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Abstract— We consider a linear second-order system subject
to unknown control directions under the measurements of
the position whereas the velocity is not available for mea-
surements. Such system can be stabilized by an extremum
seeking (ES) controller using the position and velocity. In
this paper, the velocity is approximated via a finite difference
leading to a delay-dependent ES controller. By applying the
recently proposed time-delay approach to Lie-Brackets-based
averaging method, we transform the closed-loop system to a
time-delay (neutral type) one, which has a form of perturbed
Lie brackets system. The input-to-state stability (ISS) of the
time-delay system guarantees the same for the original one.
Then, by employing variation of constants formula we derive
explicit conditions in terms of simple inequalities for finding
the quantitative bounds on the dither period and delay that
ensure the regional ISS. An example is provided to illustrate
the efficiency of the results.

I. INTRODUCTION

As a powerful real-time model-free optimization method,
extremum seeking (ES) has received much attention in the
past decades. Since rigorous proofs of local convergence
and semi-global convergence were proposed in [1] and [2],
respectively, a large number of theoretical developments on
ES have emerged in the literature, see [3], [4], [5], [6], [7]
and the reviews [8], [9]. The conventional approach to ana-
lyze the stability of ES systems depends upon the classical
averaging method [10] and Lie-brackets approximation [11],
where the trajectory properties of the original and averaged
systems were used to ensure the stability of the original
system when the small parameters are small enough. That is,
the conventional approach presented the qualitative analysis
only and cannot provide quantitative bounds on the small
parameter preserving the stability.

ES controller has been used in [12], [13] as a stabilizing
feedback for systems under unknown control directions. It
should be noted that the ES controllers designed in [12],
[13] depended upon the full knowledge of the system state.
However, in many practical applications only the output is
available for measurement. Compared to the observer-based
controller with a complicated framework, a simpler static
delayed output-feedback is more attractive in the literature,
see e.g. [14], [15], [16] and the references therein, where
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the delayed feedback was obtained via a finite difference
approximation.

Recently, a constructive time-delay approach to periodic
averaging method was introduced in [17], where efficient
upper bounds on the small parameter ensuring the stability
and ISS of the original system were found. The time-delay
approach to averaging method was then applied to vibrational
control [18] as well as to ES [19], [20], [21]. Note that in
[21], variation of constants formula was employed, which
greatly simplified the results comparatively to Lyapunov-
Krasovskii method in [19], [20]. Moreover, a time-delay
approach to Lie-brackets-based averaging of affine systems
was proposed in [22] with an application to stabilization of
linear systems subject to unknown control directions.

In this paper, we consider derivative-dependent ES con-
trol of the linear second-order systems subject to unknown
control directions, where the derivative is not available for
measurements. Under assumption of the stabilizability of the
system by a state-feedback that depends on the output and
its derivative, a delay-dependent ES controller that stabilizes
the system is found using a finite difference approximation
of the derivative. Then, based on the recently proposed
time-delay approach to Lie-Brackets-based averaging method
[22], [23] we transform the closed-loop system into a time-
delay (neutral type) one. The ISS of the time-delay system
guarantees the ISS of the original one. Following [21], we
employ variation of constants formula to derive explicit
conditions in terms of simple inequalities. By verifying these
conditions, one can find quantitative bounds on the dither
period and delay that ensure the regional ISS. Finally, an
example illustrates the efficiency of the results.

Notation: Throughout the paper, the superscript T stands
for vector/matrix transposition and the notation P > 0 (P ≥
0), for P ∈ Rn×n means that P is symmetric and positive
definite (positive semi-definite). The notations | · | and ‖ · ‖
refer to the Euclidean vector norm and the induced matrix 2
norm, respectively. Moreover, we use a±b to denote a+b−b
(not the set {a+ b, a− b}).

II. PROBLEM FORMULATION

We consider a second-order system

ẋ0(t) = x1(t),

ẋ1(t) =
∑1
i=0 ai(t)xi(t) + b(t)u(t),

(1)

where x0(t) is the measurement, u(t) ∈ R is the control
input, and the coefficients ai(t) (i = 0, 1) and b(t) have the
following form

ai(t) = ai0 + ∆ai(t), b(t) = b0 +
√
ε∆b(t). (2)
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Here ε > 0 is a small parameter, a00 ≥ 0 and a10 ≥ 0
(implying that A0 defined in (3) below is non-Hurwitz) are
constant, b0 is a known constant up to its sign, and ∆ai(t)
and ∆b(t) denote the time-varying uncertainties.

