
Closing the Loop on Runtime Monitors with Fallback-Safe MPC

Rohan Sinha, Edward Schmerling, and Marco Pavone

Abstract— When we rely on deep-learned models for robotic
perception, we must recognize that these models may behave
unreliably on inputs dissimilar from the training data, compro-
mising the closed-loop system’s safety. This raises fundamental
questions on how we can assess confidence in perception systems
and to what extent we can take safety-preserving actions when
external environmental changes degrade our perception model’s
performance. Therefore, we present a framework to certify
the safety of a perception-enabled system deployed in novel
contexts. To do so, we leverage robust model predictive control
(MPC) to control the system using the perception estimates
while maintaining the feasibility of a safety-preserving fallback
plan that does not rely on the perception system. In addition,
we calibrate a runtime monitor using recently proposed
conformal prediction techniques to certifiably detect when the
perception system degrades beyond the tolerance of the MPC
controller, resulting in an end-to-end safety assurance. We show
that this control framework and calibration technique allows
us to certify the system’s safety with orders of magnitudes
fewer samples than required to retrain the perception network
when we deploy in a novel context on a photo-realistic
aircraft taxiing simulator. Furthermore, we illustrate the
safety-preserving behavior of the MPC on simulated examples
of a quadrotor. We open-source our simulation platform
and provide videos of our results at our project page:
https://tinyurl.com/fallback-safe-mpc.

I. INTRODUCTION
Autonomous robotic systems increasingly rely on

machine learning (ML)-based components to make sense
of their environment. In particular, deep-learned perception
models have become indispensable to extract task-relevant
information from high-dimensional sensor streams (e.g.,
images, pointclouds). However, it is well known that modern
ML systems can behave erratically and unreliably on data
that is dissimilar from the training data — inputs commonly
termed out-of-distribution (OOD) [1]–[3]. During deployment,
ML-enabled robots inevitably encounter OOD inputs
corresponding to edge cases and rare, anomalous scenarios [1],
[4], which pose a significant safety risk to ML-enabled robots.

Therefore, we examine vision-based control settings in this
work, where we rely on a deep neural network (DNN) to ex-
tract task-relevant information from a high-dimensional image
observation. When the DNN fails, access to this information
is lost, so that we can no longer estimate the full state. For ex-
ample, the drone in Fig. 1 solely relies on a DNN for obstacle
detection and subsequent avoidance, and the aircraft in Fig. 2
utilizes a DNN to estimate its runway position for tracking
control. Because failures caused by OOD data are difficult
to anticipate, recent years have seen much progress on algo-
rithms that monitor the performance of ML-enabled compo-
nents at runtime [5]–[7]. These OOD detection algorithms aim
to detect inference errors so that downstream safety-preserving

The authors are with the Dept. of Aeronautics and Astronautics
at Stanford University, Stanford, CA. {rhnsinha, schmrlng,
pavone}@stanford.edu. The NASA University Leadership initiative
(grant #80NSSC20M0163) provided funds to assist the authors with their
research, but this article solely reflects the opinions and conclusions of its
authors and not any NASA entity.

Fig. 1. Overview of the proposed approach: A drone delivery service
uses camera-vision to navigate around a city. However, the ML perception
system behaves unreliably on out-of-distribution (OOD) inputs. Therefore,
we construct a runtime monitor to trigger a fallback strategy when the
perception system is unreliable. To do so, we calibrate heuristic OOD
detection scores to decide when to land the drone. To operate this fallback
safely, we must ensure that it does not drop down into trees or roads.
Therefore, we minimally modify the nominal system operation to ensure
we fallback into a safe recovery set using a robust MPC.

interventions may be adopted. However, few works attempt
to integrate such monitors into a perception and control stack.
Instead, existing work typically assumes that estimation errors
will always satisfy nominal, in-distribution bounds or that
there exists a safe fallback that can always be triggered under
loss of sensing. To derive end-to-end certificates on the safety
of the monitor-in-the-loop system, two key challenges must
be addressed: (1) an OOD detector must be calibrated to
detect violations of assumptions underpinning the nominal
control design and (2) the control strategy itself must be aware
of the limitations of a safety-preserving intervention. This
latter challenge is of particular importance for safety, since,
as illustrated in Fig. 1, naively executing a specified fallback
(e.g., landing the drone) can introduce additional hazards.

To address these challenges, we present the Fallback-Safe
Model Predictive Control (MPC) framework which, while
maintaining safety, aims to derive maximum utility from
the DNN component necessary for nominal task success.
Our framework satisfies three key desiderata associated with
the above challenges, namely: (1) we ensure the safety of
the fallback strategy, i.e., we do not assume the existence
of a “catch-all” fallback, (2) we explicitly quantify DNN
and runtime monitor performance to inform control without
resorting to conservative worst-case assumptions and (3) in
the context of robust control, we account for the existence
of errors, i.e., DNN failures, of arbitrary severity through
the development of a runtime monitor.

In our framework, we first specify an error bound on the
quality of state estimates produced by the ML perception
system when it operates in-distribution (i.e., in nominal condi-

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6527

Fig. 2. 20 simulated trajectories of an autonomous aircraft taxiing down a runway. A DNN – trained on data collected in morning, clear-sky weather
– estimates the cross-track error (CTE) and the heading error (HE) used by a tracking controller from vision. At the start of the trajectories, the weather
is clear. At t=20s, it starts raining. Leftmost plot: x is the down-track position along the runway, and y is the CTE. Middle and Rightmost plots: Errors
of the DNN perception cross-track error and heading error estimate. In both cases, the estimate is initially of sufficient quality. However, when it starts
raining, estimates immediately degrade (OOD time steps highlighted in red), causing the robot to fail (running off the runway) for all trajectories.

tions). In nominal conditions, we robustly control the system
with respect to the specified perception error bound. Then,
we calibrate an OOD detection heuristic to trigger a safety-
preserving fallback strategy when the chosen perception error
bound is violated, resulting in an end-to-end guarantee that the
system will satisfy state and input constraints with high prob-
ability, regardless of DNN failure. This calibration procedure
does require examples of such OOD cases, though notably the
strength of our guarantees scales with calibration dataset size,
irrespective of DNN complexity (as would, e.g., retraining on
OOD cases). As such, the setting we consider captures the
practice of running a few pre-deployment trials when we want
to deploy a pre-trained system in a new context, which we
know differs from the training distribution. For example, we
can anticipate shifted conditions and run some calibration tri-
als when we deploy an autonomous aircraft trained on images
of American runways in Europe or when we deploy an image
classifier trained on ImageNet as a part of our autonomy stack.

