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Abstract— We explore the infinite-horizon Distributionally
Robust (DR) linear-quadratic control. While the probability
distribution of disturbances is unknown and potentially corre-
lated over time, it is confined within a Wasserstein-2 ball of
a radius r around a known nominal distribution. Our goal
is to devise a control policy that minimizes the worst-case
expected Linear-Quadratic Regulator (LQR) cost among all
probability distributions of disturbances lying in the Wasser-
stein ambiguity set. We obtain the optimality conditions for the
optimal DR controller and show that it is non-rational. Despite
lacking a finite-order state-space representation, we introduce
a computationally tractable fixed-point iteration algorithm.
Our proposed method computes the optimal controller in
the frequency domain to any desired fidelity. Moreover, for
any given finite order, we use a convex numerical method to
compute the best rational approximation (in H∞-norm) to the
optimal non-rational DR controller. This enables efficient time-
domain implementation by finite-order state-space controllers
and addresses the computational hurdles associated with the
finite-horizon approaches to DR-LQR problems, which typically
necessitate solving a Semi-Definite Program (SDP) with a
dimension scaling with the time horizon. We provide numerical
simulations to showcase the effectiveness of our approach.

I. INTRODUCTION

Mitigating uncertainties is a core challenge in decision-
making. Control systems inherently encounter various uncer-
tainties, such as external disturbances, measurement errors,
model disparities, and temporal variations in dynamics [1],
[2]. Neglecting these uncertainties in policy design can result
in considerable performance decline and may lead to unsafe
and unintended behavior [3].

Traditionally, the challenge of uncertainty mitigation in
control systems has been predominantly approached through
either the stochastic or robust control frameworks [4], [5],
[6]. As exemplified in Linear–Quadratic–Gaussian (LQG) or
H2 control, stochastic control aims to minimize an expected
cost, assuming disturbances follow a known probability dis-
tribution [4], [7]. However, in many practical scenarios, the
true distribution is often estimated from sampled data, intro-
ducing vulnerability to inaccurate models. On the other hand,
robust control minimizes the worst-case cost across potential
disturbance realizations, such as those with bounded energy
or power (H∞ control) [8]. While this ensures robustness, it
can be overly conservative.

To tackle the above challenge, a recent approach called
Distributionally Robust (DR) Control has emerged. In con-
trast to traditional approaches such as H2 or H∞ control
that focus on a single probability distribution or a worst-
case disturbance realization, the DR framework addresses the

uncertainty in system dynamics and disturbances by consid-
ering ambiguity sets – sets of plausible probability distribu-
tions [9], [10], [11], [12], [13], [14], [15]. This methodology
aims to design controllers that exhibit robust performance
across all probability distributions within a given ambiguity
set. The size of the ambiguity set provides control over the
desired robustness against distributional uncertainty, ensuring
that the resulting controller is not excessively conservative.
Thereby, this approach bridges the domains of stochastic and
adversarial uncertainties.

Different measures of distributional mismatch, such as to-
tal variation [16], [17] and KL divergence [18], are explored
in DR control. However, for computational feasibility and ge-
ometric interpretability, ambiguity sets are commonly defined
as Wasserstein-2 balls around a nominal distribution [19],
[20]. This choice is practical since optimizing quadratic costs
over Wasserstein-2 balls leads to a semi-definite program
(SDP).

A. Contributions

In this study, we explore the Wasserstein-2 distribution-
ally robust LQR (DR-LQR) control framework. DR-LQR
control seeks to design controllers that minimize the worst-
case expected cost across distributions chosen adversarially
within a Wasserstein-2 ambiguity set. Our contributions are
summarized as follows.

a) Stabilizing Infinite-Horizon Controller.: Rather than
the finite-horizon setting prevalent in the DR control liter-
ature [11], [12], [14], [21], [22], we focus on the infinite-
horizon setting. Thus, we provide long-term stability and
robustness guarantees.

b) Robustness to Arbitrarily Correlated Disturbances.:
Unlike several prior works which assume time-independence
of the disturbances [9], [10], [11], [12], [23], [13], [14],
we do not impose such assumptions so that the resulting
controllers are robust against time-correlated disturbances.

c) Computationally Efficient Controller Synthesis:
Leveraging a strong duality result, we obtain the exact
Karush-Khun-Tucker (KKT) conditions for the worst-case
distribution and the optimal causal controller. We show that,
although the resulting controller is non-rational, i.e., it does
not admit a finite state-space form, it can still be computed
very efficiently. We provide a computationally efficient nu-
merical method to compute the optimal non-rational DR-
LQR controller in the frequency domain via fixed-point
iterations. We further show how to find the best rational
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approximation and, thereby, the best finite-dimensional state-
space controller for any given degree.