Denoting

A(t) = A0 + ∆A(t), B(t) = B0 +
√
ε∆B(t),

where

A0 =

[
0 1
a00 a10

]
, ∆A(t) =

[
0 0

∆a0(t) ∆a1(t)

]
,

B0 =

[
0
b0

]
, ∆B(t) =

[
0

∆b(t)

]
,

(3)

we present system (1) as

ẋ(t) = A(t)x(t) +B(t)u(t). (4)

A1 Assume that there exist small constants ∆a ≥ 0 and
∆b ≥ 0 such that

‖∆A(t)‖ ≤ ∆a, |∆B(t)| ≤ ∆b ∀t ≥ 0 (5)

The latter implies

‖A(t)‖ ≤ a ∀t ≥ 0, a = ‖A0‖+ ∆a. (6)

Since the sign of b0 is unknown, one cannot design for
system (4) a classical PD type stabilizing controller. To
tackle the stabilization problem subject to unknown control
directions, similar to [12] one may design for system (4) the
following bounded ES controller:

u(t) =
√

2πα√
ε

cos( 2πt
ε + k|cx0(t) + x1(t)|2), (7)

where α > 0 and k > 0 are tuning parameters, and
the coefficient c > 0 is constant. The averaged system
that corresponds to system (4), (7) with ∆A(t) = 0 and
∆B(t) = 0 is given by the following Lie Brackets system
[5], [6], [12]:

ẋav(t) = Aavxav(t), xav(t) ∈ R2, (8)

where

Aav = A0 − αkB0B
T
0 C

TC

=

[
0 1

a00 − αkb20c a10 − αkb20

]
(9)

with C = [c, 1]. From (9), it follows that when c > 0 there
always exist constants α and k leading to Hurwitz Aav .

Remark 1: Note that the bounded ES controller using the
position information only, i.e.

u(t) =
√

2πα√
ε

cos( 2πt
ε + k|cx0(t)|2)

cannot stabilize system (4) with ∆A(t) = 0 and ∆B(t) = 0.
This is due to that the resulting averaged system is given by
(8) with Aav = A0. The latter is non-Hurwitz for any α, k
and c.

It should be pointed out that the bounded ES controller (7)
depends on both x0(t) and x1(t). Recall from (1) that x1(t)
is the derivative of x0(t). Differently from [12], we consider
that the derivative x1(t) is not available. To approximate the

derivative x1(t), we employ a finite-difference approximation
of the derivative x1(t) [14], [15]:

x1(t) ≈ 1
h
√
ε
(x0(t)− x0(t− h

√
ε))

with a constant h > 0. By replacing x1(t) in (7) with
its approximation, we have the following delay-dependent
bounded ES controller

u(t) =
√

2πα√
ε

cos( 2πt
ε + k|cx0(t)

+ 1
h
√
ε
(x0(t)− x0(t− h

√
ε))|2).

(10)

We present
1

h
√
ε
(x0(t)− x0(t− h

√
ε)) = x1(t)

− 1
h
√
ε

∫ t
t−h
√
ε
(s− t+ h

√
ε)ẋ1(s)ds.

Thus, the delay-dependent bounded ES controller (10) is
rewritten as

u(t) =
√

2πα√
ε

cos( 2πt
ε + k|Cx(t) + κ(t)|2), (11)

where

κ(t) = − 1
h
√
ε

∫ t
t−h
√
ε
(s− t+ h

√
ε)Iẋ(s)ds. (12)

with I = [0, 1]. Thus,

κ̇(t) = −Iẋ(t) + 1
h
√
ε

∫ t
t−h
√
ε
Iẋ(s)ds (13)

It is easy to see that κ(t) and κ̇(t) are, respectively, of the
order of O(h) and O( 1√

ε
) when ẋ(t) is of the order of

O( 1√
ε
).

The closed-loop system (4), (11) takes the form

ẋ(t) = A(t)x(t) +
√

2πα√
ε
B0

× cos( 2πt
ε + k|Cx(t) + κ(t)|2) + v(t).

(14)

where

v(t) =
√

2πα∆B(t) cos( 2πt
ε + k|Cx(t) + κ(t)|2). (15)

III. MAIN RESULTS

In this section, we will first apply the recently proposed
time-delay approach to Lie-Brackets-based averaging method
[22], [23] that transforms the closed-loop system (14) to
a time-delay (neutral type) one, and then derive explicit
conditions in terms of simple inequalities via variation of
constants formula [21] for finding the quantitative bounds
on ε and h that ensure the regional ISS.

A. A time-delay approach to Lie-Brackets-based averaging

Differently from the Lie Brackets averaging method [5],
[6], [12], we employ in this paper a time-delay approach to
Lie-Brackets-based averaging method [22], [23] for system
(14) without any approximations, see Appendix A. The latter
allows to transform system (14) to the following time-delay
(neutral type) system:

ż(t) = [Aav + ∆A(t)](z(t)−G(t))

+
∑2
i=1(Yi(t) + Yκi

(t)) + Y3(t)
+Yκ̇(t) + Yv(t) + v(t), t ≥ ε+ h

√
ε,

(16)
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where ∆A(t), Aav and v(t) are given by (3), (9) and (15),
respectively, and

z(t) = x(t) +G(t),

G(t) = −
√

2πα
ε
√
ε
B0

∫ t
t−ε(s− t+ ε)

