : Rn 7→ Rn pushing a given measure
µ0 to another µT while minimizing a transportation cost∫
Rn c(x,θ(x))dµ0 where c is some ground cost functional.

A common choice for c is half of the squared Euclidean
distance, but in general, the choice of the functional c plays
an important role for guaranteeing existence-uniqueness of
the minimizer θopt(·).

Even when the existence-uniqueness of the optimal trans-
port map θopt(·) can be guaranteed, Monge’s formulation
requires solving a nonlinear nonconvex problem over all
measurable pushforward mappings θ : Rn 7→ Rn taking
µ0 to µT . For c(x,y) ≡ 1

2∥x− y∥22, x,y ∈ Rn, dµ0(x) =
ρ0(x)dx,dµT (x) = ρT (y)dy, it is known [17] that θopt

exists, is unique, and admits a representation θopt = ∇ψ for
some convex function ψ. Even then, the direct computation
of ψ is numerically challenging because it reduces to solving
a second order nonlinear elliptic Monge-Ampère PDE [2, p.
126]: det

(
∇2ψ(x)

)
ρT (∇ψ(x)) = ρ0(x), where det and

∇2 denote the determinant and the Hessian, respectively.
A more tractable reformulation of the static OMT is due

to Leonid Kantorovich in 1942 [18], which instead of finding
the optimal transport map θopt, seeks to compute an optimal
coupling πopt between the given measures µ0, µT that solves

arg inf
π∈Π2(µ0,µT )

∫
Rn×Rn

c(x,y)dπ(x,y) (6)

where Π2(µ0, µT ) denotes the set of all joint probability
measures π supported over the product space Rn×Rn with x
marginal µ0, and y marginal µT . Notice that (6) is an infinite
dimensional linear program. The map θopt is precisely the
support of the optimal coupling πopt. In the other direction,
we can recover πopt from θopt as πopt = (Id× θopt) ♯ µ0

where Id denotes the identity map.
The dynamic formulation of OMT due to Benamou and

Brenier [1] appeared at the turn of the 21st century. When
c(x,y) ≡ 1

2∥x − y∥22 and µ0, µT admit respective PDFs
ρ0, ρT , the dynamic formulation is the following stochastic
optimal control problem:

arg inf
(ρu,u)∈P2(Rn)×U

∫ T

0

∫
Rn

1

2
∥u∥22 ρu(xu, t)dxudt (7a)

∂ρu

∂t
+∇xu · (ρuu) = 0, (7b)
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ρu(xu, t = 0) = ρ0, ρu(xu, t = T ) = ρT . (7c)

The constraint (7b) is the Liouville PDE (see e.g., [19])
that governs the evolution of the state PDF ρu(xu, t) under
a feasible control policy u ∈ U . So (7) is a problem of
optimally steering a given joint PDF ρ0 to another ρT over
time horizon [0, T ] using a vector of single integrators, i.e.,
with full control authority in U . The solution (ρopt,uopt) for
(7) satisfies

ρopt(xu, t) = θt ♯ ρ0, θt :=

(
1− t

T

)
Id +

t

T
θopt, (8a)

uopt(xu, t) = ∇xuϕ(xu, t),
∂ϕ

∂t
+

1

2
∥∇xuϕ∥22 = 0.

(8b)

Thus, (8a) tells that the optimally controlled PDF is obtained
as pushforward of the initial PDF via a map that is a linear
interpolation between identity and the optimal transport map.
Consequently, the PDF ρopt itself is a (nonlinear) McCann’s
displacement interpolant [20] between ρ0 and ρT . The opti-
mal control in (8b) is obtained as the gradient of the solution
of a Hamilton-Jacobi-Bellman (HJB) PDE.