Related Work: Most similar to our approach are several
works that consider triggering a fallback controller by thresh-
olding an OOD detection algorithm [8]–[10]. These works use
fallback strategies that are domain-specific or naively assumed
to always be safe, like a hand-off to a human, and some ap-
proaches assume the ML models function perfectly nominally
[8]. Moreover, to detect OOD conditions, they either rely on
additional DNNs for OOD detection [8], [10], or use approx-
imate techniques to quantify uncertainty [9], and thus do not
make strong guarantees of system safety. Similar to existing
work on fault-tolerant control that maintains feasibility of
passive-backup [11], abort-safe [12], or contingency plans
[13] under actuation or sensor failure using MPC, we modify
the nominal operation to ensure the existence of a safety pre-
serving fallback. However, in many such works, it is assumed
that faults are perfectly detected and that these systems func-
tion perfectly nominally. It is challenging to detect failures in
ML-based systems and, as illustrated in Fig. 2, errors are nom-
inally tolerable, but nonzero. Therefore, we jointly design the
control stack and runtime monitor to account for such errors.

Our approach takes inspiration from safety filters as defined
in [14]. Such methods minimally modify a black-box policy’s
actions to ensure invariance of a safe subset of the state
space when the black-box policy would take actions to leave
that set. Many such algorithms have been proposed in recent
years, for example by using robust MPC [15], control barrier
functions (CBFs) [16] and Hamilton-Jacobi reachability
analysis [17], [18]. However, our method differs from such
approaches in two important ways: First, existing safety
filters operate under assumptions of perfect state knowledge,

or that an estimate of known accuracy is always available
[19]. However, ML-enabled components for perception are
necessary to complete the control task in many applications.
When these components fail, it becomes impossible to
estimate the full state (e.g., see Fig. 1, Fig. 2). We account for
these discrete information modes by defining recovery sets to
fallback into, which formalize the intuition that e.g., the drone
in Fig. 1 does not need an obstacle detector to avoid mid-air
collisions when it is landed in a field. Secondly, existing
safety filters take a zero-confidence view in black-box learned
components: They continually ensure the safe operation of
the system by aligning an ML-enabled controller’s output
with those of a backup policy that never uses ML models.
Instead, we recognize that ML-enabled components are
generally reliable, but leverage OOD detection to transition
to a fallback strategy in rare failure modes.

Robust control from imperfect measurements, output-
feedback, classically relies on state estimators that
persistently satisfy known error bounds, constructed using
known measurement models with assumptions on system
observability. In particular, output-feedback MPC controllers
robustly satisfy state and input constraints for all time (e.g.,
see [20]–[25]). Typically, these methods robustly control
the state estimate dynamics using a robust MPC algorithm,
tightening constraints to account for the estimation error [20],
[21], [23], [25]. However, we cannot model high-dimensional
measurements like images from first principles, and as a result,
we must rely on neural networks to extract scene information.
Some recent approaches propose to learn the error behavior
of a vision system as a function of the state and robustly
plan while taking these error bounds into account [26]–[28],
for example, by making smoothness assumptions on the
vision’s error behavior [26]. These algorithms require the
environment to remain fixed (i.e., that the mapping from state
to image is constant). However, oftentimes external changes
to the environment, like the changing weather in Fig. 2,
result in OOD inputs that cause arbitrarily poor perception
errors. We rely on the ideas of output-feedback MPC to
nominally control the robot, but maintain feasibility to a
backup plan in case the perception unexpectedly degrades.

To make an end-to-end guarantee, we leverage recent results
in conformal prediction to learn how to rely on a heuristic
OOD detector (see [29] for an overview). Conformal methods
are attractive in this setting because they produce strong guar-
antees on the correctness of predictions, are highly sample effi-
cient, and the guarantees are distribution-free – that is, they do
not depend on assumptions on the data-generating distribution
[29], [30]. However, existing conformal prediction methods do

6528

not make high-probability guarantees jointly over predictions
along a dynamical system’s trajectory, where inputs are highly
correlated over time. While some recent work has aimed to
move beyond the exchangeable data setting [31], [32], or
makes sequentially valid predictions across exchangeable sam-
ples [33], these methods cannot be applied sequentially over
correlated observations within a trajectory. Instead, we adapt
an existing algorithm, [34], to yield a guarantee jointly over
the repeated evaluations of the predictor within a trajectory.

We include a more extensive review of existing work,
further experimental details, and all proofs of our theoretical
results in an extended version, available at [35].

Contributions: In brief, our contributions are that
1) First, we introduce the notion of the safe recovery set,

a safe subset of the state space that is invariant under a
recovery policy that does not rely on the ML-enabled
perception or a full state estimate.

2) Second, we develop a framework to synthesize a
fallback controller and modify the nominal operation
of the robot to ensure the existence of a safe fallback
strategy for all time by planning into a recovery set.

3) Third, we propose a conformal prediction algorithm
that calibrates the OOD detector, resulting in a
runtime-monitor-in-the-loop framework for which we
make an end-to-end safety guarantee.

II. PROBLEM FORMULATION
We consider discrete time dynamical systems

xt+1 =f(xt,ut,wt),

(wt,zt)∼pρ(wt,zt|w0:t−1,z0:t−1,x0:t),
(1)

where xt ∈Rn is the system state, ut ∈Rm is the control
input, wt∈W⊆Rd is a disturbance signal contained in the
known compact set W for all time steps t≥0, and zt∈Ro
is a high dimensional observation consisting of an image
and more conventional measurements (e.g., GPS), such that
o�n. The joint distribution pρ from which disturbances and
observations are sampled during an episode depends on an
unobserved environment variable ρ∼Pρ, drawn once at the
start of each episode from an environment distribution Pρ.