× cos( 2πs
ε + k|Cx(s) + κ(t)|2)ds,

Y1(t) = 2k
√

2πα
ε
√
ε
B0

∫ t
t−ε
∫ t
s

sin( 2πs
ε

+k|Cx(θ) + κ(t)|2)xT (θ)CTCA(θ)x(θ)dθds,

Y2(t) = − 8παk2

ε2 B0B
T
0 C

TC
∫ t
t−ε
∫ t
s

∫ t
θ

× cos( 2π
ε (s+ θ) + 2k|Cx(ξ) + κ(t))|2)

×x(θ)xT (ξ)CTCẋ(ξ)dξdθds,

Y3(t) = − 4παk
ε2 B0B

T
0 C

TC
∫ t
t−ε
∫ t
s

∫ t
θ

sin( 2πs
ε + k|Cx(t)

+κ(t)|2) cos( 2πθ
ε + k|Cx(t) + κ(t)|2)ẋ(ξ)dξdθds,

Yκ1(t) = 2k
√

2πα
ε
√
ε
B0

∫ t
t−ε
∫ t
s

sin( 2πs
ε

+k|Cx(θ) + κ(t)|2)κT (t)Cẋ(θ)dθds,

Yκ2
(t) = − 8παk2

ε2 B0B
T
0 C

TC
∫ t
t−ε
∫ t
s

∫ t
θ

cos( 2π
ε (s+ θ)

+2k|Cx(ξ) + κ(t)|2)x(θ)κT (t)Cẋ(ξ)dξdθds,

Yκ̇(t) = 8παk2

ε2 B0B
T
0 C

TC
∫ t
t−ε
∫ t
s

∫ t
θ

sin( 2πs
ε

+k|Cx(θ) + κ(t)|2) sin( 2πθ
ε + k|Cx(θ)

+κ(ξ)|2)x(θ)(Cx(θ) + κ(ξ))T κ̇(ξ)dξdθds,

Yv(t) = 2k
√

2πα
ε
√
ε
B0

∫ t
t−ε
∫ t
s

sin( 2πs
ε

+k|Cx(θ) + κ(t)|2)xT (θ)CTCv(θ)dθds.
(17)

Note that if x(t) is a solution to system (14), then it satisfies
the time-delay system (16) with notations (17), where ẋ(t)
is defined by (14). This implies that if solutions x(t) of the
time-delay system (16) for t ≥ ε+ h

√
ε satisfy some bound

(e.g., ISS bound given by (23) below), then the same bound
holds for solutions of system (14) for t ≥ ε+ h

√
ε.

Moreover, from (17) it follows that G(t), Yi(t) (i =
1, 2, 3), Yv(t) and Yκ̇(t) are of the order of O(

√
ε), Yκ1(t)

is of the order of O(h), Yκ2(t) is of the order of O(h
√
ε)

provided ẋ(t) is of the order of O( 1√
ε
). Thus, it can be

seen that system (16) is a perturbation of the stable averaged
system (8). Note that the perturbations in (16) will vanish
as ε → 0 and h → 0. If ε and h increase, the perturbations
may ruin the stability of system (16). The objective of this
paper is to find the first quantitative bounds on ε and h that
ensure the regional ISS.

B. Stability analysis

We are now in a position to derive explicit conditions in
terms of simple inequalities for finding the upper bounds on
ε and h that ensure the regional ISS of system (14). For the
sake of simplicity, we denote

ϑ1 =
√

2πα|B0|, ϑ2 =
√

2πα∆b,

ϑ3 = aσ +
√

2πα∆b, ϑ4 = |C|+ 2.
(18)

Theorem 1: Consider system (1) with notation (2), where
b0 has unknown sign, a00 ≥ 0 and a10 ≥ 0. Let α > 0,
k > 0 and c > 0 be such that matrix Aav given by (9) is
Hurwitz.

(i) Assume that assumption A1 holds. Given tuning pa-
rameters δ and ∆a ≥ 0, let there exist n× n matrix P > 0
and and scalar p ≥ 1, λ > 0 that satisfy the following

inequalities:

P − I ≥ 0, pI − P ≥ 0, (19)

Ξ =

[
PAav +ATavP + 2δP + λ(∆a)2I P

P −λI

]
≤ 0.

(20)
If additionally, given tuning parameters ∆b ≥ 0, ε∗ > 0,
h > 0 and 0 < σ0 < σ, the following inequality

p
[
ea(ε∗+h

√
ε∗)
(
σ0 + (ϑ1 +

√
ε∗ϑ2)(

√
ε∗ + h)