Prior works focus on finite horizon problems (see [21],
[22], [12]) and therefore have no stability guarantees. More
importantly, they are hampered by the need to solve a semi-
definite program (SDP) whose size scales with the time hori-
zon. This prohibits their applicability when the time horizon
is large. Our approach enables efficient implementation of
the infinite-horizon DR-LQR controller.

Similar earlier work by [24] studied the problem of
infinite horizon distributionally robust regret-optimal (DR-
RO) control. The DR-RO control is similar to the DR-LQR
problem considered in this paper since the cost in both
cases is quadratic. However, the regret-optimal controller
(originally studied in [25], [26]) is a much simpler problem
in the distributionally robust setting of [24] since the cost
of the optimal non-causal controller is removed from the
LQR cost. In this paper, we show that, despite the more
complicated form of the quadratic cost, the main results of
[24] extend to the LQR case. While the KKT conditions,
the fixed-point iterative algorithm, and the final controller
differ from the regret-optimal counterpart in[24], the general
methodology follows similarly.

II. PRELIMINARIES AND PROBLEM SETUP

A. Notations

Going forward, calligraphic letters (K, M, L, etc.) rep-
resent infinite-horizon operators, while boldface letters (K,
C, w, etc.) denote finite-horizon operators. I and I are
the identity operators. M∗ is the adjoint of M, and ≻
denotes the positive-definite ordering. The trace functions for
finite and infinite horizon operators are denoted by tr(·) and
Tr(·), respectively, where Tr(I) = p for a finite horizon.
The Euclidean norm is denoted by ∥·∥, while ∥·∥∞ and
∥·∥2 refer to the H∞ (operator) and H2 (Frobenius) norms,
respectively. {M}+ and {M}− are the causal and strictly
anti-causal parts of M. The notation

√
M or M 1

2 indicates
the symmetric positive square root. [·]T signifies the finite-
horizon restriction of operators. |z| is the magnitude and z∗ is
the conjugate of a complex number z∈C. The complex unit
circle is denoted by T. Finally, σmax denotes the maximum
singular value, id denotes the identity map, and × denotes
the cartesian product.

B. Linear-Quadratic Control

Consider the state-space representation of discrete-time
linear time-invariant (LTI) dynamical system:

xt+1 = Axt +Buut +Bwwt, (1)

Here, xt ∈ Rn denotes the state, ut ∈ Rd is the control
input, and wt ∈ Rp is the disturbance. We posit that both
the pairs (A,Bu) and (A,Bw) are stabilizable in the usual
sense. For a finite horizon T >0, the system in (1) incurs a
quadratic cost as

costT (u,w) :=
∑T−1

t=0
x⊺
tQxt + u⊺

tRut, (2)

where Q,R ≻ 0. Without loss of generality, we let Q = I ,
R = I by redefining xt ← Q

1
2xt and ut ← R

1
2ut.

a) System Description in Operator Form: We opt for
operator notation for system (1) in the rest of this paper. For
a given horizon T > 0, we let the sequences x :={xt}T−1

t=0 ,
u :={ut}T−1

t=0 , and w :={wt}T−1
t=0 , represent the state, control

input and exogenous disturbances, respectively. Likewise,
we represent their infinite-horizon counterparts using the
bi-infinite sequences x := {xt}t∈Z, u := {ut}t∈Z, and
w := {wt}t∈Z.

Using the above definitions, we express the system dy-
namics for both finite and infinite horizons in operator form
as

Finite-horizon: x = Fu+Gw,

Infinite-horizon: x = Fu+ Gw.
(3)

where (F ,G) denote strictly causal (strictly lower triangular)
bi-infinite block Toeplitz operators and (F,G) represent their
finite horizon equivalents, for a horizon T > 0. Employing
this notation, we succinctly express the LQR cost in Eq. (2)
as costT (u,w) := ∥x∥2 + ∥u∥2.

b) Control: We focus on linear disturbance feedback
control policies (DFC) which map disturbances to the control
input: u = Kw, for any K ∈ KT , where KT is the set of
causal (online) DFC policies in the finite-horizon of length
T >0. The infinite-horizon counterpart of our control policy
is u = Kw for any K ∈ K , with K the set of causal and
time-invariant DFC policies in the infinite horizon.

