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Abstract— The electrification of heavy-duty vehicles (HDEVs)
is a rapidly emerging avenue for decarbonization of energy
and transportation sectors. Compared to light duty vehicles,
HDEVs exhibit unique travel and charging patterns over long
distances. In this paper, we formulate an analytically tractable
model that considers the routing decisions for the HDEVs and
their charging implications on the power grid. Our model
captures the impacts of increased vehicle electrification on
the transmission grid, with particular focus on HDEVs. We
jointly model transportation and power networks coupling
them through the demand generated for charging requirements
of HDEVs. In particular, the voltage constraint violation is
explicitly accounted for in the proposed model given the
signifcant amount of charging power imposed by HDEVs.
We obtain optimal routing schedules and generator dispatch
satisfying mobility constraints of HDEVs while minimizing
voltage violations in electric transmission network. Case study
based on an IEEE 24-bus system is presented using realistic data
of transit data of HDEVs. The numerical results suggest that the
proposed model and algorithm effectively mitigate the voltage
violation when a significant amount of HDEVs are integrated
to the power transmission network. Such mitigation includes
reduction in the voltage magnitude, geographical dispersion of
voltage violations and worst-case voltage violations at critical
nodes.

I. INTRODUCTION

Recent surge of market penetration of electric vehicles
(EVs), calls for development of scalable design and operation
of charging infrastructure in support of the decarbonization
of the mobility sector. Of 30% U.S. total green-house gas
emissions [1], 25% can be attributed to medium-duty and
heavy-duty vehicles (HDVs) [2], i.e., 7.5% of the total
emissions are due to HDVC. Of particular interest is the
potential impact of the electrification of HDVs, specifically
Class 7, 8 and 9 vehicles exceeding 26, 000 pounds [3]. The
state of Texas has 7% of the nationwide total of 3.91 million
Class 8 heavy vehicles [4] of the approximately 275, 000
HDVs registered. Each HDV travels on average over 62, 000
miles annually - nearly 5.5 times the distance traveled by a
typical passenger car [3]. The significance of electrification
is further amplified by noting the average heavy-duty electric
vehicle (HDEV) is expected to draw anywhere between 75
kW and 600 kW while charging [5]. Such fundamental shifts
in electrification require a substantial restructuring and shift
from fuel-based to electricity-based charging infrastructure.
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This would lead to significant disruptions for both electric
grid operators and external market participants. This makes
it urgent and imperative for policy makers to adopt a data-
driven, scientific approach to reconcile the market adoption
of HDEVs with the realities of existing grid infrastructure
There has been a burgeoning interest in studying recent the
impact of HDEV on the power grid. [6] demonstrate the
impact of HDEV charging decisions on the power grid. [7]
study how different types of fuels effect decarbonization of
heavy-duty vehicles.

From the perspective of an electric or transportation net-
work operator two critical concerns arise given the surge
in EV penetration: (i) mismatch of demand allocation and
infrastructure capacity, leading to inefficient use of charging
stations and (ii) mismatch of demand and supply in the
power grid, leading to voltage instability, and line capacity
violations [8]. Exising literature on these issues can be
divided into three categories:
(a) The first category aims to manage the effects of EV

charging load on the power grid, at both the distribution
and transmission levels, with most previous work cap-
turing plug in decisions at specific charging stations as
exogenous random processes. Some recent works model
the effect of EV mobility patterns on the spatio-temporal
distribution of charging load [9], [10]. Recent work [11]
focuses on designing mechanisms for fleet deployment
and charging at optimal times and locations.

(b) Other work focuses on the scheduling problem of
individual EV fleets considering the time needed to
charge, limited energy stored in the battery, and range
anxiety [12]–[14] assuming that the electricity prices
are given. The potential of an EV fleet for vehicle-to-
grid (V2G) services considering their mobility patterns
is studied in [15].

(c) The third category considers the interaction between
power and transportation networks. For EVs that are
parked while charging, [16] consider a case where the
operator tracks the mobility of large shared fleets of
EVs and their energy consumption and designs opti-
mal multi-period vehicle-to-grid (V2G) strategies. For
individual EVs (i.e., those not belonging to a fleet) [17]
consider mobility-aware EV demand management prob-
lem to calculate wholesale market clearing prices. [18]
study the optimal deployment of EV public charging
stations by formulating it as a mathematical program
with equilibrium constraints.