)
+
√
ε∗

2 ϑ1 + 1
δ

(√
ε∗µ0 + ε∗µ1 + h(µ2 +

√
ε∗µ3

+ε∗µ4 + ε∗
√
ε∗µ5) + ϑ2

)]2
< (σ −

√
ε∗

2 ϑ1)2

(21)

is valid, where

µ0 = 1
2ϑ1(‖Aav‖+ ∆a) + kσϑ1ϑ3|C|2

+ 1
3kϑ

3
1|C|2(1 + 2kσ2ϑ4|C|),

µ1 = 1
3kϑ

2
1ϑ3|C|2(1 + 2kσ2ϑ4|C|),

µ2 = 1
2kϑ

3
1|C|, µ5 = 1

3k
2σϑ2

1ϑ
2
3ϑ4|C|2,

µ3 = kϑ2
1|C|(ϑ3 + 1

3kσϑ
2
1ϑ4|C|),

µ4 = 1
2kϑ1ϑ3|C|(ϑ3 + 4

3kσϑ
2
1ϑ4|C|)

(22)

with a defined in (6) and ϑi (i = 1, . . . , 4) defined in (18),
then for all ε ∈ (0, ε∗] the solution of (14) starting from the
initial condition ‖φ‖C[−h

√
ε,0] ≤ σ0 satisfies

|x(t)| ≤ eat[‖φ‖C[−h
√
ε,0] + (ϑ1 +

√
εϑ2)(

√
ε+ h)]

< σ, t ∈ [0, ε+ h
√
ε],

|x(t)| < √pe−δ(t−ε−h
√
ε)
[
ea(ε+h

√
ε)
(
‖φ‖C[−h

√
ε,0]

+(ϑ1 +
√
εϑ2)(

√
ε+ h)

)
+
√
ε

2 ϑ1

]
+
√
p

δ [
√
εµ0 + εµ1 + h(µ2 +

√
εµ3 + εµ4

+ε
√
εµ5) + ϑ2] +

√
ε

2 ϑ1 < σ, t ≥ ε+ h
√
ε.
(23)

Moreover, for all initial conditions ‖φ‖C[−h
√
ε,0] ≤ σ0 the

ball

X =
{
x ∈ Rn : |x| ≤

√
p

δ [
√
εµ0 + εµ1

+h(µ2 +
√
εµ3 + εµ4 + ε

√
εµ5) + ϑ2] +

√
ε

2 ϑ1

}
(24)

is exponentially attractive with a decay rate δ.
(ii) Given any σ2 > pσ2

0 , conditions of item (i) is always
feasible for small enough h > 0, ε∗ > 0, ∆a > 0 and
∆b > 0 (meaning that the delay-dependent ES controller
(10) exponentially stabilizes (4) with a decay rate δ > 0).

The proof of Theorem 1 is given in Appendix B.
Remark 2: From item (ii) of Theorem 1, it follows that

given any initial condition ‖φ‖C[−h
√
ε,0] ≤ σ0 one can

always find σ for small enough h > 0, ε∗ > 0, ∆a > 0 and
∆b > 0 such that σ2 > pσ2

0 holds subject to p satisfying
(19). Therefore, the derived result is semiglobal.

IV. AN EXAMPLE

Consider system (1) with

a00 = a10 = 0, b0 ∈ {−1, 1},
∆ai(t) = ∆âi, ∆b(t) = ∆b̂, t ≥ 0

(25)

under the delay-dependent bounded ES controller (10), where

α = 0.01, k = 10, c = 0.5. (26)
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TABLE I
SOLUTIONS FOR DIFFERENT ∆a AND ∆b

∆a ∆b ε∗ h h
√
ε∗ UB

0 0 0.5 · 10−7 0.0248 0.5545 · 10−5 0.5538
0 0 1.0 · 10−7 0.0171 0.5408 · 10−5 0.5616
0 0 2.0 · 10−7 0.0062 0.2773 · 10−5 0.5724
0.001 0.001 0.1 · 10−7 0.0214 0.4785 · 10−5 0.5527
0.001 0.001 1.0 · 10−7 0.0137 0.4332 · 10−5 0.5605
0.001 0.001 2.0 · 10−7 0.0029 0.1297 · 10−5 0.5721
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Fig. 1. State response under a delay-dependent bounded ES controller

Thus, we have ∆a =
√∑1

i=0(∆âi)2, ∆b = ∆b̂, a = 1+∆a,
|B0| = 1 and

Aav =

[
0 1

−0.05 −0.1

]
. (27)

Let the desired decay rate be δ = 0.03.
We verify the inequalities of Theorem 1 with σ0 = 0.1,

σ = 1 and different values of ∆a and ∆b leading to
quantitative bounds on ε∗ and h (that preserve the ISS for
all ε ∈ (0, ε∗]) and the resulting ultimate bound (UB), see
Table I.

For the numerical simulations, under the initial condition
x(t) = [1,−2]T for t ≤ 0, state responses of system (1), (25)
with large uncertainties ∆a0(t) = 0, ∆a1(t) = 0.01 sin(t),
∆b(t) = 0.01 cos(t) under the delay-dependent bounded ES
controller (10), where ε = 0.0004 and h

√
ε = 0.0001 (that

are essentially larger than those in Table I, respectively)
is shown in Fig. 1, which confirms our theoretical results
illustrating the conservatism.

