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Abstract— In this paper, we study the distributed optimiza-
tion problem of general linear multi-agent systems with het-
erogeneous dynamics under directed weight-unbalanced com-
munication topologies. Compared with existing studies, we
focus on the case when the dynamics of agents are unknown,
which possesses higher application value. To tackle the issues
brought by unknown system dynamics, the adaptive dynamic
programming method is adopted to design the control law. The
feedback gain in the control law and the system dynamics are
derived from the input data, the state data, and the output
data of the agents. Then, the remaining parameters in the
control law are obtained by solving a series of matrix equations
based on the identified system dynamics. Based on the certainty
equivalence principle, the distributed optimization problem is
solved in the sense that the outputs of all agents converge
to the optimal solution of the global cost function. Finally, a
simulation example concerning a group of resistor-inductor-
capacitor (RLC) circuits is presented to verify the effectiveness
of the proposed method.

I. INTRODUCTION

The distributed optimization problem has been extensively
investigated over the last decades [1]–[3]. The primary objec-
tive of distributed optimization is to minimize a global cost
function based on communication of agents in the system,
where the global cost function is defined as the summation of
individual local cost functions for each agent in a multi-agent
system. Distributed optimization has demonstrated its utility
across a diverse range of applications, such as parameter es-
timation in sensor networks [4], energy consumption control
of smart grids [5], and path planning of multiple robots [6].

One of the hotspots of distributed optimization problems
is to address the case that the global cost function is related
to all agents’ states. By designing various appropriately
distributed algorithms, the states of the agents are regulated
to the optimal solution for the global cost function, see
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[7]–[12]. In particular, a distributed subgradient method is
introduced in [7] to address the distributed optimization
problem for agents with single integrator dynamics under
jointly strongly connected communication topologies. Later,
the constrained distributed optimization problem for agents
with single integrator dynamics is explored in [8]. The
distributed projected subgradient algorithm is further devel-
oped by introducing a projection operator with variable step
size, achieving distributed optimization under jointly strongly
connected communication topologies. Then, two types of
distributed control laws are developed in [12] for agents
with general linear dynamics. The coupling strengths are
integrated into the control laws and the proposed control
laws effectively solve the distributed optimization problem
when communication topologies are undirected.

In some practical situations, the cost functions are associ-
ated with the agents’ outputs. In particular, the optimal output
consensus problem has garnered significant attention from
researchers, see [13]–[17]. To be precise, an event-triggered
control law based on a series of matrix equations is proposed
in [14], and the approach effectively resolves the optimal
output consensus problem for agents with general linear
dynamics when communication topologies are undirected.
Later, an integrated control law that incorporates both single
and double integrals of relative output of agent i and its
neighboring agents is introduced in [17]. Under the proposed
control law, optimal output consensus for agents with general
linear dynamics is realized when communication topologies
are directed, weight-unbalanced, and strongly connected.

It is noteworthy that most of the existing results on solving
the optimal output consensus problem predominantly are
model-based approaches. In practical applications, it is often
difficult to accurately obtain system dynamics. An effective
way to address this issue is the adoption of model-free
methods. Over the past decade, data-driven methods based
on adaptive dynamic programming (ADP) have been widely
explored, see [18]–[21] and the references therein. This type
of methods utilizes real-time system data to derive control
gains while simultaneously identifying system dynamics.
However, the application of ADP-based data-driven methods
to the optimal output consensus problem remains an open
area of research.

In this paper, we further study the optimal output con-
sensus problem for general linear systems by employing
an ADP-based data-driven approach. First, we propose an
ADP-based method to determine the feedback gain of the
optimal output consensus control law. Moreover, we employ
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a data-driven method to identify the parameters of the system
dynamics. Then, we show the feasibility of our proposed
method under some rank conditions for solving the optimal
output consensus problem with unknown system dynamics.
Finally, we present a comprehensive procedure for designing
the optimal output consensus control law. The effectiveness
of our method is validated through its application to the volt-
age balance optimal control of a group of RLC circuits. In
comparison to [17], our method eliminates the need for prior
knowledge of system dynamics. Instead, it relies solely on
the data of states, inputs, and outputs of the controlled system
to develop the control law, thereby broadening the potential
applications of the proposed method. It is also interesting to
extend the current work to some other cooperative control
problem with system uncertainties and disturbances [22]–
[25].