The ψ(x) in static OMT and the ϕ(x, t) in dynamic
OMT are related [2, Thm. 5.51] through the Hopf-Lax
representation formula

ϕ(x, t) = inf
y∈Rn

(
ϕ(y, 0) +

1

2t
∥x− y∥22

)
, t ∈ (0, T ], (9a)

ϕ(y, 0) = ψ(y)− 1

2
∥y∥22, (9b)

i.e., ϕ(x, t) is the Moreau-Yosida proximal envelope [21,
Ch. 3.1] of ϕ(y, 0) = ψ(y) − 1

2∥y∥
2
2, and hence ϕ(x, t) is

continuously differentiable w.r.t. x ∈ Rn.
Classical OMT allows defining a distance metric, called

the Wasserstein metric W , on the manifold of probability
measures or PDFs. In particular, when c(x,y) ≡ 1

2∥x−y∥22,
the infimum value achieved in (6) is the one half of the
squared Wasserstein metric between µ0 and µT , i.e.,

W 2(µ0, µT ) := inf
π∈Π2(µ0,µT )

∫
Rn×Rn

∥x− y∥22 dπ(x,y), (10)

which is also equal to the infimum value achieved in
(7), provided µ0, µT are absolutely continuous. The tuple
(P2 (Rn) ,W ) defines a complete separable metric space,
i.e., a polish space. This offers a natural way to metrize the
topology of weak convergence of probability measures w.r.t.
the metric W .

For a regularization parameter ε > 0, we refer to the
entropy-regularized version of (10) as Sinkhorn divergence

W 2
ε (µ0, µT ) := inf

π∈Π2(µ0,µT )

∫
Rn×Rn

{
∥x− y∥22

+ ε log π(x,y)
}
dπ(x,y). (11)

As ε ↓ 0, the Sinkhorn divergence (11) approaches the
Wasserstein metric (10).

III. DETERMINISTIC OMT-EE

We suppose that the endpoint measures µ0, µT ∈ P2(R3)
in (2) are absolutely continuous with respective PDFs ρ0, ρT ,
and rewrite (2) as

arg inf
(ρu,u)∈P2(R3)×U

∫ T

0

∫
R3

(q(xu) + r(u)) ρu(xu, t)dxudt

(12a)
∂ρu

∂t
+∇xu · (ρu (α⊙ f(xu) + β ⊙ u)) = 0, (12b)

ρu(xu, t = 0) = ρ0, ρu(xu, t = T ) = ρT . (12c)

Problem (12) generalizes (7) in two ways. First, unlike (7b),
the constraint (12b) has a prior nonlinear drift f given by
(3). Second, the cost (12a) is more general than (7a). We
refer to (12) as the dynamic OMT-EE.

We clarify here that the solution of the Liouville
PDE (12b) is understood in the weak sense, i.e., for all
compactly supported smooth test functions ζ(xu, t) ∈
C∞

c

(
[0, T ]× R3

)
, the function ρu(xu, t) satisfies∫ T

0

∫
R3

(
ρu ∂ζ

∂t + ρu⟨α⊙ f(xu) + β ⊙ u,∇xuζ⟩
)
dxudt+∫

R3 ρ0(x
u)ζ(xu, t = 0)dxu = 0.

A. Static OMT-EE

At this point, a natural question arises: if (12) is the Euler
equation generalization of the dynamic OMT (7), then what
is the corresponding generalization of the static OMT (6)?

To answer this, we slightly generalize the setting: we re-
place Rn in (6) with an n dimensional Riemannian manifold
M. Consider an absolutely continuous curve γ(t) ∈ M,
t ∈ [0, T ], and (γ, γ̇) ∈ T M (tangent bundle). Then for
x,y ∈ M, we think of c(x,y) in (6) to be derived from
a Lagrangian L : [0, T ] × T M 7→ R, i.e., express c as an
action integral

c(x,y) = inf
γ(·)∈Γxy

∫ T

0

L(t,γ(t), γ̇(t)) dt, (13)

where

Γxy := {γ : [0, T ] 7→ Rn |γ(·) is absolutely continuous,
γ(0) = x,γ(T ) = y}.

In particular, the choice M ≡ Rn and L(t,γ, γ̇) ≡ 1
2∥γ̇∥

2
2

results in c(x,y) = ∥x − y∥22, i.e., the standard Euclidean
OMT.