Our goal is to ensure the system satisfies state and input
constraints over trajectories of finite duration.

Definition 1 (Safety): Under a risk tolerance δ∈ [0,1] and
time limit tlim∈N≥0, the system (1) is safe if

Prob(xt∈X , ut∈U , ∀t∈{0,1,...,tlim})≥1−δ, (2)
where X ⊆Rn, U⊆Rm are state and input constraint sets.
Our setting differs from classic output feedback because
the high-dimensional zt cannot be used directly for control.
Instead, we consider the setting where a black-box perception
system generates an estimate of the state at each time step.

Assumption 1 (Perception): At each time step t ≥ 0
a perception system produces an estimate of the state
x̂t :=perception(z0:t).
Crucially, the environment distribution Pρ may differ from the
distribution that generated the training data for the learned per-
ception components, which means that we will eventually en-
counter OOD observations on which the learned components
behave erratically. When the learned systems fail, only a re-
stricted amount of information (e.g., an IMU measurement) re-
mains accurate for control. Therefore, we do not make any as-
sumptions on the quality of the learned system outputs, but we
assume that the remaining information is accurate for all time.

Assumption 2 (Fallback Measurement): At each time step
t≥0 we can access a fallback measurement yt∈Rr such that

yt=g(xt), ∀t≥0. (3)

We assume g is known and call Y := {y=g(x) : x∈X}
the fallback output set. We restrict ourselves to the setting
where the system {f ,g} is not observable; perception is
nominally necessary.

Since the estimates x̂t may become corrupted unexpectedly,
we need to monitor the system’s performance online with an
intent of detecting conditions that degrade its performance. To
do so, we assume we can compute a heuristic OOD detector.

Assumption 3 (OOD/Anomaly Detection): At each time
step, an OOD/anomaly detection algorithm outputs a scalar
anomaly signal at= anomaly(z0:t)∈R as an indication of
the quality of the state estimate x̂t (greater values indicate
that the detector has lower confidence in the quality of x̂t).
Note that we make no assumptions on the quality of the
OOD detector in Assumption 3: Our approach will certify the
safety of the closed-loop system regardless of the correlations
between at and the perception error et :=xt−x̂t. However,
the conservativeness of our algorithm will depend on the qual-
ity of the heuristic at. Furthermore, this framework readily
allows us to incorporate algorithms that provably guarantee
detection of perception errors by letting at be an indicator on
whether the perception system is reliable. This would only
simplify the control design procedure we develop in §III-§IV.

III. FALLBACK-SAFE MPC
We propose to control the system in state-feedback based

on the estimates x̂t when the system operates in-distribution
and use the anomaly signal at to monitor when x̂t becomes
unreliable. Then, if the monitor triggers, we transition to a
fallback policy π :Y→U that only relies on the remaining
reliable information, i.e., the fallback measurement yt.

To avoid that a naively executed fallback creates additional
hazards, we make two contributions in this section. First, we
introduce the notions of recovery policies and recovery sets,
safe subsets of the state space that we can make invariant
without full state knowledge. Second, we develop a method
to synthesize a fallback controller and modify the nominal
operation of the robot to ensure the fallback strategy is
feasible for all time.

A. Recovery Policies and Recovery Sets
Definition 1 requires that a safe fallback satisfies state and

input constraints for all time, despite the fact that certain
elements of the state are no longer observable. Our insight
is that while this is not achievable in general, we can often
identify subsets of the state space in which the robot is
always safe under some πR :Y→U .

Definition 2 (Recovery Set, Policy): A set XR ⊆ X is a
safe recovery set under a given recovery policy πR :Y→U if
it is a robust positive invariant (RPI) set under the recovery
policy. That is, if

f
(
x,πR(g(x)),w

)
∈XR ∀w∈W, ∀x∈XR. (4)

For example, consider the quadrotor in Fig. 1. The set of all
states with altitude z=0 and velocity v=0 forms a recovery
set under the recovery policy πR(yt) :=0. Definition 2 differs
from typical definitions in output-feedback problems, because
output-feedback control designs typically focus on 1) main-
taining the system output yt of a partially observed system

6529

within a set of constraints despite the unobserved dynamics,
or 2) respecting constraints on the true state by bounding the
estimation error of an observer. In contrast, existence of a re-
covery policy allows us to persistently satisfy state constraints,
even when estimation errors are unbounded on OOD inputs.

B. Planning With Fallbacks
We now develop the Fallback-Safe MPC framework. First,

to ensure that we satisfy safety constraints nominally, we
need to define what it means for the perception system to be
reliable in-distribution. Therefore, we choose a parametric
compact state uncertainty set as a bound on the quality of
the perception system in nominal conditions.

Definition 3 (Reliability): Let the perception error set
Eθ⊆Rn be a symmetric compact set so that 0∈Eθ. We say
an estimate is reliable when

et :=xt−x̂t∈Eθ. (5)

We say the perception system is unreliable, or experiences
a perception fault, when et 6∈Eθ.
We explicitly use the subscript θ in the construction of Eθ
to emphasize that choosing which estimates we consider
reliable is a hyperparameter. In this work, we take the
perception error set as Eθ={e∈Rn :‖Ae‖∞≤α} for some
θ= (A,α) consisting of a matrix A and bound α∈R (see
§V). The hyperparameter θ introduces a trade-off between
conservativeness in nominal operation and eagerness to
trigger the fallback: Note that as Eθ increases in size, the
more state uncertainty we must handle as part of the tolerable
estimation errors in nominal conditions, increasing nominal
conservatism. If we decrease the size of Eθ, the more eager
we will be to trigger the fallback.