Under a fixed control policy K, the closed-loop transfer
operator, TK, which maps the disturbances to the state and
control input, is defined as

TK : w 7→
[
x
u

]
:=

[
FK + G
K

]
w. (4)

The finite-horizon counterpart of the closed-loop transfer
operator (4) denoted as TK, is used to rewrite the quadratic
cost (2) as

costT (K,w) = w∗T∗
KTKw. (5)

C. Distributionally Robust LQR Control

We study the distributionally robust LQR control problem
and seek to design a causal controller that minimizes the
worst-case expected LQR cost when the probability distri-
butions of the disturbances reside within a Wasserstein-2
(W2) ambiguity set. The Wasserstein-2 metric between two
distributions P1,P2 is defined as

W2(P1,P2) :=

(
inf

π∈Π(P1,P2)

∫
∥w1−w2∥2 π(dw1, dw2)

) 1
2

,

with Π(P1,P2) representing all the joint distributions with
marginals P1 and P2 [27], [28].

We define the W2-ambiguity set WT (P◦, rT ) for horizon
T >0 to be the W2-ball with radius rT := r

√
T > 0, centered

at a nominal distribution P◦ ∈P(RpT ):

WT (P◦, rT ) :=
{
P∈P(RpT ) |W2(P, P◦)≤rT

}
. (6)
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Remark 1. The choice of rT ∝
√
T aligns with the fact

that the W2-distance between two random vectors of length
T , each sampled from two different iid processes, scales
proportionally to

√
T .

Unlike the usual LQR cost, which considers the expected
quadratic cost under i.i.d Gaussian disturbances (or distur-
bances sampled from a single probability distribution), the
DR-LQR considers the worst-case expected LQR cost across
all disturbance probability distributions which lie in the W2-
ambiguity set.

Definition 1 (Worst-case expected LQR cost under
W2-ambiguity). The worst-case expected LQR cost of a
control policy K ∈ KT , in the finite-horizon T >0, is defined
as

CT (K, rT ) := sup
P∈WT (P◦,rT )

EP [costT (K,w)] . (7)

Likewise, in the infinite-horizon, the worst-case expected
LQR cost of a control policy K ∈ K is defined as

C(K, r) := lim
T→∞

1

T
CT ([K]T , rT ), (8)

where [K]T results from restricting K to a horizon T >0. In
these definitions, EP is the expectation over the disturbances
w which are sampled from P, i.e., w∼P.

We formally state the infinite-horizon Distributionally Ro-
bust LQR problem as follows:

Problem 1 (Distributionally robust LQR control in the
infinite-horizon). Minimize the time-averaged worst-case
expected cost (8) as T → ∞, over all causal and time-
invariant controllers K ∈ K , i.e.,

inf
K∈K

C(K, r) = inf
K∈K

lim
T→∞

1

T
CT ([K]T , rT ). (9)

In section III, we provide an equivalent formulation of
Problem 1 by establishing strong duality for the worst-case
expected cost C(K, r).

III. MAIN THEORETICAL RESULTS

In this section, our initial step involves reformulating
Problem 1 through the lens of strong duality, breaking it
down into a task of addressing a suboptimal problem. We
proceed to characterize the controller using the Karush-
Kuhn-Tucker (KKT) conditions and present arguments to
show that it is stabilizing.

For simplicity, we assume that the nominal disturbance is
uncorrelated, i.e. M◦ := EP◦ [w◦w

∗
◦] = I.

Theorem 1 (Strong duality). The distributionally robust
LQR control problem (9) is equivalent to the dual optimiza-
tion problem:

inf
K∈K
γ≥0

sup
M≻0

Tr(T ∗
KTKM)+γ

(
r2−Tr

(
M−2

√
M+I

))
(10)

Additionally, with a fixed K, the worst-case disturbance
w⋆ can be given using the nominal disturbance w◦ as
w⋆ = (I − γ−1

⋆ T ∗
KTK)−1w◦ with γ⋆ satisfying:

Tr
(
(I − γ−1

⋆ T ∗
KTK)−1 − I

)2
= r2. (11)

Proof. This theorem leverages the proof of Theorem 5 and
Lemma 8 from [24], adapted here to incorporate our LQR
cost, T ∗

KTK.