For OMT-EE, M ≡ R3 and we have the Lagrangian

L(t,γ, γ̇) ≡ q(γ) + r((γ̇ −α⊙ f)⊘ β) (14)

where ⊘ denotes vector element-wise (Hadamard) division.
In particular, L in (14) has no explicit dependence on t, i.e.,
L : T M 7→ R.

This identification allows us to define the static OMT-EE
as the linear program

arg inf
π∈Π2(µ0,µT )

∫
R3×R3

c(x,y)dπ(x,y) (15)
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where c is given by (13)-(14), and Π2(µ0, µT ) denotes the
set of all joint probability measures π supported over the
product space R3 ×R3 with x marginal µ0, and y marginal
µ1. We next show that identifying (14) also helps establish
the existence-uniqueness of solution for (12).

B. Back to Dynamic OMT-EE

We have the following result for problem (12).

Theorem 1. (Existence-uniqueness) Let r : R3 7→ R≥0 be
strictly convex and superlinear function. Then the minimizing
tuple (ρopt,uopt) for problem (12) exists and is unique.

Proof. Since r is strictly convex, so L in (14) viewed as
function of γ̇ ∈ R3, is strictly convex composed with an
affine map. Therefore, L is strictly convex in γ̇.

We next show that L in (14) is also superlinear in γ̇ ∈ R3.
To see this, notice that

lim
∥γ̇∥2→∞

L

∥γ̇∥2
= lim

∥γ̇∥2→∞

r((γ̇ −α⊙ f)⊘ β)

∥γ̇∥2

= lim
∥z∥2→∞

r(z)

∥α⊙ f + β ⊙ z∥2
. (16)

Using triangle inequality: ∥α⊙ f +β⊙ z∥2 ≤ ∥α⊙ f∥2 +
∥β ⊙ z∥2 ≤ ∥α⊙ f∥2 + ∥β∥∞∥z∥2, and hence

r(z)

∥α⊙ f + β ⊙ z∥2
≥ r(z)

∥α⊙ f∥2 + ∥β∥∞∥z∥2
.

Taking the limit ∥z∥2 → ∞ to both sides of above, we obtain

(16) ≥ lim
∥z∥2→∞

r(z)

∥α⊙ f∥2 + ∥β∥∞∥z∥2

= lim
∥z∥2→∞

r(z)/∥z∥2
∥β∥∞

= +∞,

since r is superlinear, and ∥α ⊙ f∥2, ∥β∥∞ > 0. Thus,
(16) itself equals to +∞, thereby proving that L is indeed
superlinear.

The Lagrangian (14) being both strictly convex and su-
perlinear in γ̇, is a weak Tonelli Lagrangian [3, p. 118],
[22, Ch. 6.2], and therefore guarantees [22, Thm. 1.4.2] the
existence and uniqueness of the minimizing pair (ρopt,uopt)
for problem (12). ■

Remark 1. The cost c in (13) being derived from a weak
Tonelli Lagrangian (14), as shown in the proof above, equiv-
alently guarantees the existence-uniqueness of the solution
for the static OMT-EE (15).

C. The Case q(·) ≡ 0, r = 1
2∥ · ∥

2
2

A specific instance of (12) that is of practical interest is
minimum energy angular velocity steering, i.e., the case

q(·) ≡ 0, r =
1

2
∥ · ∥22.

Then, (12) resembles the Benamou-Brenier dynamic OMT
(7) except that the controlled Liouville PDE (12b) has a prior
bilinear drift which (7b) does not have.