On top of the above challenges, HDEVs have several specific
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challenges unaddressed in antecedent literature: i) the threat
of grid instability due to line fluctuations and voltage devia-
tion from nominal levels ii) sub-optimal design of routing
and scheduling policies that do not account for vehicle
charging levels especially since HDEVs are on road 80%
of time. The purpose of this paper is to manage the effects
of HDEV movement and charging on the power grid, at
transmission levels.

In this paper, we consider a dynamic energy and trans-
portation network to capture variations in travel times, rout-
ing requests, and energy requirements from the perspective
of an Independent System Operator (ISO) who is interested
in suggesting a optimal route and energy consumption of
a fleet of HDEVs. To do so, we consider the interaction
of ISO with individual EV drivers and propose a model
that simultaneously prescribes the optimal route (subject
to the driver’s constraints) as well as the optimal power
dispatch schedule for the ISO. We do not focus on pricing
strategies and equilibrium considerations that arise from
those. Our first primary contribution is to propose a tractable
and computationally efficient model of the transportation
and energy networks associated with scheduling HDEVs.
Existing models are either intractable due to combinatorial
explosion in the number of variables or the associated opti-
mization problem are non-convex. Further, existing models
completely eschew aspects of HDEV scheduling pertinent
for power and transportation network operation. In contrast,
our model uses significantly smaller number of variables and
the associated optimization problem is convex. Further, in
line with our main goal of analyzing the impact of HDEV
integration on the reliability of transmission and distribution
grids the model minimizes grid voltage violations while de-
termining optimal routes for HDEV scheduling. Our second
contribution is the development of a Python-based simulation
tool, to study the consequences of HDEV electrification,
exposing the limitations imposed by existing grid infras-
tructure. The parameters used to realistically model different
components of the simulation (such as wind [19], solar [20],
vehicle data [21] and electric grid simulation [22]). We
utilize an IEEE-24 bus system that realistically represents
multiple distribution grids in Travis county, Texas [23], and
transit data pertaining to HDEVs. Our simulation studies
demonstrate the advantages of co-optimizing our power flow
and transportation objectives as compared to a decoupled
approach on grid reliability, congestion on the transportation
network and charging decisions of the HDEV. To the best
of our knowledge, this is the first study on the effects of
HDEVs on a combined energy and transportation network.

II. MODEL

Our main goal in this section is to propose a dynamic
energy-transportation network model that captures schedul-
ing and routing requirements for a fleet of HDEVs. A
transportation network can be modeled as a graph G (V, E),
where V denote the set of vertices and E denote the set
of edges. To model the movement of vehicles within the

state of Texas, we use such a graph where nodes represents
the charging station locations and edges represent the roads
along which any fleet of HDEVs must travel to relocate from
one node to another. Edges are weighted by the average
distance required to traverse from either node to the other
(where each edge connects two nodes). Typically, vehicles
would use a path on the transportation network that can take
them from source to destination, obtaining such a network
using a shortest path problem, where each arc has a weight
equal to the travelling time on that arc. We now extend this
transportation network to incorporate energy levels and time.

A heavy-duty electric vehicle runs on electric storage,
where each vehicle is associated with a state of charge
(SOC), which decreases only when the vehicle moves, and
increases only when the vehicle is charging. In contrast to
smaller electric vehicles, HDEVs not only require larger
amounts of energy (kWh) to fully charge, but also demand
more charging power (kW) to reasonably serve the vehicles.
To model these energy requirements on top of a transporta-
tion network, we expand a vertex in the transportation graph
to include (discrete) energy levels e ∈ [emin, . . . , emax] := E .
Finally, in order to consider discrete time steps and the
planning horizon T , we add a third dimension representing
time to each vertex. This leads us to define an extended
energy-transportation network in Definition 1.