This insight reveals that the essence of distributional
robustness can be distilled into the analysis of the worst-case
power spectrum of the disturbances, M, which deviates by
no more than r > 0 from the baseline nominal disturbance
spectrum M◦ = I.

Moreover, for any chosen r > 0, a corresponding optimal
γ > 0 exists that facilitates the computation of the optimal
controller. Given the feasibility of searching across a singular
parameter γ > 0, our focus shifts towards the γ-optimal
problem once γ is fixed.

Let ∆∗∆ = I + F∗F be the spectral factorization with
causal ∆, and ∆−1. And, let K◦ := −(I + F∗F)−1F∗G be
the unique optimal non-causal policy which minimizes the
infinite-horizon cost limT→∞

1
T costT (K,w) [29], with TK◦

its associated closed-loop transfer operator (4).
With the above, we can now give the saddle point condi-

tions for the controller K and the disturbance covarianceM
in Theorem 2, for a fixed γ ≥ 0:

Theorem 2 (γ-optimal solution via saddle points ). Let
γ > γH∞ := infK∈K ∥T ∗

KTK∥∞ be fixed. The γ-optimal
LQR control problem in Theorem 1 for fixed γ is equivalent
to the following dual problem:

sup
M≻0

inf
K∈K

Tr(T ∗
KTKM)− γ Tr

(
M− 2

√
M+ I

)
, (12)

and the unique saddle point (Kγ ,Mγ) satisfies the equations
below uniquely:

Kγ=∆−1{∆K◦Lγ}+L−1γ (13a)

L∗
γLγ=

1

4

(
I+

√
I+4γ−1(S∗Lγ

SLγ
+ U∗

Lγ
ULγ

)
)2

(13b)

where LγL∗
γ =Mγ with causal Lγ , and L−1γ , and where SLγ

and ULγ
are defined as SLγ

:= {∆K◦Lγ}−, ULγ
:= TK◦Lγ .

Proof. The proof is built upon the KKT conditions for (12)
and the Wiener-Hopf technique [30]. Details of the proof are
shown in the extended version of the paper [31, Appendix
II].

Note that fixing γ results in the controller Kγ being sub-
optimal. Theorem 2 hints at a way to obtain the optimal
controller Kγ from a positive operator Mγ (13a). Since the
optimality conditions on Mγ can be solely expressed in
terms of its spectral factors and system-specific parameters as
in (13b), we will shift our focus to obtaining a solutionMγ ,
which is the worst-case time-invariant covariance operator.

Remark 2. Denoting Nγ := L∗
γLγ , we note that there is

a one-to-one correspondence between Mγ and Nγ through
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spectral factorization. As the optimality conditions in The-
orem 2 are stated in terms of L∗

γLγ , we call both Nγ and
Mγ as the γ-optimal solution, interchangeably.

Remark 3. When r approaches infinity, γ⋆ approaches the
lower bound ∥T ∗

KTK∥∞, which corresponds to the worst-case
cost, or in other words, the H∞ cost. In this scenario, the
optimal DR-LQR controller transitions into the traditional
H∞ controller. On the flip side, as r decreases to zero,
γ⋆ goes to infinity. This shift results in the worst-case
expected LQR cost, C(Kγ⋆

, r), aligning with the anticipated
cost under nominal disturbance, M◦, thereby allowing the
optimal DR-LQR controller to embody the conventional LQR
(H2 ) controller, particularly whenM◦ = I. Thus, adjusting
r enables the DR-LQR controller to navigate a spectrum
between H∞ and H2 control paradigms.

This insight reveals that once γ surpasses γH∞, the ex-
pected worst-case LQR cost becomes finite. This observation
leads to the formulation of Corollary 3.

Corollary 3. For any chosen γ value exceeding γH∞ , the
resulting suboptimal controller, Kγ , ensures the stabilization
of the system’s dynamics.

IV. AN ALGORITHM FOR CONTROLLER SYNTHESIS IN
THE FREQUENCY DOMAIN

In this section, we assert that the sub-optimal DR-
LQR controller is non-rational, thereby precluding a finite-
dimensional state-space realization. Consequently, we intro-
duce a fixed-point iteration scheme aimed at computing the
saddle-point solution (Kγ ,Nγ) for the γ-optimal problem
outlined in Theorem 2, with fixed γ. The optimal γ⋆ and
its associated saddle-point solution (Kγ⋆

,Nγ⋆
), can be ef-

fectively determined by employing the bisection method on
equation (11). Finally, we prove the convergence of the fixed-
point method in the scalar system case, i.e. p = d = n = 1,
with the proof provided in the extended version of the paper
[31, Appendix II].