Theorem 2. (Necessary conditions of optimality for mini-
mum energy steering of angular velocity PDF without pro-
cess noise) The optimal tuple (ρopt,uopt) solving problem
(12) with q(·) ≡ 0, r = 1

2∥ · ∥
2
2, satisfies the following first

order necessary conditions of optimality:

∂ϕ

∂t
+

1

2
∥β ⊙∇xuϕ∥22 + ⟨∇xuϕ,α⊙ f(xu)⟩ = 0, (17a)

∂ρopt

∂t
+∇xu ·

(
ρopt

(
α⊙f(xu) + β2 ⊙∇xuϕ

))
=0,

(17b)
ρopt(xu, t = 0) = ρ0, ρopt(xu, t = T ) = ρT , (17c)
uopt = β ⊙∇xuϕ, (17d)

where β2 denotes the vector element-wise square.

Proof. Consider problem (12) with q ≡ 0, r(·) = 1
2∥ · ∥22,

and its associated Lagrangian

L (ρu,u, ϕ) :=

∫ T

0

∫
R3

{
1

2
∥u(xu, t)∥22 ρu(xu, t) + ϕ(xu, t)(

∂ρu

∂t
+∇xu · (ρu (α⊙ f(xu) + β ⊙ u))

)}
dxudt (18)

where the Lagrange multiplier ϕ ∈ C1
(
R3; [0, T ]

)
. Let P0T

denote the family of PDF-valued curves over [0, T ] satisfying
(17c). We perform unconstrained minimization of (18) over
P0T × U .

Performing integration-by-parts of the right-hand-side of
(18) and assuming the limits for ∥xu∥2 → ∞ are zero, we
arrive at the unconstrained minimization of∫ T

0

∫
R3

(
1

2
∥u(xu, t)∥22 −

∂ϕ

∂t
− ⟨∇xuϕ,α⊙ f(xu)

+β ⊙ u⟩) ρu(xu, t) dxu dt. (19)

Pointwise minimization of the integrand in (19) w.r.t. u for
each fixed PDF-valued curve in P0T , gives

uopt = diag (β)∇xuϕ,

which is the same as (17d). Substituting the above expression
for optimal control back in (19), and equating the resulting
expression to zero, we obtain the dynamic programming
equation∫ T

0

∫
R3

(
−∂ϕ
∂t

− 1

2
∥β ⊙∇xuϕ∥22 − ⟨∇xuϕ,α⊙ f(xu)⟩

)
ρu(xu, t) dxu dt = 0. (20)

For (20) to hold for any feasible ρu(xu, t), the expression
within the parentheses must vanish, which gives us the HJB
PDE (17a).

Since ρopt must satisfy the feasibility conditions (12b)-
(12c), hence substituting (17d) therein yields (17b)-
(17c). ■

Remark 2. Equations (17d) and (17a) generalize the con-
dition (8b) in classical dynamic OMT. The solution of the
coupled system of HJB PDE (17a) and Liouville PDE (17b)
with boundary conditions (17c) yields the optimal PDF ρopt.
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IV. UNCONTROLLED PDF EVOLUTION

Before delving into the approximate numerical solution for
the optimally controlled PDF evolution, we briefly remark on
the uncontrolled PDF evolution. Specifically, we show next
that the bilinear structure of the drift vector field in Eulerian
dynamics (2b) allows analytic handle on the uncontrolled
PDFs, which will come in handy later for comparing the
optimally controlled versus uncontrolled evolution of the
stochastic states.

In the absence of control, we denote the uncontrolled state
vector as x, and the uncontrolled joint state PDF as ρ (i.e.,
without the u superscripts). In that case, (12b) specializes to
the uncontrolled Liouville PDE

∂ρ

∂t
+∇x · (ρα⊙ f(x)) = 0. (21)

Since the drift in (2b) is divergence free, we can explicitly
solve (21) with known initial condition ρ(·, t = 0) = ρ0(·),
as

ρ(x, t) = ρ0 (x0 (x, t)) (22)

where x0 (x, t) is the inverse flow map associated with the
unforced initial value problem:

ẋ = α⊙ f(x), x(t = 0) = x0. (23)

We point out that the characterization (22) can be recovered
from the method-of-characteristics solution of (21); see e.g.,
[19, Sec. II-B and II-C.1].