Definition 1 (Extended Energy-Transportation Network):
Let Ge = (N ,A) denote a directed graph where each vertex
v ∈ V is a 3-tuple (i, e, t) ∈ N ⊆ [|V|] × [|E|] × [T ] with
the first component representing the physical location, the
second representing the energy levels and the third time.
An arc a ∈ A connects tail node (i, e, t) and head node
(i′, e′, t′) iff:

1) There is no movement backward in time, i.e., t′ > t
2) Charging Arc: Increase in energy level and same phys-

ical location implying e < emax and e′ = e+1, i′ = i.
3) V2G Discharging Arc: Decrease in energy level and

same physical location, i.e., V2G discharging implying
e > emin and e′ = e− 1 and i′ = i.

4) Driving arc: e > emin, e
′ = e − 1, i′ = neighbor(i),

where neighbor(i) represents
5) Resting arc: e′ = e and i′ = i
We consider the problem of managing a given fleet of

HDEVs. The purpose of fleet management is to ensure that
there is no congestion in the transportation graph G and
the expanded energy-transportation Ge. In the subsequent
section, we will suppress the dependence of the constraint
and equation on t which implies that these relationships need
to hold for all t ∈ [T ].

A. Fleet Management System

We begin by considering a fleet H of HDEVs. The fleet
management system also needs to prescribe routes based
on the fleet’s requirements. Let Oa denote the set of arcs
orginating at node v and Iv denote the incoming arcs at node
v.Further, ψh,in

v is the exogenous injection of traffic of fleet h
at node v and ψh,out

v denotes the exogeneous disappearence
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Fig. 1. Time-Energy Expanded Graph: Illustrations of movements along time and energy dimensions

of the HDEV from the network. This process is subject to
the following constraints:

ψ
h,in

, ψ
h,out ∼ Travel Criteria Distribution

s.t.
∑

v∈V ψ
h,in
v =

∑
v∈V ψ

h,out
v

s.t. ψ
h,in
v , ψ

h,out
v ≥ 0∑

u∈Uv
ψh,out
u = ψ

h,out
v

ψh,out
v ≥ 0

where, ψ̄h,in
v and ψ̄h,out

v is the system operator specified
injection/rejection from the system. Let λa(t) denote the flow
of traffic on arc a ∈ A in the extended energy-transportation
network. The flow of HDEV h ∈ H satsifes the following
flow-balance constraints at all times t ∈ [T ]:∑

a∈Ov
λha −

∑
a∈Iv

λha = ψ
h,in
v − ψh,out

v

B. Power Dispatch Problem

Each HDEV has direct impact on the electric power grid
only when it is charging at an electric vehicle charging
station (EVCS). While there may be several EVCS’s con-
nected to a single distribution grid, we assume that no
HDEV charges at more than one EVCS within the same
distribution grid in the short run, since HDVs travel long dis
tances after each charge. Thus, when modelling the impact of
HDEVs on distribution grids, it suffices to capture only their
local power consumption, without their movement within the
neighborhood itself. Conversely, since EVCS’s are geograph-
ically dispersed across multiple locations in the transmission
grid (state-wide or wider), we believe that it is necessary
to consider the movement of a fleet of vehicles within
each transmission grid’s encompassing geographic region to
capture heir spatio-temporal impact on critical grid param-
eters such as grid voltages. Given the demand generated
by considering the mobility in the transportation network,
we determine the optimal power flow in the power network
using the AC optimal power flow (AC-OPF) [24], [25]. The
AC-OPF problem is a nonlinear, nonconvex problem that
models the power flow in electrical networks, determining
nodal voltages levels, angles and line flows [26]–[29]. From

the transportation graph G, we assume that every physical
location V also represents a bus and the edges E represent
a power line. We assume that there is one conventional
generator with active and reactive power outputs pG,i, qG,i,
one demand pD,i, qD,i per node that is influenced due to the
presence of HDEVs. Nodes without generation or load can
be handled by setting the respective entries to zero, and nodes
with multiple entries can be handled through a summation.
To model generation and control at different types of buses,
we add subscripts PQ,PV , and θV to distinguish between
PQ,PV and θV (reference) buses. We model the problem of
determining optimal power flow in the energy network, using
AC-OPF. Therefore, every node has the following associated
constraints:

1) Nodal Constraints: At every node i ∈ V , there are three
constraints:

Nodal demand balance which ensures both active, Pi

and reactive power Qi are balanced.