Then, in nominal conditions, we control the system
using the state estimates x̂t with robust MPC, minimally
modifying the nominal control objective so that there always
exists a fallback strategy that reaches a recovery set within
T +1∈N>0 time steps. To do so, we optimize two policy
sequences: 1) a sequence of parametric fallback policies
uFt:t+T |t⊂PF ⊂{π :Rr→Rm}, which may only rely on the
fallback measurement yt and 2) a nominal policy sequence
ut:t+T |t⊂PN ⊆{π :X →U} within a state-feedback policy
class PN , which we assume respects input constraints. In
addition, we assume that for any u ∈ U and x̂ ∈ X , there
exists a π∈PN such that u=π(x). We can trivially satisfy
this assumption by, e.g., optimizing over open-loop nominal
input sequences. Note that the estimator dynamics satisfy

x̂t+1 =f(x̂t+et,ut,wt)−et+1. (6)

We bound the evolution of the state estimates over time for
a given fallback policy sequence as follows:

Lemma 1 (Reachable Sets): Assume we apply a fixed
fallback policy sequence uF0:T ⊂ PF from timestep t to
t+T . Define the k−step reachable sets of the estimate x̂t
recursively as R̂0(x̂t,u

F
0:T) :={x̂t} and

R̂k+1(x̂t,u
F
0:T) :=

{
f(x̂+e,uFk (g(x̂+e)),w)

−e′ :
x̂∈R̂k(x̂t,uF0:T),

w∈W,
e,e′∈Eθ

}
for k∈{0,...,T}. Furthermore, let

Rk(x̂t,u
F
0:T) :=R̂k(x̂t,u

F
0:T)⊕Eθ (7)

be the k−step reachable set of the true state xt. If et:t+T+1⊂
Eθ, then it holds that x̂t+k ∈ R̂k(x̂t,u

F
0:T) ⊆Rk(x̂t,u

F
0:T)

and xt+k ∈ Rk(x̂t, u
F
0:T) for all k ∈ {0, ... , T + 1}.

Moreover, it holds that Rk(x̂t+1,u
F
1:T) ⊆ Rk+1(x̂t,u

F
0:T)

for k∈{0,...,T}.
To maintain feasibility of the fallback policy despite

estimation errors and disturbances, we solve the following
finite time robust optimal control problem online:

minimize
uFt:t+T |t⊂PF ,
ut:t+T |t⊂PN

C(x̂t,ut:t+T |t,u
F
t:t+T |t)

subject to Rk(x̂t,u
F
t:t+T |t)⊆X ∀k∈{0,...,T},

uFt+k|t(g(Rk(x̂t,u
F
t:t+T |t)))⊂U ∀k∈{0,...,T},

RT+1(x̂t,u
F
t:t+T |t)⊆XR,

ut|t(x̂t)=uFt|t(yt).
(8)

The MPC problem (8) robustly optimizes the trajectory of
the robot along a T+1 step prediction horizon and maintains
both a nominal policy sequence ut:t+T |t, and a fallback
tube R0:t+T+1(x̂t,u

F
t:t+T |t). Let {u?t+k|t,u

F,?
t+k|t}

T
k=0 be an

optimal collection of policy sequences for (8) at time step t.
Executing the fallback policy sequence uF,?t:t+T |t guarantees
that we reach a given recovery set XR within T + 1 time
steps for any disturbance sequence wt:t+T |t and perception
errors et:t+T+1|t⊂Eθ. Because we ensure that the first inputs
of both the nominal and the fallback policies are identical,
i.e., that uFt|t(yt)=ut|t(x̂t), we can guarantee that we can
recover the system to XR if we detect a fault at t+ 1 by
applying the current fallback policy sequence uF,?t+1:t+T |t.

We assume the recovery set is invariant with respect to
the estimator dynamics (6) in nominal conditions.

Assumption 4: We are given a recovery policy πR :Y→U
associated with a nonempty recovery set XR under the
estimate dynamics (6) in nominal conditions, so that
R1(x̂,πR)⊆XR for all x̂∈XR.
Assumption 4 follows the classic assumption in the robust
MPC literature—access to a terminal controller associated
with a nonempty RPI set—that enables guarantees on
persistent feasibility and constraint satisfaction [20], [21],
[25], [36], except that we explicitly enforce that the recovery
policy only uses fallback measurements yt. We note that
Assumption 4 can be satisfied by designing a recovery policy
(e.g., LQR or human-insight as in the drone landing example)
and verifying whether a chosen set satisfies Definition 2
offline. Alternatively, we can compute XR using existing
algorithms for robust invariant set computation (e.g., see
[36]), since under πR and the assumption that e ∈ Eθ, (6)
is an autonomous system subject to bounded disturbances.

We choose the objective C in problem (8) to minimally
interfere with the nominal operation of the robot by optimizing
a disturbance free nominal trajectory as is common in the
MPC literature (e.g., see [14], [20], [25], [36]). An alternative
is to minimally modify the outputs of another controller [16],
[19]. We develop our framework in generic terms in this
section, so we provide a tractable reformulation of (8) for
linear-quadratic systems with a fixed feedback gain based
on classic tube MPC algorithms [20] in [35]. For nonlinear
systems, it is common to approximate a solution via sampling
(e.g., [37], [38]), so we also provide an approximate formula-
tion using the PMPC algorithm [37] in [35], which combines
uncertainty sampling with sequential convex programming.

6530

Algorithm 1: Fallback-Safe MPC
Input: Initial state estimate x̂0 such that

(8) is feasible, runtime monitor w :R→{0,1}.
1 tfail←∞
2 for t∈{0,1,...tlim} do
3 Observe x̂t, yt, at
4 if w(at)=1 then
5 tfail←min{tfail, t}
6 end
7 Apply control input

ut=

u?t|t(x̂t) if tfail>t

uF,?t|tfail−1(yt) if tfail≤ t<tfail+T
πR(yt) if t≥ tfail+T

8 end

Here we assume access to a runtime monitor w to decide
when we trigger the fallback; we construct a monitor with
provable guarantees in §IV.

Definition 4 (Runtime Monitor): A runtime monitor
w : R→{0,1} is a function of the anomaly signal, where
w(at)=1 implies the monitor raises an alarm.
We solve (8) online at each time step t and apply the first
optimal control input in a receding horizon fashion. If
the runtime monitor triggers, indicating a detection of a
perception fault (i.e., xt−x̂t 6∈Et), we apply the previously
computed fallback policy sequence until we reach the
recovery set. Then, we revert to the known recovery policy.
We summarize this procedure in Algorithm 1.