For an asymmetric rigid body, we have J1 ̸= J2 ̸= J3,
and the corresponding flow map x (x0, t) for (23) is given
component-wise by (see e.g., [23, equation (37.10)])

x1 = x10 cn (ωpt+ λ1, λ2) , (24a)
x2 = x20 sn (ωpt+ λ1, λ2) , (24b)
x3 = x30 dn (ωpt+ λ1, λ2) , (24c)

where cn (elliptic cosine), sn (elliptic sine), dn (delta
amplitude) are the Jacobi elliptic functions, and the variables
xi0∀i ∈ J3K, ωp, λ1, λ2 depend only on x0. In Sec. VII,
we numerically compute the inverse flow map x0 (x, t)
associated with (24).

For an axisymmetric rigid body, we have J1 = J2 ̸= J3,
and the inverse flow map x0 (x, t) for (23) can be computed
component-wise analytically as

γ :=
x2 − x1 tan (α2x3t)

x1 + x2 tan (α2x3t)
, (25a)

x10 =

(
x21 + x22
1 + γ2

) 1
2

, (25b)

x20 = γ x10 = γ

(
x21 + x22
1 + γ2

) 1
2

, (25c)

x30 = x3, (25d)

and thus (22) takes the form

ρ(x1, x2, x3, t) = ρ0

((
x21 + x22
1 + γ2

) 1
2

, γ

(
x21 + x22
1 + γ2

) 1
2

, x3

)
.

We eschew the computation details for brevity.

V. MINUMUM ENERGY STOCHASTIC OMT-EE

To facilitate the numerical solution of the dynamic OMT-
EE discussed in Sec. III-C, i.e., the solution of (12) with q ≡
0, r(·) ≡ 1

2∥ · ∥
2
2, we perturb the sample path dynamics (2b)

with an additive process noise resulting in the Itô stochastic
differential equation (SDE):

dxu =(α⊙ f(xu) + β ⊙ u) dt+
√
2δ dw, δ > 0. (26)

The w in (26) denotes standard Wiener process in R3. Due to
process noise, the first order Liouville PDE (12b) is replaced
by the second order Fokker-Planck-Kolmogorov (FPK) PDE

∂ρu

∂t
+∇xu · (ρu (α⊙ f(xu) + β ⊙ u))=δ∆xuρu, (27)

which has both advection and diffusion. The corresponding
necessary conditions of optimality are then transformed as
follows.

Theorem 3. (Necessary conditions of optimality for mini-
mum energy steering of angular velocity PDF with process
noise) Let δ > 0. The optimal tuple (ρopt,uopt) solving
problem (12) with q(·) ≡ 0, r = 1

2∥ · ∥22, and (12b)
replaced by (27), satisfies the following first order necessary
conditions of optimality:

∂ϕ

∂t
+

1

2
∥β ⊙∇xuϕ∥22 + ⟨∇xuϕ,α⊙ f(xu)⟩

= −δ∆xuϕ, (28a)
∂ρopt

∂t
+∇xu ·

(
ρopt

(
α⊙f(xu) + β2 ⊙∇xuϕ

))
= δ∆xuρopt, (28b)

ρopt(xu, t = 0) = ρ0, ρopt(xu, t = T ) = ρT , (28c)
uopt = β ⊙∇xuϕ, (28d)

where β2 denotes the vector element-wise square.

Proof. The proof follows the same line of arguments, mutatis
mutandis, as in the proof of Theorem 2. See also [24, proof
of Prop. 1], [25, p. 275]. ■

Remark 3. In the limit δ ↓ 0, the conditions (28) reduce to
the conditions (17).

Remark 4. The stochastic dynamic version of the OMT
as considered in Theorem 3, is known in the literature as
the generalized Schrödinger bridge problem. This class of
problems originated in the works of Erwin Scrödinger [26]–
[28] and as such predates both the mathematical theory
of stochastic processes and feedback control. The qualifier
“generalized” refers to the presence of prior (in our case, bi-
linear) drift which was not considered in Schrödinger’s orig-
inal investigations [26], [27]. In recent years, Schrödinger
bridge problems and their connections to OMT have come
to prominence in both control [24], [25], [29]–[33] and
machine learning [34]–[36] communities.

