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Abstract— This paper presents a model-free motion control
technique for constrained mechanical systems. First, we exploit
the inherent positive-definiteness of an unconstrained system’s
dynamics matrix to achieve local input-to-state stability (LISS)
with respect to state estimation errors. Then, we impose
holonomic constraints on our system and show that we can
preserve the (LISS) property if the derivatives of the constraint
equations are known. This suggests applications to robotics
(particularly for robot manipulators) where the plant’s dy-
namics may change abruptly or where interactions with the
environment are difficult to model.

I. INTRODUCTION

There is a large and longstanding body of literature
pertaining to the control of mechanical systems. One of
the most widespread control methods for such systems is
feedback linearization (FBL), also referred to as computed-
torque control within the robotics community. This method
has seen broad application since the 1980s [1], which is
easy to understand, given that it allows one to apply well-
understood linear control design techniques to otherwise
highly coupled, nonlinear systems.

An unfortunate drawback of feedback linearization is its
high sensitivity to modeling errors. Many extensions to FBL
exist to mitigate this issue [2]. Most either incorporate other
classical nonlinear control design techniques [1] or they
add some adaptive component [3]. Typically, these adaptive
methods rely on partial knowledge of the underlying system
or an assumption regarding its structure.

One can also take a more generalized approach to the
control task via machine learning techniques. Chiefly, re-
inforcement learning (RL) has been used to design highly
capable nonlinear controllers for systems which are other-
wise difficult to even model [4]. Still, many such methods
assume some knowledge of the underlying system [1] [5].
For example, researchers often train neural networks to
capture unknown dynamics [6] [7]. However, the controllers
these methods produce can have difficulty adapting to fast
changes in their environment.

An alternative approach, referred to as model-free control
[8], attempts to avoid learning any global model or policy [5].
Also known as “intelligent” PID control [9], this technique
repeatedly learns and then discards a local model of the
system [10], only using these models to determine an in-
stantaneous control input [11]. We propose such an approach
in this work. First we establish the stability of a model-
free controller for a multidimensional unconstrained system.
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Then, we extend our results to constrained systems in which
the constraints are described by holonomic functions.

II. NOTATION

R denotes the set of real numbers while R>0 (resp. R≥0)
denotes the set of positive (resp. nonnegative) real numbers.
For f : Rn → Rm and for x0 ∈ Rn, ∂f

∂x |x0
denotes the

partial derivative of f , with respect to x evaluated at x0. If
the point of evaluation is clear we just write ∂f

∂x .
A function f : Rn → Rm is uniformly bounded from

above (resp. below) if there exists a constant c ∈ R such
that fi(x) ≤ c (resp. fi(x) ≥ c) for each i ∈ {1, 2, . . . ,m}
and all x ∈ Rn. We say that a function f : R≥0 → R≥0

is of class K if f(0) = 0 and f is continuous and strictly
increasing. We say that a function g : R≥0 ×R≥0 → R≥0 is
of class KL if for fixed s, g(r, s) is a class K function with
respect to r and for fixed r, g(r, s) is a strictly decreasing
function of s and g(r, s) → 0 as s→ 0.

Given a set D ⊂ Rn, we denote the closure of D by
D. We denote the orthogonal complement of D, given by{
y ∈ Rn : xT y = 0 ∀ x ∈ D

}
, with D⊥.

In denotes the n × n identity matrix. If its dimension is
clear from context we write I . Im(A) denotes the image of
A ∈ Rm×n, while Ker(A) denotes its kernel and rank(A)
denotes its rank. For a symmetric matrix A, the expression
λmax(A) (resp. λmin(A)) denotes its maximum (resp. mini-
mum) eigenvalue.

For A ∈ Rm×n we use PA : Rn → Rn to denote the
orthogonal projection operator mapping Rn onto Im(A). If
A has full column rank, the identity PA = A(ATA)−1AT

holds. We use P⊥
A to denote the orthogonal projection onto

the complement of Im(A) such that PA +P⊥
A = I .