The rest of this paper is organized as follows. Section
II gives some preliminaries used in this paper. Section III
formulates the linear data-driven optimal output consensus
problem and gives some assumptions. Section IV gives the
main result in this paper. Section V gives a simulation
example of the main result. Section VI gives the conclusion
of this paper.

Notation. For xi ∈ Rn, i = 1, . . . ,m, col(x1, . . . , xm) =
[xT

1, . . . , x
T
m]T. For M ∈ Rn×n, diag(M) denotes the di-

agonal matrix obtained from M by setting all off-diagonal
entries equal to zero. diag{di} denotes a diagonal matrix D
of appropriate dimension with its i-th diagonal element being
di. || · || denotes the induced norm of a matrix by the Eu-
clidean norm or the Euclidean norm of vectors. 1N denotes
a vector with all its entries being 1. 0m×n denotes a m× n
matrix with all its entries being zero. ⊗ denotes Kronecker
product. For a matrix A ∈ Rn×n, Tr(A) is the trace of A.
vec(B) = [bT

1, b
T
2, . . . , b

T
s]

T with bi ∈ Rr being the columns
of matrix B ∈ Rr×s, and rank(B) ∈ R denotes the rank of
matrix B. For a symmetric matrix C ∈ Rn×n, vecs(C) =
[c11, 2c12, . . . , 2c1n, c22, 2c23, . . . , 2c2n, . . . , cnn]

T, and for a
vector v ∈ Rn, vecv(v) = [v21 , v1v2, . . . , v1vn, v

2
2 , v2v3, . . . ,

vn−1vn, v
2
n]

T. For a differentiable function f : Rn → R, ∇f
denotes its gradient.

II. PRELIMINARIES

A directed graph (in short, a digraph) is used to describe
the communication topology of the agents in a multi-agent
system. A weighted digraph of order N can be expressed
as G = (V, E), where V = {1, 2, . . . , N} is the node set,
E ⊆ V×V is the edge set describing the connectivity between
two different nodes. For i, j ∈ V , the ordered pair (j, i) ∈ E
denotes an edge from j to i if node i can receive information
from node j, but not vice versa. In this case, j is called
the parent node of i, and i is called the child node of j.
A = [aij ] ∈ RN×N is an associated weighted adjacency
matrix. The entries of A satisfy aij > 0 if (j, i) ∈ E , and
aij = 0 if (j, i) /∈ E . aii is always assumed to be 0 since it
is generally assumed that there is no self-loop in a digraph.
The Laplacian matrix L = [lij ] ∈ RN×N of G can be defined
as lii =

∑N
j=1 aij and lij = −aij for i ̸= j. A digraph G

is called weight balanced if and only if 1T
NL = 01×N , and

is called weight unbalanced if the equation does not hold. A
strongly connected digraph is a special type of digraph, and
the detailed definition can be found in [26] and the references
therein.

Lemma 2.1: (see [27]) Assume that G is strongly con-
nected and weight unbalanced. Let L be its related Laplacian
matrix. Then, the following properties hold:

1) Associated with the zero eigenvalue of L, there exists a
left eigenvector r = (r1, r2, . . . , rN )

T satisfying rTL = 0T
N ,

ri > 0 and
∑N

i=1 ri = 1;
2) Let R = diag(r1, r2, . . . , rN ). Then, L̄ = (RL +

LTR)/2 is positive semidefinite. And the eigenvalues of L̄
can be ordered as 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN .

3) e−Lt is a non-negative matrix with its diagonal entries
being positive, and limt→∞ e−Lt = 1NrT.