Let tfail be the timestep at which the runtime monitor w
triggers the fallback. As long as the runtime monitor does not
miss a detection of a perception fault, i.e., that xt−x̂t∈Eθ
for all 0≤ t<tfail, the MPC in (8) is recursively feasible. As
a result, Algorithm 1 persistently satisfies state and input con-
straints in the presence of disturbances and estimation errors.

Theorem 1 (Fallback Safety): Consider the closed-loop
system formed by the dynamics (1) and the Fallback-Safe
MPC (Algorithm 1). Suppose that πR ∈ PF , and that
xt− x̂t ∈Eθ for all 0≤ t< tfail. Then, if the Fallback-Safe
MPC problem (8) is feasible at t=0 and w(a0)=0, we have
that 1) the MPC problem (8) is feasible for all t<tfail and that
2) the closed-loop system satisfies xt∈X , ut∈U for all t≥0.

We emphasize that Theorem 1 simply recovers a standard
recursive feasibility argument for the MPC scheme in the
specific case in which a perception failure never occurs.

IV. CALIBRATING
OOD DETECTORS WITH CONFORMAL INFERENCE

In the previous section, we developed the Fallback-Safe
MPC framework, which guarantees safety under the condition
that the perception is reliable at all time steps before we
trigger the fallback. We could trivially ensure this is the case
by setting w(a)=1 ∀a∈R\a0, so that the fallback always
triggers, no matter the quality of the perception. However,
a trivial runtime monitor will unnecessarily disrupt nominal
operations, so it is not useful. Therefore, in this section,
we aim to construct a runtime monitor w :R→{0,1} that
provably triggers with high probability when a perception fault
occurs, but does not raise too many false alarms in practice.
To do so, we adapt the conformal prediction algorithm in
[34], which can only certify a prediction on a single test

point, to retain a safety assurance when we sequentially query
the runtime monitor online with the anomaly scores a0,a1,...
generated during a test trajectory. Our procedure requires
some ground truth data to calibrate the runtime monitor. As
a shorthand, we use the notation τ to denote a trajectory
with ground truth information, τ :=({xi,ui,x̂i,ai})tlimi=0∈T .

Assumption 5 (Calibration Data): We have access to a
trajectory dataset D={τi}Ni=0

iid∼P sampled independently and
identically distributed (iid) from a trajectory distribution P .

The trajectory distribution P is a result of 1) the environ-
ment distribution Pρ and 2) the controller we use to collect
data 1 . Therefore, in general, when we deploy the Fallback-
Safe MPC policy (Alg. 1), the resulting trajectory distribution
P ′ may differ from P . The results we present in this section
capture both the scenario where the environment distribution
changes between data collection and deployment or where the
data collection policy differs from the Fallback-Safe MPC.

Theorem 1 requires that we trigger the fallback at any time
step before or when a perception fault occurs. Therefore, we
must compare the step that the runtime monitor triggers an
alarm, tfail, with the first step that a perception fault occurs.

Definition 5 (Stopping Time): Let tstop :T →N≥0 be the
stopping time of a trajectory τ , defined as

tstop(τ) := inf
t≥0
{t : (xt−x̂t 6∈Eθ) ∨ (t= tlim)}, (9)

where tlim is the episode time limit in Definition 1.
To guarantee safety as in Definition 1, our insight is that
it is sufficient to guarantee that our runtime monitor raises
an alarm at the first time step for which e 6∈ Eθ with high
probability. Therefore, we can circumvent the need for a
complex sequential analysis that accounts for the correlations
between the runtime monitor’s hypothesis tests over time.
Instead, we can directly apply methods developed for i.i.d.
samples to the dataset of stopping time observables Dstop :=
{(xitstop(τi), x̂

i
tstop(τi)

, aitstop(τi))}
N
i=0, since the stopping

time observables are i.i.d. because D is i.i.d. We outline
this approach in Algorithm 2, which adapts the conformal
prediction algorithm in [34] to our sequential setting.

Lemma 2 (Conformal Calibration): Set a risk tolerance
δ ∈ (0,1], and sample a deployment trajectory τ ∼ P ′ by
executing the Fallback-Safe MPC (Algorithm 1) using
Algorithm 2 as runtime monitor w. Then, the false negative
rate of Algorithm 2 is bounded as

Prob(False Negative) :=

Prob
(
w(at)=0 ∀t∈ [0,tstop(τ)] | etstop(τ) 6∈Eθ

)
≤

δ+
1

|A|+1
+TV(Ptstop|fault,P

′
tstop|fault),

(10)

where Ptstop|fault is the distribution of (x, x̂, a) at tstop
conditioned on the event that etstop 6∈ Eθ under a trajectory
sampled from P , and P ′tstop|fault is the distribution of (x,x̂,a)

at tstop under a trajectory sampled from P ′, conditioned on
both etstop 6∈ Eθ and tfail≥ tstop. Here, TV (·,·) denotes the
total variation distance.

Lemma 2 shows that Algorithm 2 will issue a timely
warning with probability at least δ + 1/(|A|+ 1) without
relying on properties of P (i.e., our guarantee is distribution-
free), but that this guarantee degrades when a distribution shift
occurs between the calibration runs in D and the test trial.

1For notational simplicity and without loss of generality, we consider
x0 as a deterministic function of the environment variable ρ in this section.

6531

Algorithm 2: Modification of [34] for Conformal
Calibration of Runtime Monitor

Input: Dataset D={τi}Ni=0
iid∼P ,

perception system, OOD detector,
state uncertainty tolerance Eθ, risk tolerance
δ∈(0,1], new test anomaly score atest∈R.

Output: 0 or 1
1 Compute the dataset

of stopping states, estimates, and anomaly scores as

Dstop :={(xitstop(τi), x̂
i
tstop(τi)

, aitstop(τi))}
N
i=0.

2 Compute the set

A :={a : x−x̂ 6∈Eθ, (x,x̂,a)∈Dstop}.
3 Sample U uniformly from

U∼{0,1,...,|{a∈A :a=atest}|}
4 Compute

q=
|{a∈A :a>atest}|+U+1

|A|+1

5 if q≤1−δ then return 1 else return 0

Next, we leverage Lemma 2 to analyze the end-to-end
safety of the system.