III. SYSTEM MODEL

We restrict our focus to Euler-Lagrange (EL) systems
which are defined by:

M(q)q̈ + C(q, q̇)q̇ + V (q) = u, (1)

where q ∈ Rn and q̇ ∈ Rn denote generalized positions
and velocities respectively, M : Rn → Rn×n denotes the
dynamics matrix, C : R2n → Rn×n denotes the Coriolis
and centrifugal force matrix, V : Rn → Rn denotes the
force from gravity, and u ∈ Rn is a vector of control inputs.

Further still, we only consider EL systems for which M
is uniformly bounded from above and below, i.e:

σI ⪯M(q) ⪯ σI ∀ q ∈ Rn, (2)

and σ, σ > 0. This is not an especially restrictive assumption,
as it covers a large subclass of serial robot manipulators [12].
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We assume that we have access to instantaneous position
measurements, but that other components of the state are
unknown. If we place (1) in an affine form and define our
output to be the position, q, our system satisfies:

q̈ = α(q, q̇) + β(q)u, h(q, q̇) = q, (3)

where α = −M−1 (Cq̇ + V ) and β =M−1.

IV. MODEL-FREE CONTROLLER DESIGN

A. Controller Derivation

Our goal is to design a dynamic controller that stabilizes
(3). For now, assume that we have full knowledge of the
state such that we can select a linear control law:

k(q, q̇) = −kpq − kdq̇, kp, kd > 0, (4)

which stabilizes the double integrator q̈ = u. For brevity,
we’ll refer to this control law as k, dropping its arguments.

Define the error term eq̈ = q̈ − k and dynamic controller
u̇ = −γeq̈ for γ > 0. Substituting these into (3) gives us:

q̈ = k + eq̈

u̇ = −γeq̈.
(5)

Note that β(q) is nonsingular for all q ∈ Rn, so we can
define the continuous function u∗ = β−1(k − α) satisfying:

k = α+ βu∗. (6)

With u∗, define an input error term eu = u− u∗ for which
eq̈ = βeu holds. Then (5) is equivalent to:

q̈ = k + βeu

ėu = −γβeu − u̇∗.
(7)

We will use (7) to show stability for our proposed controller.

B. Stability Analysis

Definition 4.1: [13] Given a dynamical system ẋ = f(x),
the origin is said be stable if for each ε > 0, there exists
δ(ε) > 0 such that every solution x(t) satisfies:

∥x(0)∥ < δ(ε) =⇒ ∥x(t)∥ < ε, ∀t ≥ 0. (8)

The origin is locally asymptotically stable if it is stable and
δ can be chosen such that:

∥x(0)∥ < δ =⇒ lim
t→∞

x(t) = 0. (9)

Given a controlled dynamical system ẋ = f(x, u(x)),
where u is a parameterized control policy, we say that the ori-
gin is semi-globally asymptotically stable if for any compact
set D that contains the origin, it is always possible to choose
controller parameters that render the origin asymptotically
stable for any initial condition x(0) ∈ D.

In order to make our analysis more concise, define:

z
def
=

[
q
q̇

]
, z1

def
= q, z2

def
= q̇, (10)

such that ż2 = −kpz1 − kdz2 + eq̈ holds. In what follows,
we will switch between z and (q, q̇) where convenient.

Given that q̈ = k is a stable linear system, there exists
a quadratic Lyapunov function Vz(z) = zTPz such that
V̇z(z) = −zTQz where P and Q are constant positive-
definite matrices [14]. We can use P to define a candidate
Lyapunov function for (7):

V (z, eu) = zTPz +
1

2
eTu eu, (11)

with derivative:

V̇ (z, eu) =

[
z2

k + βeu

]T
Pz + zTP

[
z2

k + βeu

]
+ eTu ėu

= −zTQz + 2zTP

[
0
βeu

]
− eTuβ

−1βu̇∗ − γeTuβeu.