P d
i = P

d

i + xi

Qd
i = Q

d

i + αPQxi

In this formulation, xi denotes the excess demand
due to the presence of HDEVs at node i. A fraction
of this demand αPQ of the real demand is incurred
as reactive power.Nodal flow balance: Constraints
representing that the total throughput at a node is
equal to the net generation and demand at that node.
Generation Limits: The generation limits reflect the
minimum and maximum capacity of generation at
individual nodes.

P g
i ≤ P

g
i ≤ P

g

i

Qg

i
≤ Qg

i ≤ Q
g

i

a)b)2) Line Flow: For every line ij, let θij denote the differ-
ence in phase angles between nodes i and j and yij
denote its admittance. We add the following thermal
limit to line constraints:

|yij |2
[
|Vi|2 + |Vj |2 − 2|Vi||Vj | cos (θij)

]
≤ I2i,j
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The AC-OPF formulation mentioned before is non-linear and
non-convex and is computationally inefficient without further
assumptions. In order to make our formulation tractable, we
propose an analytical reformulation of the AC-OPF problem
by utilizing a first-order Taylor approximation of the branch-
flow and thermal-limit constraints about an operating point.
For this purpose, let (θ0,V0,P0,Q0) denote the vector of
operating point and let JP

V denote the Jacobian of P wrt V.
For example, for the branch flow constraint, this becomes:

Pg −Pd = Pg
0 −Pd

0 + JP
V (V −V0) + JP

θ (θ − θ0)
Qg −Qd = Qg

0 −Qd
0 + JQ

V (V −V0) + JQ
θ (θ − θ0)

Other constraints can be linearized similarly. The final in-
gredient in our formulation is the objective function that
penalizes the deviation of the nodal voltage from nominal
operating point. To this end, we propose the following
objective:

cost(Pg(t)) =
∑
i∈V

c1,gP
2
i,g + c1,iPi,g + c0,i +Φ(Vi)

where, Φ(·) denotes a penalty term on the voltage magnitude.
Of particular interest to us are the following penalties:

1) ℓ2 co-optimization: Φ(Vi) :=
∑

i∈V
(
Vi − V̄i

)2
: This

penalty term ensures that deviation from operation point
V̄i will be minimized.

2) ℓ1 co-optimization: = Φ(Vi) :=
∑

i∈V |Vi − V̄i|: In
addition to ensuring that deviations are minimized, this
penalty ensures a sparse geographical distribution of
voltage deviations enhancing grid reliability.

3) ℓ∞ co-optimization: Φ(Vi) := maxi∈L |Vi − V̄i|: This
penalty focuses on minimizing the largest |L| nodal
voltages where the set L is the set of top-L largest nodal
voltages V̄i.

Several remarks are in order regarding our modeling
choices. First, it is widely established that DC-OPF is the
standard for computing power flows in practice. However,
given our motivation to study the impact of placement of
HDEVs on voltage deviation in the grid, DC-OPF doesn’t
suit our purposes since it doesn’t take into account nodal
voltages. Secondly, among the several possible linearization
schemes, our proposed reformulation includes the complete
set of non-convex AC power flow equations for the speci-
fied operating point. Crucial for our purposes, is to ensure
feasibility of the power flow problem about an operating
point which is not guaranteed by approximations, partial
linearization or relaxations of the problem. Finally, the choice
of the penalty function is critical in ensuring reliability of the
network. Our combined model (transportation with energy
network) is presented in Appendix IV-A.

III. CASE STUDY

In this section, we present a set of experiments investigat-
ing the impact of realistic HDEV transportation patterns on
a transmission grid under a set of alternative fleet dispatch
mechanims. We focus comparison on two types of scenarios:

(a) one where we adopt a grid-agnostic HDEV spatiotem-
poral scheduling mechanism to determine where and when
charging occurs, and (b) one where we adopt the solution to
the proposed joint ACOPF-HDEV co-optimization presented
in (P1). Our results indicate that under the co-optimization,
there is a clear improvement in the voltage profile while
maintaining required business travel requirements on heavy-
duty vehicles.