A. A Fixed-Point Characterization of the Controller

Let the frequency domain counterparts of the operators
S,UL, and N be SLγ

(z) := {∆K◦Lγ}−(z), ULγ
(z) :=

TK◦(z)Lγ(z) and Nγ(z) := Lγ(z)
∗
Lγ(z). We use the fact

that {Y}+=Y−{Y}− to express the KKT equations (13) in
the frequency domain as:

Kγ(z) = K◦(z)−∆−1(z)SLγ
(z)L−1γ (z), (14a)

Nγ(z)=
1

4

(
I+

√
I+4γ−1(S∗

Lγ
(z)SLγ

(z)+U∗
Lγ
(z)ULγ

(z))
)2

(14b)

The anticausal transfer function SLγ (z) has the fol-
lowing state-space form representation (as shown in
[24]): SLγ

(z) := C(z−1I − A)−1BLγ
where we define

BLγ
:= 1

2π

∫ 2π

0
(I − ejωA)−1DLγ(e

jω)dω, and the state-
space parameters (A,C,D) depend on the system parameters
(A,B,C) (see Appendix I-A for the full definitions).

Given the notation above, we introduce the following
theorem, characterizing the γ-optimal solution as a fixed
point of a mapping.

Theorem 4 (γ−optimal solution is a fixed-point solution).
For a fixed γ>γH∞ , consider the following set of mappings:

F1 : L(z) 7→ BL :=
1

2π

∫ 2π

0

(I − zA)−1DL(ejω)dω,

F2,γ : (BL, L(z)) 7→ N(z),

N(z) :=
1

4

(
I+

√
I+4γ−1(S∗

L(z)SL(z) + UL(z)∗UL(z))

)
,

with SL(z) = C(z−1I −A)−1BL, UL(z) = TK◦(z)L(z),

F3 : N(z) 7→ L(z),

where F3 returns a unique spectral factor of N(z) > 0.
The composition F3 ◦ F2,γ ◦ (F1 × id) : L(z) 7→ L(z)
admits a unique fixed-point L(z), and the positive transfer
matrix Nγ(z) := F2,γ ◦(F1 × id)(Lγ(z)) satisfies the KKT
conditions (14).

Proof. The proof is similar to the proof of Theorem 13 in
[24]. It utilizes the concavity of the problem inMγ to argue
for the uniqueness of Mγ , and thus of its spectral factor
Lγ up to a unitary transformation, which leads to a unique
fixed-point.

Subsequently, we argue that Nγ(z) is non-rational. Note
that SLγ (z) is rational, and assuming Lγ(z) is rational
implies that ULγ (z) is rational. Hence, Nγ(z) involves the
square root of a rational term. As square root does not
generally preserve rationality, both Nγ(z) and its spectral
factor Lγ(z) are non-rational, leading to Corollary 5.

Corollary 5. Nγ(z) and the suboptimal DR-LQR controller,
Kγ(z), are non-rational, for any fixed γ > γH∞ . Hence,
Kγ(z) does not have a finite-dimensional state-space repre-
sentation.

Despite the fact that Kγ(z) does not lend itself to a
finite-dimensional state-space form, Theorem 4 affirms that
the suboptimal controller Kγ(z) (14a) can be derived from
Lγ(z), by executing a fixed-point iteration on Lγ(z) as
elucidated in Section IV-B.

B. Algorithm Description

In light of Theorem 4, we propose Algorithm 1 to compute
the suboptimal controller Kγ(z) at uniformly sampled points
on the unit circle, TN :={ej2πn/N | n=0,. . ., N−1}. With an
initial estimate L(0)

γ (z), Fixed-Point iteratively computes
the n-th step as N

(n)
γ (z) = F2,γ◦(F1 × id)(L(n)

γ (z)).
Following this, we compute the spectral factor L(n+1)

γ (z)
at regularly spaced points along the unit circle using the
SpectralFactor algorithm. Upon reaching convergence
within a predetermined tolerance at the N -th iteration, we
determine the suboptimal N (N)

γ (z) from which we derive the
suboptimal controller K

(N)
γ (z) at each sampled frequency

point using (14a).
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Algorithm 1 Fixed-Point

Input: γ>γH∞ , system (A,C,D), discretization N

Initialize L
(0)
γ (z),∀z∈TN ={ej2πn/N | n=0,..., N−1}

repeat
Compute B

(n)