Theorem 2 (End-to-end Guarantee): Consider the closed-
loop system formed by the dynamics (1) and the Fallback
Safe MPC (Algorithm 1), using Algorithm 2 as the runtime
monitor w. Then, if the MPC problem (8) is feasible at t=0
and w(a0)=0, it holds that

Prob(xt∈X , ut∈U ∀t∈ [0,tlim])≥

1−δ− 1

|A|+1
−TV(Ptstop|fault,P

′
tstop|fault).

Theorem 2 gives a general end-to-end guarantee on the
safety of the Fallback-Safe MPC framework when we use
Algorithm 2 as a runtime monitor. It is not possible to
tightly bound the TV distance term in (10) without further
assumptions. However, if 1) we use the Fallback-Safe MPC
for data collection and 2) the environment distribution is
fixed between data collection and deployment, then we can
certify that we satisfy Definition 1:

Corollary 1: Suppose the environment distribution Pρ is
fixed between collecting D and the test trajectory, and that we
collect the dataset D by running the Fallback-Safe MPC and a
runtime monitor using privileged information, that is, w(·) :=
1−1{et ∈ Eθ}. Then, it holds that Ptstop|fault = P ′tstop|fault.
Therefore, 1) we satisfy state and input constraints during data
collection with probability 1, and 2) we satisfy Definition 1
with probability at least 1−δ− 1

|A|+1 during a test trajectory.
Corollary 1 informs the following two-step procedure

to yield a provable end-to-end safety guarantee on a fixed
environment distribution Pρ. We use this procedure in
§V. First, collect D using the Fallback-Safe MPC with a
ground-truth supervisor w(·) :=1−1{et∈Eθ}, then deploy
the Fallback-Safe MPC with Algorithm 2 as the runtime
monitor. We can then satisfy Definition 1 for a risk tolerance
δ by evaluating Algorithm 2 using δ′ = δ − 1/(|A| + 1).
As long as we have sufficient data on failure modes, that
is, when (1/δ)−1≤ |A|, our runtime monitor will exhibit
nontrivial behavior (i.e., that w does not always output 1).

V. SIMULATIONS
In this section, we first simulate a simplified example of

a quadrotor to illustrate the behavior of the Fallback-Safe
MPC framework. We then demonstrate the efficacy of the
conformal algorithm, and the resulting end-to-end safety
guarantee, in the photo-realistic X-Plane 11 aircraft simulator.
For a detailed description of our simulations, including e.g.,
the specific cost functions used, we refer the reader to [35].

Planar Quadrotor: We consider a planar version of the
quadrotor dynamics for simplicity, with 2D pose p=[x,y,θ]T ,
state x = [pT ,ṗT]T , and front and rear input thrust inputs
u = [uf ,ur]

T [39]. We linearize the the dynamics around
x̄ = 0 and ū = mg

2 [1, 1]T , and discretize the dynamics
using Euler’s method with a time step of dt = 0.15s. The
drone is subject to bounded wind disturbances, so that the
drone may drift with ≈0.33m/s in the x−direction without
actuation. In our example, the drone has internal sensors to
estimate its orientation and velocity, so that y=[θ,ṗT]T . The
drone estimates its xy−position using a hypothetical vision
sensor. To do so, we nominally simulate that the perception
system’s xy−position estimate is within a 10cm-wide box
around the true position, and perfectly outputs y. When the
vision system fails, we randomly sample the xy−position
within the range (−10,10). In these simulations we give
the Fallback-Safe MPC a perfect runtime monitor, so that
w(·)=1−1{et∈E}. We implement the Fallback-Safe MPC
using the tube MPC formulation in [35].

First, in Fig. 3, we simulate a scenario where the drone
attempts a vision-based landing at the origin. Here, the state
constraint is not to crash into the ground (y≤0). We set the
recovery policy to πR(y) :=ε+Ky, where K stabilizes the
orientation θ around 0 and ε is a small offset to continually
fly upward, choosing the recovery set to allow the drone to
fly away starting from a sufficient altitude. We verify using
reachability analysis [36, Sec. 10.2] that under the recovery
policy, the recovery set is invariant under both the estimator
dynamics (6) in nominal conditions and the state dynamics
(1), so the Fallback-Safe MPC is recursively feasible by
Theorem 1. We compare the Fallback-Safe MPC with a naive
tube MPC that optimizes only a single trajectory and assumes
perception is always reliable (i.e., it assumes perception errors
always satisfy (5)) As shown in Fig. 3, the Fallback-Safe MPC
plans fallback trajectories that safely abort the landing and fly
away into open space. In contrast, the naive tube MPC does

Fig. 3. Trajectories of the planar quadrotor in the xy-plane. The realized
quadrotor trajectories are in black, and the icons show the orientation of the
quadrotor at every k=7 time steps. The safe recovery set is highlighted in
green. The blue-dashed line indicate the state constraint. Left: In red, we plot
the predicted reachable sets of the fallback strategy and in blue, we plot the
predicted nominal trajectories, both at k=7 step intervals. Right: In blue, we
plot the predicted reachable tubes of the Naive Tube MPC at k step intervals.

6532

not reason about perception faults, and crashes badly when the
perception fails starting at t=10dt. Therefore, this example
demonstrates the necessity of planning with a fallback.

Secondly, we simulate a scenario where the drone must
navigate towards an in-air xy goal location while remaining
within a box in the xy-plane. Here, when the drone loses
its vision, it is no longer possible to avoid the boundaries of
X using only the fallback measurement y. Instead, as in the
example in Fig. 1, our recovery set is to land the drone. To
model the drone as having landed, we modify the dynamics
to freeze the state for all remaining time once the state x
enters the y≤0 region with low velocity. However, in this
example, the drone must cross an unsafe ground region, such
as the busy road in the example in Fig. 1, specified as the
region of states with |x|<1.5m, y≤0. Therefore, we take
the recovery set XR as all landed states with |x| ≥ 1.5m.
Clearly, XR is a safe recovery set for πR(y)=0, under the
true dynamics (1).2 For the drone to cross the road, we need
to maintain recoverability with respect to either of the two
disjoint recovery sets. We compare our approach with another
naive baseline, which we label the Unsafe Fallback MPC, that
executes a nominal MPC policy and naively tries to compute
a fallback trajectory post-hoc, using the previous estimate
before the fault occurred. As shown in Fig. 4, our Fallback-
Safe MPC first maintains feasibility of the fallback with
respect to the rightmost recovery set, slows down, and then
switches to the leftmost recovery set once a feasible trajectory
crossing the road is found. In contrast, the Unsafe Fallback
MPC does not maintain the feasibility of the fallback by
modifying nominal operations, and is forced to crash land in
the unsafe ground region (rather than throwing an infeasibility
error, our implementation relies on slack variables). Therefore,
this example illustrates that it is necessary to modify nominal
operations to maintain the feasibility of a fallback.