V. CONCLUSIONS

We have studied stabilization of linear second-order sys-
tems under unknown control directions, where a time-delay
implementation of derivative-dependent extremum seeking
control was presented, and have derived explicit conditions
in terms of simple inequalities for finding the quantitative
bounds on the dither period and delay that ensure the regional
ISS. This was done by applying the recently proposed
time-delay approach to Lie-Brackets-based averaging and by
employing variation of constants formula. Less conservative
results and their extension to higher-order systems may be
topics for future research.

APPENDIX A: TRANSFORMATION VIA TIME-DELAY
APPROACH

Inspired by [23], we introduce G(t) defined in (17). This
G-term provides a simpler stability analysis compared to that
via the term −

√
2πα
ε
√
ε
B0

∫ t
t−ε(s− t+ ε) cos( 2πs

ε +k|Cx(s) +

κ(s)|2)ds. Thus, we have

Ġ(t) = −
√

2πα√
ε
B0 cos( 2πt

ε + k|Cx(t) + κ(t)|2)

+
√

2πα
ε
√
ε
B0

∫ t
t−ε cos( 2πs

ε + k|Cx(s) + κ(t)|2)ds.
(28)

Using the definition of z(t), via (14) we obtain

ż(t) = A(t)x(t) +
√

2πα
ε
√
ε
B0

×
∫ t
t−ε cos( 2πs

ε + k|Cx(s) + κ(t)|2)ds+ v(t).
(29)

By subtracting a zero term
√

2πα
ε
√
ε
B0

∫ t
t−ε cos( 2πs

ε +k|Cx(t)+

κ(t)|2)ds, we present the last term on the right-hand side of
(29) as

√
2πα
ε
√
ε
B0

∫ t
t−ε cos( 2πs

ε + k|Cx(s) + κ(t)|2)ds

=
√

2πα
ε
√
ε
B0

∫ t
t−ε[cos( 2πs

ε + k|Cx(s) + κ(t)|2)

− cos( 2πs
ε + k|Cx(t) + κ(t)|2)]ds

= Yκ1(t) + 2k
√

2πα
ε
√
ε
B0

∫ t
t−ε
∫ t
s

sin( 2πs
ε

+k|Cx(θ) + κ(t)|2)xT (θ)CTCẋ(θ)dθds
= Y1(t) + Yκ1

(t) + Yv(t) + 4παk
ε2 B0B

T
0 C

TC

×
∫ t
t−ε
∫ t
s

sin( 2πs
ε + k|Cx(θ) + κ(t)|2)

× cos( 2πθ
ε + k|Cx(θ) + κ(θ)|2)x(θ)dθds,

(30)

where in the last equality we substituted the right-hand
side of (14) for ẋ(t) and used the fact xT (θ)CTCB0 =
BT0 C

TCx(θ) ∈ R. Here Y1(t), Yκ1
(t) and Yv(t) are defined

in (17).
Taking into account the following facts:

cos( 2πθ
ε + k|Cx(θ) + κ(θ)|2)

= cos( 2πθ
ε + k|Cx(θ) + κ(θ)|2)

± cos( 2πθ
ε + k|Cx(θ) + κ(t)|2)

= cos( 2πθ
ε + k|Cx(θ) + κ(t)|2)

+2k
∫ t
θ

sin( 2πθ
ε + k|Cx(θ) + κ(ξ)|2)

×(Cx(θ) + κ(ξ))T κ̇(ξ)dξ,

(31)

sin( 2πs
ε + k|Cx(θ) + κ(t)|2)

× cos( 2πθ
ε + k|Cx(θ) + κ(t)|2)

= sin( 2πs
ε + k|Cx(θ) + κ(t)|2) cos( 2πθ

ε
+k|Cx(θ) + κ(t)|2)± sin( 2πs

ε + k|Cx(t)
+κ(t)|2) cos( 2πθ

ε + k|Cx(t) + κ(t)|2)
= sin( 2πs

ε + k|Cx(t) + κ(t)|2) cos( 2πθ
ε + k

×|Cx(t) + κ(t)|2)− 2k
∫ t
θ

cos( 2π
ε (s+ θ) + 2k

×|Cx(ξ) + κ(t)|2)(Cx(ξ) + κ(t))TCẋ(ξ)dξ,

(32)

x(θ) = x(θ)± x(t) = x(t)−
∫ t
θ
ẋ(ξ)dξ, (33)

4π
ε2

∫ t
t−ε
∫ t
s

sin( 2πs
ε + k|Cx(t) + κ(t)|2)

× cos( 2πθ
ε + k|Cx(t) + κ(t)|2)dθds

= 2
ε

∫ t
t−ε sin( 2πs

ε + k|Cx(t) + κ(t)|2)

×[sin( 2πt
ε + k|Cx(t) + κ(t)|2)

− sin( 2πs
ε + k|Cx(t) + κ(t)|2)]ds

= − 2
ε

∫ t
t−ε sin2( 2πs

ε + k|Cx(t) + κ(t)|2)ds

= −1,

(34)
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and using the notations given by (17), we have