The simulation is performed as follows. First, we consider
a simplified model of the Texas grid by using an IEEE 24-bus
[30] transmission grid model scaled to meet realistic Texas-
based generation and demand criteria. Second, we consider
between 30,000 to 50,000 HDEVs present in the network,
which a suitable baseline for HDEV impact in Texas ac-
cording to reference [6], and they are each constrained by
having to meet some business travel criteria. Travel criteria
is defined in the context of this work as a set of required
arrival and departure times, initial and final levels of charge,
and initial and final physical locations.

For the remainder of this case study, we reference the
following example for illustration purposes. Consider some
fleet h ∈ H with the following travel criteria:

ψ
h,in
v ← Nh for v = (Bus 1, 50% Charge, Hour 1)

ψ
h,out
v ← Nh for v = (Bus 22, 25% Charge, Hour 7)

That is, this fleet of vehicles begins its business trip at
hour 1 and the location corresponding to bus 1, with 50% of
battery charged. It is required to arrive at no later than hour
7 at the location corresponding to bus 22 with a minimum
battery charge level of 25%.

With this set of business requirements on the fleet
of vehicles, we compare two spatiotemporal HDEV dis-
patch approaches to study the impact on the system-wide
transmission-level voltage:

1) The vehicles follow the shortest path and stop to charge
when they run out of energy. This yields a path of buses
(1→ 4→ 14→ 20→ 22). See Fig. (5) for the numbers
of buses in the IEEE 24-bus case.

2) Solve the joint ACOPF-HDEV co-optimization, which
yields a spatiotemporal redistribution where vehicles
strategically time their charging to avoid congestion at
key stations and key hours.

The results for voltage violations are shown in Fig. (2,
3, 4), illustrating that the first approach yields many voltage
violations across time unlike the proposed approach which
only yields much less voltage deviations. To illustrate ac-
ceptable voltage ranges, we shade the region between 0.95
and 1.05 per unit voltage in either figure, which is typically
acceptable in a power systems context. While Fig. (3, 4) are
both based on the proposed approach, the former is based
on the ℓ∞ norm objective function for voltage violations and
the latter is based on the ℓ1 norm.

As shown in Fig. (2), under the grid-agnostic HDEV
spatiotemporal distribution of vehicles, the voltage violations
significantly exceed the acceptable band of voltages. In
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Fig. 2. Voltage distribution without co-optimization.

Fig. 3. Voltage distribution with ℓ∞ co-optimization.

Fig. 4. Voltage distribution with ℓ1 co-optimization.

contrast, under both ℓ∞ and ℓ1 norms using the proposed co-
optimization, voltage is kept within the acceptable band. The
results in Fig. (3, 4) suggest that perhaps the ℓ1 norm is better
for voltage regulation purposes. However, this could also
yield an increase in usage of physical resources to provide
this regulation. A deeper exploration of the optimal use of
such resources is beyond the scope of this work. In this paper,
we simply assume that all resources are constrained by upper
and lower limits on active and reactive power and a cost
function, as shown in formulation (P1).

To further illustrate the difference between the grid-
agnostic approach and the proposed approach, we present
a visual representation of both the electric transmission grid
and the HDEV transportation network at a certain snapshot in

time, specifically showing a spatial depiction of the condition
of the system in the simulation for any of the cases. The
results are shown in Fig. (5, 6, 7). From these results, we
can observe that the proposed approach manages to spatially
dilute the voltage deviations across the electric transmission
grid (figures on left side), mainly by strategically changing
the following on the HDEV transportation side (figures on
right side):

• location to assign most charging congestion
• time to wait before charging

Note that we do not explicitly state how to spatiotemporal
redistribute the charging, but the proposed co-optimization
automatically yields such results. We now direct the readers
attention to Fig (6, 7) specifically. Indeed, both results clearly
out-perform the grid-agnostic approach (Fig. (5)) voltage-
wise. However, when using the ℓ∞ norm as opposed to the
ℓ1 norm for voltage deviations in the objective function, i.e.
Fig. (6) as opposed to , Fig. (7) respectively, more number
of buses incur voltage violations, albeit small in magnitude.
In contrast, the ℓ1 norm yields voltage violations which are
more at the worst buses yet less number of buses. This
kind of distinction between the two norms is expected as
described in the formulation section, and we leave it to a
power systems operator to judge which is more suitable for
their grid management application.