X-Plane Aircraft Simulator: Finally, we evaluate the
conformal prediction Algorithm 2 and the end-to-end safety

2 We note that in this example, XR is not RPI under the state estimate
dynamics (6) in nominal conditions, because the estimation error bound
allows x̂ to leave the XR even if x∈XR. To retain the safety guarantee,
we also trigger the fallback if (8) is infeasible, a simple fix first proposed
in [40]. We did not observe recursive feasibility issues in the simulations.

Fig. 4. Trajectories of the planar quadrotor in the xy-plane. The disjoint
safe recovery sets are highlighted in green, the unsafe ground region (e.g.,
a road), |x|<1, y≤0, is in gray. Both the top and bottom figure follow
the layout in Fig. 3 (left).

Fig. 5. Simulated environments in the X-Plane 11 simulator. Top left:
Morning, no weather. Top right: Night, no weather. Bottom left: Afternoon,
snowing. Bottom right: Afternoon, raining.

guarantee of our framework using the photo-realistic X-Plane
11 simulator. We simulate an autonomous aircraft taxiing
down a runway with constant reference velocity, while using
a DNN to estimate its heading error (HE) θ and center-line
distance (cross-track error (CTE)) y from an outboard camera
feed. Here, internal encoders always correctly output the
velocity v, so that x=[y,θ,v] and y=v. The aircraft must
not leave the runway, given by the state constraint |y|≤6m.

We train the DNN perception model on 4×104 labeled
images collected only in morning, clear sky weather, but we
deploy the system in a context Pρ where it may experience a
variety of weather conditions (depicted in Fig. 5). We param-
eterize the environment ρ := (weather type,tstart,severity)
as a triplet indicating the weather type, severity level, and
starting time from which the visibility starts to degrade, so
that under the environment distribution Pρ, we randomly
sample an environment that starts with clear-skies and high
visibility, but may cause OOD errors during an episode. As
shown in Fig. 2, heavy weather degrades the perception
significantly. The fallback is to brake the aircraft to a stop,
where the stopped states are invariant2 under πR(y) :=0. As
in [8], we train an autoencoder alongside the DNN on the
morning, clear sky data and use the reconstruction error as
the anomaly signal at. We define the perception error set
to include at most 7 degree HE and 1.3m CTE.

We record 100 training trajectories using the Fallback-Safe
MPC (8) and a ground-truth supervisor w(·)=1−1{et∈E}
to calibrate Algorithm 2, and then evaluate on 900 test
trajectories with environments sampled i.i.d. from Pρ and
using Algorithms 1-2. This ensures we satisfy Definition 1
by Corollary 1. We compute the empirical false positive and
false negative rate when we evaluate Algorithm 2 with various
values of δ∈ [0,1] in Fig. 6 (left). As Fig. 6 (left) shows, the
FNR of Algorithm 2 satisfies Lemma 2’s δ′=δ+1/(|A|+1)
bound for all values of δ, validating our guarantees. Moreover,
the false positive rate, the rate at which we incorrectly trigger
the fallback, is near 0 for risk tolerances as small as δ′=5%.
This shows that algorithm 2 is highly sample efficient and
not overly conservative, since it hardly issues incorrect
alarms with orders of magnitudes fewer samples than we
needed to train the perception. In Fig. 6 (right), we control
the system with an end-to-end safety guarantee of δ′ = .1
using our framework and observe no constraint violations.
For the trajectories in which we triggered the fallback, Fig. 6
(right) shows that over 80% would have led to an aircraft
failure had we not interfered. This shows that our framework

6533

Fig. 6. Left: FNR Bound indicates the δ+1/(|A|+1) bound on the
FNR from Lemma 2. The FPR indicates the empirical rate at which we
trigger the fallback without a perception fault ever occurring. The FNR
indicates the empirical rate at which a perception fault occurs before we
trigger the fallback. Right: closed-loop trajectories of the aircraft are in
black. For trajectories in which the fallback triggered, we plot a red dot
where the aircraft stopped, and plot in red the trajectory that would have
occurred had we not triggered the fallback.

is effective at avoiding robot failures, and experiences few
unnecessary interruptions with an effective OOD detection
heuristic like the autoencoder reconstruction loss.

VI. CONCLUSION

In this work, we have formalized the design of safety-
preserving fallback strategies under perception failures by
ensuring the feasibility of a fallback plan with respect to a
safe recovery set, a subset of the state space that we can make
invariant without full knowledge of the state. Similar to the
terminal invariant in a standard MPC, we have demonstrated
that recovery sets can readily be identified offline. Our
simulations also showed that the calibration procedure, which
enables strong safety assurances, is particularly amenable
to limited data collection pre-deployment. Still, we observe
that our runtime monitor occasionally triggers the fallback
when the closed-loop system would not have violated safety
constraints because we rely on an imperfect heuristic for
OOD detection. Therefore, future work should investigate
how to tune runtime monitors to only detect downstream
failures more effectively. In addition, future work may
explore more complex statistical analysis on the runtime
monitor since our framework currently does not permit a
switch back to nominal operations after a fault occurs.

REFERENCES

[1] R. Sinha, A. Sharma, S. Banerjee et al., “A system-level view on
out-of-distribution data in robotics,” arXiv preprint arXiv:2212.14020,
2022, Available at https://arxiv.org/abs/2212.14020.

[2] R. Geirhos, J.-H. Jacobsen, C. Michaelis et al., “Shortcut learning
in deep neural networks,” Nature Machine Intelligence, Nov 2020.