III. PROBLEM FORMULATION

Consider the following linear multi-agent system

ϱ̇i =Πiϱi + Ξiϑi

κi =Ψiϱi, i = 1, 2, . . . , N
(1)

where ϱi ∈ Rni , ϑi ∈ Rpi , κi ∈ Rq represent the state, input,
and measurement output of the i-th agent, respectively. Πi ∈
Rni×ni , Ξi ∈ Rni×pi , and Ψi ∈ Rq×ni , i = 1, 2, . . . , N are
unknown constant matrices.

For every agent, there exists a local cost function fi(κ) :
Rq → R that is only obtainable by the i-th agent, where
κ ∈ Rq is a vector. Let the global cost function be

f(κ) =

N∑
i=1

fi(κ). (2)

Consider a class of distributed optimization control laws of
the form

ϑi = fϑ(ϱi, φi, ζi)

ζ̇i = φi = fζ(fi(κi), τi, κi, κj , χi)

χ̇i = fχ(κi, κj)

τ̇i = fτ (τi, τj)

(3)

where i, j = 1, 2, . . . , N and j ̸= i. Then, the distributed
optimization problem is formulated as follows.

Problem 3.1: Consider the linear controlled multi-agent
system (1), design a distributed control law ϑi in the form
(3) such that the output of every agent reaches consensus on
κ⋆, where κ⋆ satisfies

f(κ⋆) = min
κ∈Rq

f(κ).

Problem 3.1 has been studied in [17] where all system
matrices are known. In this paper, we consider the similar
problem without prior knowledge of any system matrices in
(1). To do it, the following assumptions are needed [17].

Assumption 3.1: The matrix pairs (Πi,Ξi), i =
1, . . . , N , are stabilizable and

rank
[

ΨiΞi 0q×pi

−ΠiΞi Ξi

]
= ni + q.
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Assumption 3.2: The directed weight-unbalanced com-
munication graph G is strongly connected.

Assumption 3.3: For i = 1, 2, . . . , N , the local cost
function fi is continuously differentiable and strongly convex
with constant di, i.e., (x− y)T(∇fi(x)−∇fi(y)) ≥ di∥x−
y∥2 for all x, y ∈ Rn. ∇fi is globally Lipschitz on Rq with
constant Di, i.e., ∥∇fi(x) − ∇fi(y)∥ ≤ Di∥x − y∥ for all
x, y ∈ Rn.

Remark 3.1: Assumption 3.1 guarantees the solvability
of the distributed optimization problem [14], [17], that is,
there exist solution triplets (Υi,Φi,Λi) to the following
equations

ΨiΛi − Iq = 0q×q

ΞiΦi −ΠiΛi = 0ni×q

ΞiΥi − Λi = 0ni×q.

(4)

Assumption 3.3 guarantees that there exists a unique solution
κ⋆ to minimize f(κ).

IV. MAIN RESULT

A. Model-Based Control Law Design

We now introduce a model-based distributed optimization
control law proposed in [17] of the form (3) to solve
the distributed optimization problem 3.1. The distributed
optimization control law is designed as follows:

ϑi = −Uiϱi +Υiφi − (Φi − UiΛi) ζi

ζ̇i = φi := −∇fi (κi)

τ ii
− γ1

N∑
j=1

aij (κi − κj)− γ2χi

χ̇i = γ1

N∑
j=1

aij (κi − κj)

τ̇i = −
N∑
j=1

aij (τi − τj) , i = 1, 2, . . . , N

(5)

where τi =
[
τ1i , τ

2
i , . . . , τ

N
i

]T ∈ RN with its initial value
τi(0) satisfying τ ii (0) = 1, τ ji (0) = 0 for all j ̸= i. ζi ∈ Rq

and χi ∈ Rq are auxiliary variables. The initial value of ζi
can be set randomly while the initial value of χi satisfies
χi(0) = 0. φi ∈ Rq is an intermediate state while its initial
value can be set randomly. γ1, γ2 are positive scalars. Ui ∈
Rpi×ni is a constant feedback gain matrix such that (Πi −
ΞiUi) is Hurwitz.