(12)
Differentiating (6) yields:

−kpq̇ − kdq̈ =
∂α

∂q
q̇ +

∂α

∂q̇
q̈ + β̇u∗ + βu̇∗, (13)

which we can rearrange and combine with (3) to get:

βu̇∗ = −kpq̇ − kdq̈ −
∂α

∂q
q̇ − ∂α

∂q̇
q̈ − β̇u∗

= −kpq̇ − kd (−kpq − kdq̇ + βeu)

− ∂α

∂q
q̇ − ∂α

∂q̇
(−kpq − kdq̇ + βeu)− β̃q̇.

(14)

Observe that in the preceding line, we replace β̇u∗ with β̃q̇,
highlighting the linear dependence of β̇ on q̇.

Every term in (14) is the product of a continuous function
and a term q, q̇, or eu. As such, the magnitude of each term
can be bounded by a linear function of the state in (7) if we
restrict that state to a compact set.

Theorem 4.1: The origin of the system in (7) is semi-
globally asymptotically stable.

Proof: Define V (z, eu) as in (11). For any compact
set D ⊂ R3n containing the origin, it is possible to define a
bounded and open sublevel set of V :

Dc =
{
(z, eu) ∈ R3n : V (z, eu) < c

}
, (15)

where c > 0, such that D ⊂ Dc.
We can see from (14) that z and eu enter βu̇∗ linearly.

Thus, there must exist a constant d̃ > 0 for which:

∥βu̇∗∥ ≤ d̃ (∥z∥+ ∥eu∥) , (16)

holds over D. Defining d = max
{
d̃, ∥β∥, ∥β−1∥, ∥2P∥

}
,

(2), (12), and (16) imply the following bound for V̇ (z, eu):

V̇ (z, eu) ≤ −λmin(Q)∥z∥2 + 2d2∥z∥∥eu∥

+
(
d2 − γ

σ

)
∥eu∥2.

(17)

It’s clear from the quadratic form in (17) that V̇ becomes
negative-definite for large enough γ > 0. For such γ, Dc

is rendered invariant and trajectories with initial conditions
x(0) ∈ D approach the origin asymptotically.
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C. Practical Considerations

In the previous section, we assumed full knowledge of
our system’s state. However, our output equations only
provide position information. This means that in order to
implement the controller in (5), we must estimate the first
two derivatives of q. Because derivative estimates are highly
sensitive to noise, we need to show that the stability of our
controller is robust to state estimation errors.

Definition 4.2: [13] A dynamical system ẋ = f(x, u)
is input-to-state stable (ISS) if for every initial condition
x(0) ∈ Rn and every bounded, continuous input u(t) ∈ Rm

for t ≥ 0, the solution x(t) for t ≥ 0 exists and satisfies:

∥x(t)∥ ≤ η(∥x(0)∥, t) + ξ

(
sup

0≤τ≤t
∥u(τ)∥

)
, t ≥ 0, (18)

where η(s, t) is a class KL function and ξ(s) is of class K.
A dynamical system ẋ = f(x, u) is locally input-to-state

stable (LISS) if there exists a constant r > 0 such that for
all initial conditions x(0) ∈ Rn satisfying ∥x(0)∥ ≤ r and
all admissible inputs u(t) satisfying supt≥0 ∥u(t)∥ ≤ r, (18)
holds for some η(s, t) ∈ KL and ξ(s) ∈ K.

Our model-free controller relies on the assumption that
our system can be made to evolve on a compact set. Noise
or large estimation errors have the potential to drive our
system outside any bounded set. Thus, the notion of LISS is
particularly important.