While (28) is valid for arbitrary (not necessarily small)
δ > 0, we are particularly interested in numerically solving
(28) for small δ since then, its solution is guaranteed [37],
[38] to approximate the solution of (17). Indeed, the second
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order terms in (28) contribute toward smoother numerical
solutions, i.e., behave as stochastic dynamic regularization in
a computational sense. This idea of leveraging the stochastic
version of the OMT for approximate numerical solution of
the corresponding deterministic dynamic OMT has appeared,
e.g., in [39].

VI. SOLVING THE CONDITIONS OF OPTIMALITY
USING A MODIFIED PHYSICS INFORMED NEURAL

NETWORK

We propose leveraging recent advances in neural network-
based computational frameworks to numerically solve (28)
for small δ > 0. Specifically, we propose training a modi-
fied physics informed neural network (PINN) [40], [41] to
numerically solve (28a)-(28c), which is a system of two
second order coupled PDEs together with the endpoint PDF
boundary conditions.

We point out here that one can alternatively use the Hopf-
Cole [42], [43] a.k.a. Fleming’s logarithmic transform [44]
to rewrite the system (28a)-(28c) into a system of forward-
backward Kolmogorov PDEs with the unknowns being the
so-called “Schrödinger factors”. Unlike (28), these PDEs are
coupled via nonlinear boundary conditions; see e.g., [24, Sec.
II, III.B], [25, Sec. 5]. However, the numerical solution of
the resulting system is then contingent on the availability
of two initial value problem solvers: one for the forward
Kolmogorov PDE and another for the backward Komogorov
PDE. While specialized solvers may be designed for certain
classes of prior nonlinear drifts [24], [45], in general one
resorts to particle-based methods such as Monte Carlo and
Feynman-Kac solvers. Directly solving the conditions of
optimality by adapting PINNs, as pursued here, offers an
alternative computational method.

As in [46], our training of PINN in this work involves
minimizing a sum of four losses: two losses encoding the
equation errors in (28a)-(28b), and the other two encoding the
boundary condition errors in (28c). However, different from
[46], we penalize the boundary condition losses using the
discrete version of the Sinkhorn divergence (11) computed
using contractive Sinkhorn iterations [47].

Because the Sinkhorn iterations involve a sequence of dif-
ferentiable linear operations, it is Pytorch auto-differentiable
to support backpropagation. Compared to the computation-
ally demanding task of differentiating through a large lin-
ear program involving the Wasserstein losses, the Sinkhorn
losses for the endpoint boundary conditions offer approxi-
mate solutions with far less computational cost allowing us
to train the PINN on nontrivial problems.

The proposed architecture of the PINN is shown in Fig. 1.
In our problem, ξ := (ω1, ω2, ω3, t) comprises the features
given to the PINN, and the PINN output η := (ϕ, ρopt). We
parameterize the output of the fully connected feed-forward
network via θ ∈ RD, i.e.,

η(ξ) ≈ NSchrödinger Bridge(ξ;θ), (29)

where NSchrödinger Bridge(·;θ) denotes the neural network ap-
proximant parameterized by θ, and D is the dimension of

the parameter space (i.e., the total number of to-be-trained
weight, bias and scaling parameters for the network).

The overall loss function for the network denoted as
LNSchrödinger Bridge , consists of the sum of the equation error
losses and the losses associated with the boundary conditions.
Specifically, let Lϕ be the mean squared error (MSE) loss
term for the HJB PDE (28a), and let Lρopt be the MSE
loss term for the FPK PDE (28b). For (28c), we consider
Sinkhorn regularized losses Lρ0

and LρT
. Then,

LNSchrödinger Bridge :=Lϕ + Lρopt + Lρ0
+ LρT

, (30)

where each summand loss term in (30) is evaluated on a set
of n collocation points {ξi}ni=1 in the domain of the feature
space Ω := X × [0, T ] for some X ⊂ R3, i.e., {ξi}ni=1 ⊂ Ω.