For notation convenience, define Ψ =
diag{Ψ1,Ψ2 . . . ,ΨN}, D = max {D1, D2, . . . , DN},
d = min {d1, d2, . . . , dN} and rmin = min {r1, r2, . . . , rN}.
It is shown in [17] that with the distributed control law (5),
Problem 3.1 is solved. For completeness of the paper, we
summarize the main result of [17] in the following lemma.

Lemma 4.1: Under Assumptions 3.1-3.3, the distributed
optimization control law (5) solves Problem 3.1 with
(Υi,Φi,Λi) being the solutions to (4) and

γ1 > γ2
2/λ2δ

γ2 >
(
5δ2 + ∥Ψ∥2

)
/ (4δrmin )

δ >
(
D2 + ∥Ψ∥2

)
/(2d).

(6)

In this paper, we address the scenario where all the
matrices Πi, Ξi, Ψi, i = 1, 2, . . . , N are unknown. This
indicates that direct solutions to the matrix equations (4) are
unobtainable, rendering the gain matrices in the control law
ϑi unavailable. To deal with the difficulty caused by unknown
system dynamics, we propose a data-driven approach to
design the distributed control law (5).

B. Data-Driven-Based Control Law Design

In this section, we construct the control law utilizing
a data-driven approach. First, we present the ADP-based
identification framework for matrices Ξi, i = 1, 2, . . . , N .
For each agent, we formulate a cost function as follows:

fADP,i(ϱi, ϑi) =

∫ ∞

0

(ϱT
iEiϱi + ϑT

iFiϑi)dτ (7)

where Ei = ET
i ≥ 0, Fi = F T

i > 0 and (
√
Ei,Πi)

is observable for every agent. Then, there exists control
law ϑ⋆

i = −U⋆
i ϱi, i = 1, 2, . . . , N that minimizes the cost

function fADP,i associated with every agent, and U⋆
i satisfies

U⋆
i = F−1

i ΞT
iSi (8)

with Si = ST
i > 0 being a solution to the following Riccati

equation

ΠT
iSi + SiΠi + Ei − SiΞiF

−1
i ΞT

iSi = 0. (9)

To support the subsequent analysis, we present the widely-
employed iteration technique for solving the Riccati equation
(9) as described in [28].

Lemma 4.2: Let Ui,0 ∈ Rmi×ni be an arbitrary stabiliz-
ing feedback gain matrix for the pair (Πi,Ξi), Si,k = ST

i,k ≥
0 is the solution to the following equation

(Πi−ΞiUi,k)
TSi,k+Si,k(Πi−ΞiUi,k)+Ei+U T

i,kRUi,k = 0
(10)

where for every i = 1, 2, . . . , N , k = 1, 2, . . .

Ui,k = F−1
i ΞT

iSi,k−1. (11)

Then, the following properties hold:
1) The eigenvalues of Πi−ΞiUi,k have negative real parts.
2) S⋆

i ≤ Si,k+1 ≤ Si,k ≤ . . . ≤ Si,0.
3) limk→∞ Ui,k = U⋆

i , limk→∞ Si,k = S⋆
i .

Remark 4.1: Lemma 4.2 is the basis of solving the
control gain with the data-driven method, and it also plays
a key role in identifying the controlled system.