Theorem 4.2: [13] A system ẋ = f(x, u) is ISS if and
only if there exists a continuously differentiable, radially
unbounded, and positive-definite function V : Rn → R,
along with continuous functions ξ1, ξ2 ∈ K, such that for
every u ∈ Rm:

∥x∥ ≥ ξ2(∥u∥) =⇒ V̇ (x, u) ≤ −ξ1(∥x∥). (19)
Assume that we have an estimator for q̇ and q̈ which takes

q as its input and produces derivative estimates ˆ̇q and ˆ̈q with
bounded error. We can use these estimates to construct an
estimate of the acceleration error:

êq̈ = ˆ̈q + k = eq̈ + ϵ, (20)

where ϵ = ˆ̈q− q̈+kd(ˆ̇q− q̇). The expression for our dynamic
controller then becomes u̇ = −γêq̈ , yielding:

q̈ = k + βeu

ėu = −γβeu − γϵ− u̇∗.
(21)

Theorem 4.3: There exists γ > 0 rendering the system in
(21) LISS with respect to the estimation error ϵ.

Proof: Define a Lyapunov function V (z, eu) as in (11)
and with it, define an open sublevel set Dc containing the
origin. Using an argument analogous to that in the poof of
Theorem 4.1, we can derive an upper bound:

V̇ (z, eu, ϵ) ≤ −λmin(Q)∥z∥2 + d2∥z∥∥eu∥

+
(
d2 − γ

σ

)
∥eu∥2 + γ∥eu∥∥ϵ∥,

(22)

which holds for all (z, eu) ∈ Dc.

We can always choose γ large enough that the expression:

−λmin(Q)∥z∥2 + d2∥z∥∥eu∥+
(
d2 − γ

σ

)
∥eu∥2, (23)

becomes negative-definite. Since (23) is quadratic with re-
spect to (z, eu), there exists a > 0 such that we can upper
bound (23) by −a

(
∥z∥2 + ∥eu∥2

)
, letting us relax (22) to:

V̇ (z, eu, ϵ) ≤ −a
(
∥z∥2 + ∥eu∥2

)
+ γσ−1∥eu∥∥ϵ∥

≤ −a∥(z, eu)∥2 + γσ−1∥(z, eu)∥∥ϵ∥.
(24)

Next, pick 0 < θ < 1 and substitute the identity:

∥(z, eu)∥2 = (1− θ)∥(z, eu)∥2 + θ∥(z, eu)∥2, (25)

into (24) to yield:

V̇ (z, eu, ϵ) ≤ −a(1− θ)∥(z, eu)∥2 − aθ∥(z, eu)∥2

+ γσ−1∥ϵ∥ (∥(z, eu)∥) .
(26)

It follows that V̇ is negative-definite for:

∥(z, eu)∥ ≥ γ

aθσ
∥ϵ∥. (27)

Choose any r > 0 for which Br ⊂ Dc and let rϵ = aθσ
γ r.

If supt≥0 ∥ϵ(t)∥ ≤ rϵ then V̇ is negative-definite outside Br,
including the boundary of Dc. Thus, Dc is invariant and (27)
indicates that our system is ISS within Dc.

It’s worth noting that in the previous proof, there was
no restriction placed on the size of Dc. This implies that
for any bounded set D, we can always find a sublevel set
Dc containing D which can be rendered invariant for large
enough γ and small enough ϵ. However, we cannot recover
the ISS property, because for any fixed γ there is always an
error threshold beyond which Dc may lose its invariance.