Lγ
= F1(L

(n)
γ (z)) numerically

B
(n)

Lγ
← 1

N

∑
z∈TN

(I − zA)−1DL(n)
γ (z)

Compute N
(n)
γ (z)← F2,γ(B

(n)

Lγ
, L

(n)
γ (z))

Get L(n+1)
γ (z)← SpectralFactor(N (n)

γ (z))
Update n← n+ 1

until convergence of N (n)
γ (z)

Note that this approach can assess N
(n)
γ (z) for any

arbitrary point on the unit circle via Eq. (14b), however,
the SpectralFactor algorithm computes L

(n)
γ (z) and

K
(n)
γ (z) only for a discrete number of samples on the unit

circle. The details of the SpectralFactor algorithm,
which is based on discrete Fourier transform (DFT) [32] and
tailored for non-rational spectra, are in [31, Appendix V].

V. NEAR-OPTIMAL STATE-SPACE REALIZATION VIA
RATIONAL APPROXIMATION

A. Rational Approximation

Our objective is to find the optimal mth order rational
approximation, denoted as P (z)/Q(z), for the positive non-
rational function N(z). This rational approximation serves
as the basis for obtaining the spectral factor L(z) as noted
in Lemma 7 and thus deriving the controller K(z) (14a).
We provide results for scalar disturbances, i.e. p = 1, while
the states and control inputs can be arbitrarily dimensional
vectors. We leave the generalization to vector disturbances
(i.e., p > 1) for future work.

Problem 2 (Rational approximation using H∞ norm
minimization). Given a positive non-rational function N(z),
find the best rational approximation of order at most m ∈ N
with respect to H∞-norm:

inf
p0,...,pm,q0,...,qm∈R

∥∥∥∥P (z)

Q(z)
−N(z)

∥∥∥∥
∞

, (15)

with P (z) =
∑m

k=−m pkz
−k, pk = p−k ∈ R, and P (z) > 0,

(and similarly for Q(z)).

To solve Problem 2 using standard convex optimization
tools, we follow the approach in [33] and consider instead
the sublevel sets of the objective function (15) and reduce
the problem to a convex feasibility problem.

Lemma 6 (Rational approximation using a convex feasi-
bility problem). Fixing a minimum level ϵ > 0, Problem 2

can be relaxed to a convex problem:

Find p = (p0, p1, . . . , pm), q = (q0, q1, . . . , qm)

s.t P (z), Q(z) ≥ 0, max
z∈T

∣∣∣∣P (z)

Q(z)
−N(z)

∣∣∣∣ ≤ ϵ,

or equivalently

s.t


P (z)− (N(z) + ϵ)Q(z) ≤ 0, ∀z ∈ T
P (z)− (N(z)− ϵ)Q(z) ≥ 0, ∀z ∈ T
P (z), Q(z) ≥ 0, ∀z ∈ T

Although the inequalities in Lemma 6 are infinitely many,
we can check these inequalities solely for a finite set of
frequencies, such as TN = {ej2πn/N | n=0,. . ., N−1} for
N ≫ m. In fact, the finite polynomials P (z) and Q(z) can
be fully characterized with N ≥ 2m number of uniformly
sampled frequencies on the unit circle by Nyquist sampling
theorem. By increasing the number of samples, the accuracy
of this method can be improved to any desired fidelity.

Once obtained a rational approximation P (z)/Q(z) for
N(z), we can find the rational canonical factor L(z) of
P (z)/Q(z) from the following lemma.

Lemma 7 (Canonical factorization [34]). Given a poly-
nomial of order m, R(z) =

∑m
k=−m rkz

−k, where rk =
r−k ∈ R, and R(z) > 0, a causal canonical factor, L(z) =∑m

k=0 lkz
−k, exists and satisfies R(z) = |L(z)|2.

B. Controller in Time-Domain

Once we have the rational approximation of L(z), we can
write it in the form L(z) = (I + C̃(zI − Ã)−1B̃)D̃1/2, and
we can compute the DR-LQR controller in state-space form.

Lemma 8 (DR-LQR control in state-space form). Given
a rational spectral factor L(z) = (I+C̃(zI−Ã)−1B̃)D̃1/2,
the near-optimal DR-LQR controller can be realized by the
following state-space controller

e(t+ 1) = F̃ e(t) + G̃w(t), (16)

u(t) = H̃e(t) + J̃w(t), (17)

where (F̃ , G̃, H̃, J̃) are functions of the matrices
(A,B,C, Ã, B̃, C̃) (see Appendix I-B for the details
of the appropriate definitions, and [31, Appendix IV] for
the complete proof).