By integrating the system dynamics (1) with the iterative
equation (10), one can derive

ϱT
i(t+ dt)Si,kϱ

T
i(t+ dt)− ϱT

i(t)Si,kϱ
T
i(t)

=

∫ t+dt

t

ϱT
i((Πi − ΞiUi,k)

TSi,k + Si,k(Πi − ΞiUi,k))ϱidτ

+ 2

∫ t+dt

t

ϑT
iΞ

T
iSi,kϱidτ + 2

∫ t+dt

t

ϱT
iU

T
i,kΞ

T
iSi,kϱidτ

=

∫ t+dt

t

−ϱT
i(Ei + U T

i,kFiUi,k)ϱidτ + 2

∫ t+dt

t

ϑT
iFi×

Ui,k+1ϱidτ + 2

∫ t+dt

t

ϱT
iU

T
i,kFiUi,k+1ϱidτ
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=−
∫ t+dt

t

ϱT
i ⊗ ϱT

idτvec(Ei + U T
i,kFiUi,k)

+ 2

∫ t+dt

t

(ϱT
i ⊗ ϑT

i)(Ini ⊗ Fi)dτvec(Ui,k+1)

+ 2

∫ t+dt

t

(ϱT
i ⊗ ϱT

i)(Ini ⊗ U T
i,kFi)dτvec(Ui,k+1) (12)

with dt > 0.
For an integer s > 0, define

δaa = [vecv(a(t1))− vecv(a(t0)), vecv(a(t2))− vecv(a(t1)),
. . . , vecv(a(ts))− vecv(a(ts−1))]

T

Γab =

[∫ t1

t0

a⊗ b dτ,
∫ t2

t1

a⊗ b dτ, . . . ,
∫ ts

ts−1

a⊗ b dτ

]T

where a and b represent certain vectors or matrices and 0 <
t0 < t1 < . . . < ts. Then, we have

Ωi,k

[
vecs(Si,k)

vec(Ui,k+1)

]
= Θi,k (13)

where

Ωi,k =
[
δϱiϱi ,−2Γϱiϱi(Ini ⊗ U T

i,kFi)− 2Γϱiϑi(Ini ⊗ Fi)
]

Θi,k = −Γϱiϱi
vec(Ei + U T

i,kFiUi,k).

The uniqueness of the solution for (13) is guaranteed under
the following rank condition.

Lemma 4.3: If the rank condition

rank [Γϱiϱi
,Γϱiϑi

] =
ni(ni + 1)

2
+mini (14)

is satisfied, Si,k and Ui,k+1 can be solved uniquely from
equation (13) for every iteration k = 0, 1, 2, · · · .

It is worth mentioning that the rank condition (14) can be
satisfied by adding exploration noise into the control input ϑi

during the learning process [18], [19]. The exploration noise
can be chosen as random noise, sinusoidal signals, and so
on. The detailed ADP procedure for solving equation (13) is
outlined in Algorithm 1.

Algorithm 1 Data-Driven ADP Procedure for Multi-Agent
System

1: Set i = 1.
2: repeat
3: Select a sufficiently small threshold ϵ > 0 and an admis-

sible control gain Ui,0 with Ui,0 satisfying Πi − ΞiUi,0 is
Hurwitz. Set k = 0.

4: Apply ϑi = −Ui,0ϱi + ξi to collect data until (14) holds,
where ξi represents exploration noise.

5: repeat
6: Solve Si,k and Ui,k+1 from (13).
7: k ← k + 1.
8: until |Ui,k+1 − Ui,k| < ϵ
9: U⋆

i ← Ui,k+1, S⋆
i ← Si,k.

10: i← i+ 1.
11: until i = N + 1.

Then, the input matrices of all agents can be reconstructed
as follows.

Lemma 4.4: Given S⋆
i and U⋆

i solved from Algorithm 1,
the input matrices Ξi, i = 1, 2, . . . , N of all the agents can
be determined from the following equation

Ξi = (S⋆
i )

−1(U⋆
i )

TFi. (15)
Lemma 4.4 suggests that the matrices Ξi, i = 1, 2, . . . , N

can be determined once U⋆
i and S⋆

i are known. With the
reconstructed matrices Ξi, i = 1, 2, . . . , N , the matrices
Πi, i = 1, 2, . . . , N can be approximated through a data-
driven approach. From (1), one can obtain

ϱi(t)=

∫ t

0

Πiϱidτ+

∫ t

0

Ξiϑidτ+ϱi(0), i=1, 2, . . . , N. (16)

Then, to avoid utilizing the unknown information of ϱi(0),
it can be derived from (16) that

ϱi(t1)− ϱi(t0) =

∫ t1

t0

Πiϱidτ +

∫ t1

t0

Ξiϑidτ

...