We train the PINN with a Pytorch backend to compute the
optimal training parameter

θ∗ := argmin
θ∈RD

LNSchrödinger Bridge({ξi}ni=1;θ). (31)

In the next Section, we detail the simulation setup and report
the numerical results.

VII. NUMERICAL SIMULATIONS

We consider the stochastic dynamics (26) with δ = 0.1.
The vector field f : R3 7→ R3 is given in (3). For the
parameter vectors in (4), we consider J1 = 0.45, J2 = 0.50,
and J3 = 0.55.

The control objective is to steer the prescribed joint PDF
of the initial condition x(t = 0) ∼ ρ0 = N (m0,Σ0) to the
prescribed joint PDF of the terminal condition x(t = T ) ∼
ρT = N (mT ,ΣT ) over t ∈ [0, T ], subject to (26), while
minimizing (12a) with q(·) ≡ 0, r = 1

2∥ · ∥22. Here, we fix
the final time T = 4 s, and

m0 = (2, 2, 2)⊤, mT = (0, 0, 0)⊤, Σ0 = ΣT = 0.5I3.

Due to the prior nonlinear drift, the optimally controlled
transient joint state PDFs are expected to be non-Gaussian
even when the endpoint joint state PDFs are Gaussian.

For training the NSchrödinger Bridge, we use a network with 3
hidden layers with 70 neurons in each layer. The activation
functions are chosen to be tanh(·). The input-output structure
of the network is as explained in Sec. VI.

We fix the state-time collocation domain Ω = X×[0, T ] =
[−5, 5]3×[0, 4]. We trained the PINN for 80,000 epochs with
the Adam optimizer [48] and with a learning rate 10−3. We
used n = 100, 000 pseudorandom samples (using Hammer-
sley distribution) between the endpoint boundary conditions
at t = 0 and t = T for the training. Additionally, to
satisfy compute constraints, we uniformly randomly sampled
35,000 samples every 40,000 epochs. For computing the
Sinkhorn losses at the endpoint boundary conditions, we use
the entropic regularization parameter (see (11)) ε = 0.1.

Fig. 2 depicts fifty optimally controlled state sample paths
for this simulation. These sample paths are obtained via
closed-loop simulation with the optimal control policy uopt

resulting from the training of the PINN.
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…

Losses

Fig. 1: The architecture of the PINN with ξ := (ω1, ω2, ω3, t) as the input features. The PINN output η comprises of the value function
and the optimally controlled PDF, i.e., η := (ϕ, ρopt).

Fig. 2: Fifty optimally controlled closed-loop state sample paths
ωopt
i (t), i ∈ J3K, for the simulation reported in Sec. VII.

Fig. 3 shows the snaphsots of the univariate marginal PDFs
under optimal control and the same without control, for the
aforesaid numerical simulation. Following Sec. IV, comput-
ing the uncontrolled PDFs for the deterministic dynamics
(i.e., δ = 0) requires inverting (24). We used the method-
of-characteristics [19] to solve the corresponding unforced
Liouville PDE, thereby obtaining the uncontrolled joint PDF
snapshots. The marginals ρunci , i ∈ J3K, in Fig. 3 were
obtained by numerically integrating these uncontrolled joints.

VIII. CONCLUSIONS

We considered the optimal mass transport problem over
the Euler equation governing the angular velocity dynamics.
We studied both the deterministic and stochastic dynamic
variants of this problem and explained their connections with
the theory of classical optimal mass transport. We detailed
the existence-uniqueness of solution as well as the neces-
sary conditions of optimality. We provided an illustrative
numerical example to demonstrate the solution of the optimal
control synthesis using a modified physics informed neural
network. The modification we propose involves differenti-
ating through the Sinkhorn losses minimizing the boundary
condition errors in the endpoint joint PDFs.
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