4παk
ε2 B0B

T
0 C

TC
∫ t
t−ε
∫ t
s

sin( 2πs
ε + k|Cx(θ)

+κ(t)|2 cos( 2πθ
ε + k|Cx(θ) + κ(θ)|2)x(θ)dθds

(31)
= Yκ̇(t) + 4παk

ε2 B0B
T
0 C

TC
∫ t
t−ε
∫ t
s

sin( 2πs
ε + k|Cx(θ)

+κ(t)|2) cos( 2πθ
ε + k|Cx(θ) + κ(t)|2)x(θ)dθds

(32)
= Y2(t) + Yκ2

(t) + Yκ̇(t) + 4παk
ε2 B0B

T
0 C

TC

×
∫ t
t−ε
∫ t
s

sin( 2πs
ε + k|Cx(t) + κ(t)|2)

× cos( 2πθ
ε + k|Cx(t) + κ(t)|2)x(θ)dθds

(33)
= Y2(t) + Y3(t) + Yκ2

(t) + Yκ̇(t) + 4παk
ε2 B0B

T
0

×CTC
∫ t
t−ε
∫ t
s

sin( 2πs
ε + k|Cx(t) + κ(t))|2)

× cos( 2πθ
ε + k|Cx(t) + κ(t)|2)x(t)dθds

(34)
= −αkB0B

T
0 C

TCx(t) + Y2(t) + Y3(t) + Yκ2
(t) + Yκ̇(t).

(35)
Substituting (35) into (30) and further into (29), we transform
(14) to the following system

ż(t) = [Aav + ∆A(t)]x(t) +
∑2
i=1(Yi(t) + Yκi

(t))
+Y3(t) + Yκ̇(t) + Yv(t) + v(t), t ≥ ε+ h

√
ε,

where Aav is given by (9). The latter together with x(t) =
z(t)−G(t) yields system (16).

APPENDIX B: PROOF OF THEOREM 1

(i) First, we assume as in [20], [22] that

|x(t)| < σ ∀t ≥ 0 (36)

holds for solutions of system (14). Denote xt(θ) = x(t+ θ),
θ ∈ [−h

√
ε, 0]. From (14), it follows that

xt(θ) =


φ(t+ θ), t+ θ < 0,

φ(0) +
∫ t+θ

0
[A(s)x(s) +

√
2πα√
ε
B0 cos( 2πs

ε

+k|Cx(s) + κ(s)|2) + v(s)]ds, t+ θ ≥ 0.

The latter together with (5), (6) and (18) implies

‖xt‖C[−h
√
ε,0] ≤ ‖φ‖C[−h

√
ε,0]

+( 1√
ε
ϑ1 + ϑ2)t+ a

∫ t
0
|x(s)|ds

≤ ‖φ‖C[−h
√
ε,0] + (ϑ1 +

√
εϑ2)(

√
ε+ h)

+a
∫ t

0
‖xs‖C[−h

√
ε,0]ds, t ∈ [0, ε+ h

√
ε],

which by Gronwall’s inequality yields

|x(t)| ≤ ‖xt‖C[−h
√
ε,0] ≤ eat[‖φ‖C[−h

√
ε,0]

+(ϑ1 +
√
εϑ2)(

√
ε+ h)], t ∈ [0, ε+ h

√
ε].

(37)

Then under the initial condition ‖φ‖C[−h
√
ε,0] ≤ σ0, inequal-

ity (23) follows from (37) since (21) implies

ea(ε+h
√
ε)[σ0 + (ϑ1 +

√
εϑ2)(

√
ε+ h)] < σ

for all ε ∈ (0, ε∗] and t ∈ [0, ε+ h
√
ε].

We next prove the first inequality of (23). The solution of
system (16) is given by

z(t) = e
∫ t
ε+h
√

ε
(Aav+∆A(θ))dθz(ε+ h

√
ε)

+
∫ t
ε+h
√
ε
e
∫ t
s

(Aav+∆A(θ))dθ[−(Aav + ∆A(s))

×G(s) +
∑2
i=1(Yi(s) + Yκi

(s)) + Y3(s)
+Yκ̇(s)) + Yv(s) + v(s)]ds, t ≥ ε+ h

√
ε

leading to

|z(t)| ≤ ‖e
∫ t
ε+h
√

ε
(Aav+∆A(θ))dθ‖|z(ε+ h

√
ε)|

+
∫ t
ε+h
√
ε
‖e

∫ t
s

(Aav+∆A(θ))dθ‖
[
|(Aav + ∆A(s))G(s)|

+
∑2
i=1(|Yi(s)|+ |Yκi

(s)|) + |Y3(s)|
+|Yκ̇(s)|+ |v(s)|+ |Yv(s)|

]
ds, t ≥ ε+ h

√
ε.

(38)
From (5), (6), (14), (18) and (36), it follows that

|ẋ(t)| = |A(t)x(t) +
√

2πα√
ε
B0

× cos( 2πt
ε + k|Cx(t) + κ(t)|2) + v(t)|

< aσ +
√

2πα√
ε

(|B0|+
√
ε∆b)

= 1√
ε
ϑ1 + ϑ3, t ≥ 0.