ϱi(ts)− ϱi(ts−1) =

∫ ts

ts−1

Πiϱidτ +

∫ ts

ts−1

Ξiϑidτ.

(17)

By applying the Kronecker product, one can obtain∫ ts

ts−1

Πiϱidτ =

∫ ts

ts−1

ϱT
i ⊗ Ini

dτvec(Πi)∫ ts

ts−1

Ξiϑidτ =

∫ ts

ts−1

ϑT
i ⊗ Inidτvec(Ξi).

(18)

Define

∆aa = [a(t1)− a(t0), a(t2)− a(t1), . . . , a(ts)− a(ts−1)]
T

(19)
and (17) can be expressed as

∆ϱiϱi
− ΓϑiIni

vec(Ξi) = ΓϱiIni
vec(Πi). (20)

To identify matrices Πi, i = 1, 2, . . . , N , similar to (14),
the following rank condition is given.

Lemma 4.5: The equation (20) has a unique solution Πi

if the following rank condition is satisfied

rank(ΓϱiIni
) = (ni)

2. (21)
During the identification process, by adding the explo-

ration noise ξi into ϑi as step 4 in Algorithm 1, the rank
condition (21) can also be easily satisfied.

Similar to Πi, we now identify the matrices Ψi, i =
1, 2, . . . , N . From (1), κi can be written as

κi = (ϱT
i ⊗ Iq)vec(Ψi). (22)

Define Ks
i,0 = [κT

i(t0), κ
T
i(t1), . . . , κ

T
i(ts)]

T and P s
i,0 =[

(ϱT
i(t0)⊗ Iq)

T
, (ϱT

i(t1)⊗ Iq)
T
, . . . , (ϱT

i(ts)⊗ Iq)
T
]T

. Then,
we have

Ks
i,0 = P s

i,0vec(Ψi). (23)

To identify Ψi, the following rank condition similar to (21)
is needed.

Lemma 4.6: The equation (23) has a unique solution Ψi

if the following condition is satisfied

rank(P s
i,0) = niq. (24)
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Algorithm 2 Optimal Output Consensus Control Law Design
1: Set i = 0.
2: repeat
3: i← i+ 1.
4: Collect data until (14), (21) and (24) are satisfied.
5: Obtain U⋆

i and S⋆
i from Algorithm 1.

6: Solve Ξi from (15).
7: Solve Πi from (20).
8: Solve Ψi from (23).
9: Solve matrix equations (4).

10: until i = N .
11: Select γ1, γ2 under (6).

Finally, we give the complete design mechanism for the
control law, which is outlined in Algorithm 2.

Theorem 4.1: Under Assumptions 3.1-3.3, the optimal
output consensus control law can be designed by Algorithm
2, and the designed control law solves Problem 3.1.
Proof: From Lemma 4.4, Ξi can be obtained from (15)
under rank condition (14). Besides, it follows from [19] that
Algorithm 1 is equivalent to Lemma 4.2, and according to
Lemma 4.2, U⋆

i , i = 1, 2, . . . , N obtained from Algorithm
1 are admissible, i.e., Πi − ΞiU

⋆
i , i = 1, 2, . . . , N are

Hurwitz. Thus, U⋆
i obtained from Algorithm 2 is admissible.