[3] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in
CVPR, 2011.

[4] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Towards verified artificial in-
telligence,” 2020. [Online]. Available: https://arxiv.org/abs/1606.08514

[5] Q. M. Rahman, P. Corke, and F. Dayoub, “Run-time monitoring of
machine learning for robotic perception: A survey of emerging trends,”
IEEE Access, 2021.

[6] M. Salehi, H. Mirzaei, D. Hendrycks et al., “A unified survey
on anomaly, novelty, open-set, and out-of-distribution detection:
Solutions and future challenges,” 2021. [Online]. Available:
https://arxiv.org/abs/2110.14051

[7] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen et al., “A unifying review
of deep and shallow anomaly detection,” Proceedings of the IEEE, 2021.

[8] C. Richter and N. Roy, “Safe visual navigation via deep learning and
novelty detection,” in RSS, July 2017.

[9] A. Filos, P. Tigas, R. McAllister et al., “Can autonomous vehicles
identify, recover from, and adapt to distribution shifts?” in ICML, ser.
ICML’20, 2020.

[10] R. McAllister, G. Kahn, J. Clune et al., “Robustness to out-of-
distribution inputs via task-aware generative uncertainty,” in ICRA,
2019.

[11] T. Guffanti and S. D’Amico, “Passively-safe and robust multi-agent
optimal control with application to distributed space systems,” 2023.
[Online]. Available: https://arxiv.org/abs/2209.02096

[12] D. A. Marsillach, S. Di Cairano, and A. Weiss, “Abort-safe spacecraft
rendezvous in case of partial thrust failure,” in CDC, 2020.

[13] J. P. Alsterda, M. Brown, and J. C. Gerdes, “Contingency model
predictive control for automated vehicles,” in ACC, 2019.

[14] L. Brunke, M. Greeff, A. W. Hall et al., “Safe learning in robotics:
From learning-based control to safe reinforcement learning,” An. Rev.
CRAS, 2022.

[15] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety
certification for learning-based control,” in CDC, 2018.

[16] R. Cheng, G. Orosz, R. M. Murray et al., “End-to-end safe reinforce-
ment learning through barrier functions for safety-critical continuous
control tasks,” in AAAI, ser. AAAI’19/IAAI’19/EAAI’19, 2019.

[17] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger et al., “A general safety
framework for learning-based control in uncertain robotic systems,”
IEEE TAC, 2019.

[18] K. Leung, E. Schmerling, M. Zhang et al., “On infusing
reachability-based safety assurance within planning frameworks for
human-robot vehicle interactions,” IJRR, 2020.

[19] L. Brunke, S. Zhou, and A. P. Schoellig, “Robust predictive output-
feedback safety filter for uncertain nonlinear control systems,” in
CDC, 2022.

[20] D. Mayne, S. Raković, R. Findeisen et al., “Robust output feedback
model predictive control of constrained linear systems,” Automatica,
2006.

[21] J. Lorenzetti and M. Pavone, “A simple and efficient tube-based robust
output feedback model predictive control scheme,” in ECC, 2020.

[22] C. Løvaas, M. M. Seron, and G. C. Goodwin, “Robust output-feedback
model predictive control for systems with unstructured uncertainty,”
Automatica, 2008.

[23] J. Köhler, M. A. Müller, and F. Allgöwer, “Robust output feedback
model predictive control using online estimation bounds,” 2021.
[Online]. Available: https://arxiv.org/abs/2105.03427

[24] R. Findeisen, L. Imsland, F. Allgower et al., “State and output
feedback nonlinear model predictive control: An overview,” EJC, 2003.

[25] P. J. Goulart and E. C. Kerrigan, “A method for robust receding horizon
output feedback control of constrained systems,” in Proceedings of
the 45th IEEE Conference on Decision and Control, 2006.

[26] S. Dean, N. Matni, B. Recht et al., “Robust guarantees for
perception-based control,” 2019.

[27] G. Chou, N. Ozay, and D. Berenson, “Safe output feedback motion
planning frommages viaearned perception modules andontraction
theory,” in Algorithmic Foundations of Robotics XV, 2023.

[28] B. Ichter, B. Landry, E. Schmerling et al., “Perception-aware motion
planning via multiobjective search on gpus,” in Robotics Research,
2020.

[29] A. N. Angelopoulos and S. Bates, “A gentle introduction to conformal
prediction and distribution-free uncertainty quantification,” 2022.

[30] V. N. Balasubramanian, S.-S. Ho, and V. Vovk, Conformal Prediction
for Reliable Machine Learning. Morgan Kaufmann, 2014.

[31] R. F. Barber, E. J. Candes, A. Ramdas et al., “Conformal prediction
beyond exchangeability,” 2023.

[32] R. J. Tibshirani, R. Foygel Barber, E. Candes et al., “Conformal
prediction under covariate shift,” in NeurIPS, H. Wallach,
H. Larochelle, A. Beygelzimer et al., Eds., 2019.

[33] R. Luo, R. Sinha, A. Hindy et al., “Online distribution shift detection
via recency prediction,” arXiv preprint arXiv:2211.09916, 2023.

[34] R. Luo, S. Zhao, J. Kuck et al., “Sample-efficient safety assurances
using conformal prediction,” in Algorithmic Foundations of Robotics
XV, 2023.

[35] R. Sinha, E. Schmerling, and M. Pavone, “Closing the loop on runtime
monitors with Fallback-Safe MPC,” arXiv preprint arXiv:2309.08603,
2023, Available at https://arxiv.org/abs/2309.08603.

[36] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems, 2017.

[37] R. Dyro, J. Harrison, A. Sharma et al., “Particle mpc for uncertain
and learning-based control,” in IROS, 2021.

[38] T. Lew, L. Janson, R. Bonalli et al., “A simple and efficient
sampling-based algorithm for reachability analysis,” in L4DC, 2022.

[39] R. Tedrake, “Underactuated robotics: Algorithms for walking,
running, swimming, flying, and manipulation,” 2021, Available at
http://underactuated.mit.edu.

[40] T. Koller, F. Berkenkamp, M. Turchetta et al., “Learning-based model
predictive control for safe exploration,” in CDC, 2018.

6534