(39)

Based on (12), (13), (15) and (39), we obtain for all t ≥ h
√
ε

|κ(t)| = 1
h
√
ε

∣∣ ∫ t
t−h
√
ε
(s− t+ h

√
ε)Iẋ(s)ds

∣∣
< 1

2h(ϑ1 +
√
εϑ3),

(40)

|κ̇(t)| ≤
∣∣Iẋ(t)

∣∣+ 1
h
√
ε

∣∣ ∫ t
t−h
√
ε
Iẋ(s)ds

∣∣
< 2√

ε
ϑ1 + 2ϑ3,

(41)

|v(t)| =
√

2πα
∣∣∆B(t) cos( 2πt

ε + k|Cx(t) + κ(t)|2)
∣∣

≤ ϑ2.
(42)

Then, by using (5), (6), (17), (18), (36) and (39)-(42) we
obtain for all t ≥ ε+ h

√
ε

|(Aav + ∆A(t))G(t)| =
√

2πα
ε
√
ε

∣∣ ∫ t
t−ε(s− t+ ε)

×(Aav + ∆A(t))B0 cos( 2πs
ε + k|Cx(s) + κ(t)|2)ds

∣∣
≤
√

2πα
ε
√
ε

(‖Aav‖+ ∆a)|B0|
∫ t
t−ε(s− t+ ε)ds

=
√
ε

2 ϑ1(‖Aav‖+ ∆a),
(43)

|Y1(t)| = 2k
√

2πα
ε
√
ε

∣∣B0

∫ t
t−ε
∫ t
s

sin( 2πs
ε

+k|Cx(θ) + κ(t)|2)xT (θ)CTCA(θ)x(θ)dθds
∣∣

≤ 2kaσ2
√

2πα
ε
√
ε
|B0||C|2

∫ t
t−ε
∫ t
s
dθds

=
√
εkaσ2ϑ1|C|2,

(44)

|Y2(t)| = 8παk2

ε2

∣∣B0B
T
0 C

TC
∫ t
t−ε
∫ t
s

∫ t
θ

cos( 2π
ε (s+ θ)

+2k|Cx(ξ) + κ(t)|2)x(θ)xT (ξ)CTCẋ(ξ)dξdθds
∣∣

< 8παk2

ε2
√
ε
σ2(ϑ1 +

√
εϑ3)|B0|2|C|4

∫ t
t−ε
∫ t
s

∫ t
θ
dξdθds

= 2
√
ε

3 k2σ2ϑ2
1(ϑ1 +

√
εϑ3)|C|4,

(45)
|Y3(t)| = 4παk

ε2

∣∣B0B
T
0 C

TC
∫ t
t−ε
∫ t
s

∫ t
θ

sin( 2πs
ε + k|Cx(t)

+κ(t)|2) cos( 2πθ
ε + k|Cx(t) + κ(t)|2)ẋ(ξ)dξdθds

∣∣
< 4παk

ε2
√
ε
(ϑ1 +

√
εϑ3)|B0|2|C|2

∫ t
t−ε
∫ t
s

∫ t
θ
dξdθds

=
√
ε

3 kϑ
2
1(ϑ1 +

√
εϑ3)|C|2,

(46)
|Yκ1

(t)| = 2k
√

2πα
ε
√
ε

∣∣B0

∫ t
t−ε
∫ t
s

sin( 2πs
ε

+k|Cx(θ) + κ(t)|2)κT (t)Cẋ(θ)dθds
∣∣

< k
√

2πα
ε2 h(ϑ1 +

√
εϑ3)2|B0||C|

∫ t
t−ε
∫ t
s
dθds

= h
2kϑ1(ϑ1 +

√
εϑ3)2|C|,

(47)

|Yκ2
(t)| = 8παk2

ε2

∣∣B0B
T
0 C

TC
∫ t
t−ε
∫ t
s

∫ t
θ

cos( 2π
ε (s+ θ)

+2k|Cx(ξ) + κ(t)|2)x(θ)κT (t)Cẋ(ξ)dξ
∣∣

< 4παk2

ε2
√
ε
σh(ϑ1 +

√
εϑ3)2|B0|2|C|3

∫ t
t−ε
∫ t
s

∫ t
θ
dξdθds

= h
√
ε

3 k2σϑ2
1(ϑ1 +

√
εϑ3)2|C|3,

(48)
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|Yκ̇(t)| = 8παk2

ε2

∣∣B0B
T
0 C

TC
∫ t
t−ε
∫ t
s

∫ t
θ

sin( 2πs
ε

+k|Cx(θ) + κ(t))|2) sin( 2πθ
ε + k|Cx(θ)

+κ(ξ)|2)x(θ)(Cx(θ) + κ(ξ))T κ̇(ξ)dξdθds
∣∣

< 8παk2

ε2
√
ε
σ(2σ|C|+ h(ϑ1 +

√
εϑ3))(ϑ1 +

√
εϑ3)