VI. NUMERICAL SIMULATIONS

This section presents a comparative evaluation of the DR-
LQR controller vis-à-vis H2 and H∞ controllers along-
side the finite-horizon DR-LQR counterpart. Our evalua-
tion encompasses both frequency-domain and time-domain
assessments, which showcase the efficacy of the rational
approximation method. Our analysis focuses on benchmark
models from [35] such as [AC15], [REA4] and [HE3]. Given
the similarity in controller performance across all systems,
we opt to present results solely for [AC15], a four-state
aircraft model, due to space limitations. We choose our
nominal distribution to be Gaussian, with zero mean and
identity covariance.
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A. Frequency Domain Evaluations

We examine the dynamics of the DR-LQR controller and
its rational approximation across varying radii r. The power
spectrum N(ejω) of the worst-case disturbance is illustrated
for three distinct r values for the [AC15] system in Figure
1. Notably, for r = 0.01, the worst-case disturbance exhibits
near-white behavior, consistent with the nominal disturbance.
However, as r increases, the temporal correlation of the
worst-case disturbance intensifies, leading to a more pro-
nounced peak in the power spectrum.

0 1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

Fig. 1: The power spectrum N(ejω) of the worst-case
disturbance, when r ∈ (0.01, 5, 10) for system [AC15].

Figures 2 and 3 illustrate the worst-case expected LQR
cost for the DR-LQR, H2, and H∞ controllers applied
to the [AC15] system. As r varies, the performance of
the DR-LQR closely mirrors that of the H2 for smaller
values of r. However, with increasing r, the worst-case
LQR cost tends to align more closely with that of the H∞
controller. Across all ranges of r, the DR-LQR consistently
outperforms the other controllers and achieves the lowest
worst-case expected cost. Additionally, we consider another

0 2 4 6 8 10
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2000

3000

4000

5000

6000

Fig. 2: The worst-case expected LQR cost of the classical
controllers H2, H∞ compared to the DR-LQR, for the sys-
tem [AC15], for different r values. The DR-LQR minimizes
the cost at all r′s.

performance metric—the operator norm of TK minimized by
the H∞ controller. This metric, expressed in the frequency
domain as ∥TK∥2op = max0≤ω≤2π σmax(T

∗
K(ejω)TK(ejω)),

is depicted across all frequencies in Figure 4. The results
show that the DR controller consistently interpolates the H2

and H∞ controllers across all frequencies.
To practically implement the DR-LQR controller, we find

the rational controller by employing the method outlined in
Section V, from which we obtain the rational approximation
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Fig. 3: The percentage difference in the worst-case LQR
cost relative to the DR-LQR (see the legend) for the system
[AC15], for different values of r. When r is small (large)
r, the cost of DR-LQR controller closely aligns with that of
H2 (H∞). For r = 1.5, the cost of the DR-LQR is less than
that of H2 by 22.8%, and that of H∞ by 19.2% .

0 1 2 3 4 5 6
0

100

200

300

400

500

Fig. 4: The operator norm, ∥T ∗
K(ejω)TK(ejω)∥, of different

controllers at all frequencies ω ∈ [0, 2π], for system [AC15].
The DR-LQR cost interpolates between H2 and H∞ based
on the value of r. When r is small (large), DR closely aligns
with H2 (H∞) across all frequencies.

of N(ejω) as P (ejω)
Q(ejω) with degrees m = 1, 2, for the [AC15]

system. Table I compares the performance of these resulting
rational controllers to the non-rational DR-LQR. Notably,
the rational approximation with an order of 2 achieves an
expected LQR cost that closely matches that of the non-
rational controller with a difference of less than 1% in costs
for all r values.

r=0.01 r=1.5 r=5 r=10
DR-LQR 17.2 153.2 1024 3635.6

RA(1) 17.2 5789.1 6214.6 33262
RA(2) 17.19 153.2 1024.1 3645.8

TABLE I: The worst-case expected LQR cost of the non-
rational DR-LQR controller, compared to the rational con-
trollers RA(1), and RA(2), obtained from degree 1, and 2
rational approximations to N(ejω).