V. ADDING CONSTRAINTS

A. Model Derivation

Now, let’s impose a set of m holonomic constraints on (1)
by requiring that ϕ(q) = 0 hold for some smooth function ϕ :
Rn → Rm that evaluates to zero at the origin. Assume also
that rank(∂ϕ∂q ) = m holds across Rn. Then the constrained
system satisfies:

M(q)q̈ + C(q, q̇)q̇ + V (q) =
∂ϕ

∂q

T

λ+ u

ϕ(q) = 0,

(28)

where λ ∈ Rm represents a vector of constraint forces.
Clearly, λ depends on u. We can exploit this to make the

constraints implicit in our model. First left-multiply q̈ by ∂ϕ
∂q :

∂ϕ

∂q
q̈ =

∂ϕ

∂q
M−1

(
∂ϕ

∂q

T

λ− Cq̇ − V + u

)
, (29)

then rearrange terms to yield an expression for λ:

λ =

(
∂ϕ

∂q
M−1 ∂ϕ

∂q

T
)−1

∂ϕ

∂q

(
q̈ +M−1 (Cq̇ + V − u)

)
,

(30)

where rank
(

∂ϕ
∂q

)
= m implies that

(
∂ϕ
∂qM

−1 ∂ϕ
∂q

T
)−1

exists.
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Differentiating ϕ(q) = 0 gives us:

∂ϕ

∂q
q̇ = 0 and ψ(q, q̇) +

∂ϕ

∂q
q̈ = 0, (31)

where ψi(q, q̇) = q̇T ∂2ϕi

∂q2 q̇. The second equation in (31) lets
us express λ as a function of q, q̇, and eu. Substitute (30)
and (31) back into (28) to conclude:

q̈ = M̃ (−Cq̇ − V + u) + ψ̃, (32)

where:

M̃ =

M−1 −M−1 ∂ϕ

∂q

T
(
∂ϕ

∂q
M−1 ∂ϕ

∂q

T
)−1

∂ϕ

∂q
M−1

 ,

(33)
and:

ψ̃ = −M−1 ∂ϕ

∂q

T
(
∂ϕ

∂q
M−1 ∂ϕ

∂q

T
)−1

ψ, (34)

Because M is a symmetric positive-definite matrix, it has
a unique positive-definite square root such that:

M̃ =M−1/2 P⊥
v M

−1/2, (35)

for v = M−1/2 ∂ϕ
∂q

T
. The rank of P⊥

v is (n − m) and its
eigenvectors x satisfy:

λx = P⊥
v x =

(
P⊥
v

)2
x = λ2x, (36)

so every eigenvalue of M̃ equals either zero or one. Thus,
M̃ itself must be positive semi-definite.

Every term on the right-hand side of (32) is a smooth
function of the state. We can combine the terms that don’t
include u into a single term and rewrite (32) as:

q̈ = α+ βu, (37)

where:

α = M̃ (−Cq̇ − V ) + ψ̃ and β = M̃. (38)

B. Intermediate Results

Theorem 5.1: (Taylor’s Theorem in Several Variables)[15]
Suppose f : Rn → R is smooth on an open convex set D.
If x ∈ D and x+ h ∈ D, then:

f(x+ h) = f(x) +
∂f

∂x

∣∣∣
x
h+R(x, h), (39)

where the remainder is given in Lagrange’s form by:

R(x, h) =
∑

i,j∈{1,...,n}

∂2fi
∂xi, xj

∣∣∣
x+ch

hihj
2

, (40)

for some c ∈ (0, 1). If, in addition, ∂f
∂x is bounded on D, it

also holds that:

|R(x, h)| ≤ r(x)∥h∥2, (41)

for a continuous function r : Rn → R>0.

Corollary 5.1: Given a smooth function f : Rn → R and
an open, bounded, and convex set D ⊂ Rn, there exists c > 0
such that for all points x, y ∈ D:∣∣∣∣∂f∂x ∣∣∣x(y − x)

∣∣∣∣ ≤ |f(y)− f(x)|+ c∥y − x∥2. (42)

Proof: An application of Taylor’s theorem gives us the
following identity:

∂f

∂x

∣∣∣
x
(y − x) = f(x)− f(y) +R(x, y). (43)

Taking the absolute value of both sides of this equation and
applying the triangle inequality yields:∣∣∣∣∂f∂x ∣∣∣x(y − x)

∣∣∣∣ ≤ |f(y)− f(x)|+ |R(x, y)|. (44)

Since D is bounded, its closure D is compact and ∂f
∂x must

be bounded on D. Thus, |R(x, y)| ≤ r(x)∥y − x∥2 for a
continuous function r(x), according to Theorem 5.1. Define
c = maxx∈D r(x) which satisfies the claim.