Nonetheless, for either norm, as shown on the right sides
of Fig. (6, 7), there is clearly less congestion per charging sta-
tion than in the case without co-optimization. These results
suggest that with co-optimization of HDEV spatiotemporal
scheduling and optimal power flow, business travel criteria
can still be met while yielding significantly improved voltage
profiles in the electric transmission grid.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a first step towards modeling the
routing and scheduling of heavy duty vehicles with particular
focus on their impact on the power grid. Our simulation
results corroborate that adding penalty functions to the joint
transportation and power flow problem does indeed result
in more even geographic distribution of HDEVs and helps
us in minimizing voltage violations from nominal levels. As
expected, different penalty measures serve different purpose
but all of them perform better than separately optimizing
transportation and energy networks.

In the future we would like to pursue several directions
pertaining to model development, algorithm development and
. First, our model can be expanded to take into account dis-
tribution network. On the algorithmic side we would like to
develop efficient algorithms for solving the co-optimization
problem involving both energy and transportation networks.
Finally, reformulations and efficient practical deployment of
the proposed model in real-life systems remains a challenge.
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Fig. 5. Voltage distribution without co-optimization.

Fig. 6. Voltage distribution with ℓ∞ co-optimization.

Fig. 7. Voltage distribution with ℓ1 co-optimization.
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APPENDICES

A. Combined Transportation and Power Problem

The complete formulation is given in the next page.
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minimize
Pg,λ

T∑
t=1

cost(Pg(t)) + Φ(V (t)) (P1a)

s.t. ∀t ∈ [1, T ] :

Power Grid Constraints :
θslack = 0 (reference angle) (P1b)

Vi = Vi ∀i ∈ NAVR (automatic
voltage regulation)

(P1c)

∀i ∈ N :

P d
i = P

d
i + xi (bus demand) (P1d)

Qd
i = Q

d
i + αPQxi (bus demand) (P1e)

P g
i − P d

i =
∑
j∈N

ViVj [Gij cos(θi − θj) +Bij sin(θi − θj)] (flow balance) (P1f)

Qg
i −Qd

i =
∑
j∈N

ViVj [Gij sin(θi − θj)−Bij cos(θi − θj)] (flow balance) (P1g)

P g
i ≤ P g

i ≤ P
g
i (gen. limits) (P1h)

Qg
i
≤ Qg

i ≤ Q
g
i (gen. limits) (P1i)

∀(i, j) ∈ L :

θij := θi − θj (angle deviation) (P1j)
Pi,j = ViVj [Gij cos(θij) +Bij sin(θij)] (branch flow) (P1k)
Qi,j = ViVj [Gij sin(θij)−Bij cos(θij)] (branch flow) (P1l)

P loss
i,j + P loss

j,i = Pi,j + Pj,i (branch losses) (P1m)

Qloss
i,j +Qloss

j,i = Qi,j +Qj,i (branch losses) (P1n)

|yij |2
[
V 2
i + V 2

j − 2ViVj cos(θi − θj)
]
≤ I

2
i,j (thermal limit) (P1o)

HDEV Constraints :
∀i ∈ N :

xi(t) =
∑

a∈Xi(t)

δa
∑
h∈H

λha (bus demand) (P1p)

xi ≤ xi(t) ≤ xi (station limit) (P1q)
∀h ∈ H, a ∈ A :

λha ≥ 0 (flow direction) (P1r)
∀h ∈ H, v ∈ V :

ψ
h,in

, ψ
h,out ∼ Travel Criteria Distribution

(user-specified
arrival & departure)

(P1s)

s.t.
∑
v∈V

ψ
h,in
v =

∑
v∈V

ψ
h,out
v

ψ
h,in
v , ψ

h,out
v ≥ 0

∑
a∈Ov

λha −
∑
a∈Iv

λha = ψ
h,in
v − ψh,out

v (flow balance) (P1t)

ψh,out
v ≥ 0 (departure flexibility) (P1u)∑

u∈Uv

ψh,out
u = ψ

h,out
v (departure flexibility) (P1v)
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