Finally, Figure 5 shows the convergence ratio defined as:

Convergence Ratio :=
BW(Mi+1

1 ,Mi+1
2 )

BW(Mi
1,Mi

2)
(18)

where BW(Mi
1,Mi

2) represents the Bures-Wasserstein dis-
tance [36] between positive operators M1 and M2 at iter-
ation i. The plot shows that the iterates {Mi

1}i≥0 converge
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and the rate of convergence of the Fixed-Point is expo-
nential.

0 2000 4000 6000 8000 10000
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Fig. 5: Convergence ratio (18) for different values of γ. The
Fixed-Point algorithm converges at an exponential rate.

B. Time Domain Evaluations

We compare the performance of the infinite horizon DR-
LQR controller to its finite horizon counterpart, across time.
The finite-horizon DR-LQR, presented in [21], is computed
by solving an SDP whose dimension scales with the time
horizon. We graph the mean LQR cost across 210 time steps,
consolidating data from 1000 separate trials.The performance
of DR controllers under white Gaussian noise and the
worst-case disturbances of the infinite-horizon and the finite
horizon DR controllers is shown in Figures 6a, 6b and 6c,
respectively. For the sake of computational efficacy, the finite
horizon controller operates within a constrained time horizon
of s = 30 steps, being recurrently applied every s steps.
Likewise, the worst-case disturbances used in Figures 6b,6c
are generated at the same periodicity, resulting in correlated
disturbances solely within each s step interval.

Our investigations underscore the unparalleled perfor-
mance of the infinite-horizon DR-LQR controller across all
three scenarios. Note that attempting to extend the horizon of
the SDP for prolonged durations to approximate the infinite-
horizon performance proves to be excessively computation-
ally intensive. These findings accentuate the inherent advan-
tages of adopting the infinite-horizon DR-LQR controller.

VII. FUTURE WORK

Our study proposes several overarching directions for
future investigation. Firstly, we aim to prove the convergence
of the fixed-point algorithm for the general case of non-
scalar systems. Moreover, we plan to generalize the rational
approximation method for non-scalar disturbances. Addition-
ally, we seek to expand our findings to partially observed,
i.e., measurement feedback systems.

APPENDIX I: DEFINITIONS

A. Parameters Definitions

We define A,D and C as: A := A∗
K , D := A∗

KPBw, and
C := −(R+B∗

uPBu)
−∗/2

B∗
u where: i)AK is the closed

loop matrix AK := A−BuKlqr, ii) Klqr is the LQR controller
Klqr := (R+B∗

uPBu)
−1
B∗

uPA and iii) P ≻ 0 is the unique
stabilizing solution to the LQR Riccati equation P = Q +
A∗PA−A∗PBu(R+B∗

uPBu)
−1

B∗
uPA.
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(a) Control costs of DR-LQR controllers in the
infinite (I) and finite horizon (II) under white
noise.
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(b) Control costs of DR-LQR controllers in the
infinite (I) and finite horizon (II), under the
worst-case disturbance for (I).
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(c) Control costs of DR-LQR controllers in the
infinite (I) and finite horizon (II), under the
worst-case disturbances for (II).

Fig. 6: Control costs of DR-LQR controllers in the infinite
(I) and finite horizon (II) which is solved using SDP. The
finite-horizon controller is recurrently applied at intervals
of s = 30 steps, and the radius of its ball is r = 1.5

√
s,

while the radius of (I) is r = 1.5. The infinite horizon DR-
LQR controller outperforms its finite-horizon counterpart and
attains the minimum average cost in all cases, even when the
finite horizon DR-LQR is designed to minimize the cost.

B. Equations for the rational controller

We give the equations for F̃ , G̃, H̃ and J̃ of lemma 8.

F̃ =

[
ÃK 0

BuR̄
∗R̄B∗

u Ak

]
,

G̃ =

[
ÃKB̃

−Bw +BuR̄
∗R̄B∗

u(PBw + UB̃)

]
,

H̃ = −R1/2(
[
R̄∗R̄B∗

u −Klqr

]
),

J̃ = −R1/2(R̄∗R̄B∗
u(PBw + UB̃).

Here, i) Klqr, AK and P are as defined in Appendix I-A,
ii) R̄ = (R+B∗

uPBu)
−∗/2 iii) Ãk = Ã−B̃C̃ where Ã, B̃, C̃

as in lemma 8 and iv) U satisfies the lyapunov equation
A∗

kPBwC̃ +A∗
kUA = U .
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