From Lemmas 4.5 and 4.6, under rank conditions (21) and
(24), Πi and Ψi can be uniquely solved from (20) and
(23) respectively. Under Lemma 4.1, there exist solution
triples (Υi,Φi,Λi) of (4). Therefore, the distributed control
law obtained from Algorithm 2 can solve Problem 3.1 by
invoking Lemma 4.1. This completes the proof. □

V. SIMULATION

Consider the voltage balance optimal control of the RLC
network, and the circuit is shown in Fig. 1 [17]. The state-
space model of the RLC network is described as

ϱ̇i = Πiϱi + Ξiϑi

κi = Ψiϱi, i = 1, 2, 3, 4, 5
(25)

where ϱi1 denotes the voltage across Ci1, ϱi2 denotes the
voltage across Ci2, ϱi3 denotes the current through Li. Πi,
Ξi, Ψi are constant matrices and satisfy

Πi =

 − 1
Ci1Ri1

0 − 1
Ci1

0 0 1
Ci2

1
Li

− 1
Li

−Ri2

Li

Ξi =

 1
Ci1Ri1

1
Ci1

0 − 1
Ci2

0 1
Li

 ,

Ψi =
[
1 0 0

]
.

The specific parameters of the state-space model are given
as

R11 = 2, R12 = 2, L1 = 1, C11 = 2, C12 = 2

R21 = 0.5, R22 = 2, L2 = 2, C21 = 2, C22 = 0.5

R31 = 1, R32 = 3, L3 = 0.5, C31 = 1, C32 = 1

R41 = 2, R42 = 1, L4 = 1, C41 = 1, C42 = 1

R51 = 2, R52 = 1, L5 = 2, C51 = 1, C52 = 1.

The communication topology is depicted in Fig. 2.

voltage

source

+

-

ϑ !

" !

# !

+

-

  !,  !

"!#

+ -

  !

ϑ !

current

source

 !

 !"

#!$

Fig. 1. The circuit of the RLC network [17]

Fig. 2. The communication topology of the circuits

The cost functions of the agents are chosen as

fi(κi) = (κi − κi(tl))
2, i = 1, 2, 3, 4, 5, (26)

where tl denotes the instant when the data-driven learning
period ends, and κi(tl) denotes the output of the i-th agent
at tl.

For Algorithm 1, the initial parameters of control laws
ϑi, i = 1, 2, 3, 4, 5 are chosen such that Πi − ΞiUi,0 are
Hurwitz, and select the exploration noise such that rank
conditions (14) (21), and (24) are satisfied.

Under Algorithm 1, the learned parameters of the control
law are

U⋆
1 =

 0.36 0.32
0.36 −0.53
−0.01 0.16

T

, U⋆
2 =

 0.48 0.12
0.11 −0.79
0.21 −0.07

T

U⋆
3 =

 0.41 0.17
0.25 −0.66
0 0.08

T

, U⋆
4 =

 0.44 0.4
0.29 −0.47
0.06 0.41

T

U⋆
5 =

 0.44 0.42
0.29 −0.57
0.12 0.41

T

.

For the design of the control law, we choose γ1 = 1200
and γ2 = 55. The optimal solution for the cost function

f(κ) =
5∑

i=1

fi(κi) is κ⋆ = 1.3004. The output of the multi-

agent system under Algorithm 2 is shown in Fig. 3.
The parameters in the control law are learned during t ∈

[0, 3]s, and the control law is applied to the controlled system
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Fig. 3. Output of the multi-agent system

after t = 3s. It can be seen in Fig. 3 that the distributed
algorithm solves the optimal output consensus problem when
system dynamics are unknown.

VI. CONCLUSION

In this paper, we have investigated the distributed op-
timization problem of general linear multi-agent systems
with unknown heterogeneous agent dynamics. To solve the
problem, we have proposed a data-driven method based on
ADP to identify the system dynamics and approximate the
feedback gain in the control law by accessing the available
data of input, state, and output. The remaining parameters
in the control law are obtained by solving a series of
matrix equations based on the identified system dynamics.
Moreover, we have shown that our proposed control law is
capable of solving the distributed optimization problem by
regulating the outputs of all agents to the optimal solution
of the global cost function.
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