Lemma 5.1: Let D ⊂ Rn denote an open, bounded, and
convex set containing the origin and let f : D → R be a
smooth function satisfying f(q) = 0 on a nontrivial subset
U of D that includes the origin. Then, there exists c > 0
such that: ∣∣∣∣∂f∂q q

∣∣∣∣ ≤ c∥q∥2 for q ∈ U . (45)

Proof: Let y = 0 and x = q and apply Corollary 5.1.

Lemma 5.2: For M̃ as defined in (33):

Ker(M̃) = Im

(
∂ϕ

∂q

T
)
. (46)

Proof: The rank of ∂ϕ
∂q equals m so for v = ∂ϕ

∂q ,
rank(Pv) = m and rank(M̃) = (n −m). This implies that
Ker(M̃) has dimension m. It follows from (33) that for any
vectors x ∈ Rn and w ∈ Rm satisfying x = ∂ϕ

∂q

T
w:

M̃x =

(
M−1 ∂ϕ

∂q

T

−M−1 ∂ϕ

∂q

T
)
w = 0. (47)

The set of all such vectors forms an m-dimensional subspace
of Ker(M̃). This implies:

Ker(M̃) =

{
∂ϕ

∂q

T

w : w ∈ Rm

}
. (48)

Corollary 5.2: For M̃ as defined in (33):

Im(M̃) = Ker

(
∂ϕ

∂q

)
. (49)

Proof: It is a well known fact from linear algebra
that for any symmetric matrix A, the subspaces Im(A) and
Ker(A) are orthogonal complements of each other. M̃ is
symmetric, so:

Im(M̃) = Ker(M̃)⊥ = Ker

(
∂ϕ

∂q

)
, (50)

where the second equality follows from Lemma 5.2.
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Lemma 5.3: Given a compact set D ⊂ Rn that contains
the origin and M̃ as defined in (33), there exist constants
c1, c2 > 0 such that for x ∈ Im(M̃):

c1∥x∥ ≤ ∥M̃x∥ ≤ c2∥x∥. (51)
Proof: M̃(q) is defined such that its rank is constant,

and its individual elements are smooth functions of q. As
such, the eigenvalues λi(q) of M̃ are continuous functions
of q and are therefore bounded on D. Since M̃ is positive
semi-definite, its nonzero eigenvalues are positive over D.

Let c1, c2 > 0 be constants such that for every nonzero
eigenvalue λi of M̃ , c1 ≤ λi(q) ≤ c2 holds over D.
Im(M̃) is spanned by the eigenvectors of M̃ with nonzero
eigenvalues. Thus, for any x ∈ Im(M̃) the claim holds.

C. Controller Derivation

Define the positive semi-definite matrix Φ = ∂ϕ
∂q

T ∂ϕ
∂q . It

follows from Lemma 5.2 and the symmetry of β (equal to
M̃ ) that Ker(Pβ) = Im(PΦ) and Ker(PΦ) = Im(Pβ) hold.
Thus, Pβ and PΦ satisfy:

Pβ ·PΦ = PΦ ·Pβ = 0 Pβ +PΦ = I, (52)

where the second equality follows from Pβ and PΦ having
rank (n−m) and m respectively.

Because β is real and symmetric, the finite spectral the-
orem [16] implies that β = BTAB for A, a real diagonal
matrix, and B, a real orthogonal matrix. The rows of B that
correspond to the non-zero diagonal entries of A form a basis
for Im(β). Thus, if A† is the matrix obtained by inverting
every nonzero diagonal element of A, β† = BTA†B defines
the pseudoinverse of β. Note that β† satisfies Pβ = β†β.

There exists at least one input u∗ for which:

Pβ(−kpq − kdq̇ − α) = Pβ βu
∗ = βu∗. (53)

With β†, define u∗ to be the minimum norm solution of (53):

u∗ = β†(k − α), (54)

such that the acceleration error can be expressed as follows:

eq̈ = q̈ − k = q̈ − (Pβ +PΦ) (−kpq − kdq̇)

= α+ βu− Pβ α− βu∗ + kp PΦ q

= (I − Pβ)α+ βeu + kp PΦ q

= PΦ α+ βeu + kp PΦ q.

(55)

Note that the third equality in (55) makes use of (53) and
∂ϕ
∂q q̇ = 0 from (31), while the last equality uses (52).

Combining (31), (38), and (52), we find that:

PΦ α = PΦ ψ̃, (56)

where ψ is a continuous function for which each term ψi is
quadratic with respect to q̇. Thus, if we define:

η = PΦ(kpq + α), (57)

Lemma 5.1 and (56) tell us that, over any compact set D,
the norm of η is bounded by c∥z∥2 for some constant c > 0.

Re-express eq̈ as eq̈ = η + βeu and construct a dynamic
controller, u̇ = −γeq̈ − ρΦu where γ, ρ > 0. Apply this to
(37) to derive the lifted system:

q̈ = k + η + βeu

ėu = −γ (η + βeu)− ρΦu− u̇∗.
(58)

D. Stability Analysis
Our stability analysis for (58) proceeds in largely the

same fashion as before, starting with the following candidate
Lyapunov equation:

V (z, eu) = zTPzT +
1

2
eTu eu, (59)

the derivative of which is:

V̇ (z, eu) = −zTQz + 2zTP

[
0

η + βeu

]
− euu̇

∗

+ eTu Pβ (−γβeu) + eTu PΦ (−γη − ρΦeu) ,

(60)

where we’ve used (52) along with Pβ η = 0 and PΦ u
∗ = 0.

Assume there exists a compact subset D ⊂ R3n containing
the origin and define the following constant:

d1 = max
(z,eu)∈D

{kp, kd, ∥2P∥, ∥β∥} . (61)

Then we can derive the following bound for V̇ :

V̇ (z, eu) ≤ −λQ∥z∥2 + d21∥z∥∥η∥+ d21∥z∥∥Pβ eu∥
+ ∥eu∥∥u̇∗∥+ γd1∥PΦ eu∥∥η∥
− γλβ∥Pβ eu∥2 − ρλΦ∥PΦ eu∥2,

(62)

where λQ = λmin(Q), and λβ , λΦ are lower bounds on the
nonzero eigenvalues of β and Φ respectively.

Because the pseudoinverse operation is differentiable [17],
u∗ is a differentiable function of our system’s state. Using a
decomposition analogous to that performed in (14), we can
differentiate (53) and show that βu̇∗ is upper bounded by an
expression d2(∥z∥+ ∥eu∥) for some d2 > 0 when (z, eu) is
restricted to D. The same then holds for u̇∗ (for a different
constant). Also, recall from our derivation of η in (57) that
∥η∥ ≤ d3∥z∥2 holds over D for some d3 > 0.

Let d = max
{
d1, d

2
1, d2, d3

}
and further relax (62) to:

V̇ (z, eu) ≤ (d∥z∥ − λQ) ∥z∥2 + 2d∥z∥∥Pβ eu∥
+ (d− γλβ) ∥Pβ eu∥2 + (d− ρλΦ) ∥PΦ eu∥2

+ d (1 + γ∥z∥) ∥z∥∥PΦ eu∥.
(63)

Theorem 5.2: There exist γ > 0 and ρ > 0 rendering the
origin of the system in (58) locally asymptotically stable.

Proof: Define V as in (59) with derivative bound (63)
and choose D to be a sublevel set of V such that ∥z∥ < λQ
holds over D. Pick γ > 0 large enough that the expression:

1

2
(d∥z∥ − λQ) ∥z∥2 + 2d∥z∥∥Pβ eu∥ − γλβ∥Pβ eu∥2,

(64)
becomes negative-definite on D. With γ fixed, pick ρ > 0
large enough that the expression:

1

2
(d∥z∥ − λQ) ∥z∥2 + d (1 + γ∥z∥) ∥z∥∥PΦ eu∥

+ (d− ρλΦ) ∥PΦ eu∥2,
(65)
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becomes negative-definite on D. This is possible because
γ∥z∥ is bounded on D. For our chosen γ and ρ, it follows
from (63) that V̇ is negative-definite on D, proving the claim.

As in the unconstrained case, if we use a state estimator
to derive ˆ̇q and ˆ̈q then we are only able to compute an
approximation of the acceleration error êq̈ = eq̈ + ϵ, where ϵ
denotes the estimation error with respect to eq̈ . This induces
the following closed-loop dynamics:

q̈ = k + η + βeu

ėu = −γ (η + βeu + ϵ)− ρΦu− u̇∗.
(66)

Theorem 5.3: There exist γ > 0 and ρ > 0 rendering the
system in (66) LISS with respect to the estimation error ϵ.

Proof: Define V as in (59). We know from Theorem 5.2
that if ϵ = 0, there exists a bounded sublevel set D of V and
controller parameters γ and ρ such that V̇ becomes negative-
definite over D. Since V̇ is quadratic with respect to (z, eu),
we can loosen its upper bound to −a∥(z, eu)∥2 for some
a > 0. Thus, for ϵ ̸= 0, V̇ satisfies:

V̇ (z, eu, ϵ) ≤ −a∥(z, eu)∥2 + γ∥(z, eu)∥∥ϵ∥. (67)

Pick 0 < θ < 1 so that this new upper bound equals:

−a(1− θ)∥(z, eu)∥2 − aθ∥(z, eu)∥2 + γ∥(z, eu)∥∥ϵ∥. (68)

It follows that V̇ is negative-definite for:

∥(z, eu)∥ ≥ γ

aθ
∥ϵ∥. (69)

Choose any r > 0 for which Br ⊂ D and let rϵ = aθ
γ r.

If supt≥0 ∥ϵ(t)∥ ≤ rϵ, then V̇ is negative-definite on the
boundary of D. Thus, D is invariant and (69) indicates that
our system is ISS within D.

VI. EXPERIMENTAL RESULTS

We performed experimental validation using version 2.3.2
of the MuJoCo physics engine [18]. We chose a fully-
actuated triple-pendulum for our plant. Each plot in Figure 1
shows the step response of the pendulum’s pinned joint for
different controllers. The solid lines correspond to a standard
computed-torque controller using a perfect model of the
dynamics. The dotted lines show closed-loop responses under
model-free control for different values of γ.

In the right-hand plot, notice that the unmodeled torque
limits significantly impact the performance of the computed-
torque controller. The model-free controller does a much
better job of accommodating these additional dynamics.

VII. FUTURE WORK

Our immediate goal is to relax our assumption that the
constraint equations are known. This would significantly
broaden the scope of application of our controller, making
it suitable for trajectory tracking in uncertain environments
and across changing contact regimes. Next, we would like to
extend our constrained controller to a larger class of systems,
for example partially feedback-linearizable (PFBL) systems.
It is straightforward to derive a model-free controller that
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Fig. 1. Left: Position errors. Right: Torque-limited position errors.
Comparison of the model-free controller for various values of γ against
a feedback-linearizing (fbl) controller.

stabilizes an output, h(q), as long as that output is a smooth
function of just the position, q. It is not clear, however, how
one should go about handling nonholonomic constraints or
the zero-dynamics inherent to PFBL systems.
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