×|B0|2|C|2
∫ t
t−ε
∫ t
s

∫ t
θ
dξdθds

= 2
√
ε

3 k2σϑ2
1(2σ|C|+ h(ϑ1 +

√
εϑ3))(ϑ1 +

√
εϑ3)|C|2,

(49)
|Yv(t)| = 2k

√
2πα

ε
√
ε

∣∣ ∫ t
t−ε
∫ t
s

sin( 2πs
ε + k|Cx(θ)

+κ(t)|2)B0x
T (θ)CTCv(θ)dθds

∣∣
< 2k

√
2πα

ε
√
ε
σϑ2|B0||C|2

∫ t
t−ε
∫ t
s
dθds =

√
εkσϑ1ϑ2|C|2.

(50)
By using (38), (42)-(50), we obtain

|z(t)| < ‖e
∫ t
ε+h
√

ε
(Aav+∆A(θ))dθ‖|z(ε+ h

√
ε)|

+[
√
εµ0 + εµ1 + h(µ2 +

√
εµ3 + εµ4 + ε

√
εµ5)

+ϑ2]
∫ t
ε+h
√
ε
‖e

∫ t
s

(Aav+∆A(θ))dθ‖ds, t ≥ ε+ h
√
ε,
(51)

where µi (i = 0, . . . , 5) are given by (22). Assuming as in
[21], [23] that there exist scalars δ > 0 and p > 1 satisfying

‖e
∫ t
ε+h
√

ε
(Aav+∆A(θ))dθ‖ ≤ √pe−δ(t−s)

∀t ≥ s ≥ ε+ h
√
ε.

(52)

From (51) and (52), we obtain for t ≥ ε+ h
√
ε

|z(t)| < √pe−δ(t−ε−h
√
ε)|z(ε+ h

√
ε)|

+[
√
εµ0 + εµ1 + h(µ2 +

√
εµ3 + εµ4

+ε
√
εµ5) + ϑ2]

∫ t
ε+h
√
ε

√
pe−δ(t−s)ds

≤ √pe−δ(t−ε−h
√
ε)|z(ε+ h

√
ε)|+

√
p

δ [
√
εµ0

+εµ1 + h(µ2 +
√
εµ3 + εµ4 + ε

√
εµ5) + ϑ2],

Moreover, the following holds for t ≥ ε+ h
√
ε:

|x(t)| = |z(t)−G(t)| ≤ |z(t)|+ |G(t)|
≤ |z(t)|+

√
ε

2 ϑ1,
(53)

|z(t)| = |x(t) +G(t)| ≤ |x(t)|+ |G(t)|
≤ |x(t)|+

√
ε

2 ϑ1.
(54)

Thus, we arrive at

|x(t)|
(53)
<
√
pe−δ(t−ε−h

√
ε)|z(ε+ h

√
ε)|+

√
p

δ [
√
εµ0

+ εµ1 + h(µ2 +
√
εµ3 + εµ4 + ε

√
εµ5) + ϑ2] +

√
ε

2 ϑ1
(54)
<
√
pe−δ(t−ε−h

√
ε)(|x(ε+ h

√
ε)|+

√
ε

2 ϑ1) +
√
p

δ [
√
εµ0

+ εµ1 + h(µ2 +
√
εµ3 + εµ4 + ε

√
εµ5) + ϑ2] +

√
ε

2 ϑ1
(37)
<
√
pe−δ(t−ε−h

√
ε)
[
ea(ε+h

√
ε)
(
‖φ‖C[−h

√
ε,0] + (ϑ1

+
√
εϑ2)(

√
ε+ h)

)
+
√
ε

2 ϑ1

]
+
√
p

δ [
√
εµ0 + εµ1 + h(µ2

+
√
εµ3 + εµ4 + ε

√
εµ5) + ϑ2] +

√
ε

2 ϑ1, t ≥ ε+ h
√
ε.

This implies the second inequality of (23) for all ε ∈ (0, ε∗] if
under the initial condition ‖φ‖C[−h

√
ε,0] ≤ σ0 the following

holds
√
p
[
e−δ(t−ε

∗−h
√
ε∗)
(
ea(ε∗+h

√
ε∗)
(
σ0 + (ϑ1 +

√
ε∗ϑ2)

×(
√
ε∗ + h)

)
+
√
ε∗

2 ϑ1

)
+ 1

δ (
√
ε∗µ0 + ε∗µ1 + h(µ2

+
√
ε∗µ3 + ε∗µ4 + ε∗

√
ε∗µ5) + ϑ2)

]
< σ −

√
ε∗

2 ϑ1.

The latter, by squaring both sides, is equivalent to (21).

Finally, by following arguments of [20], [23], it can be
proved that inequalities (19) and (20) guarantee (52) whereas
inequality (21) results in (36).

(ii) The proof of the feasibility of inequalities (19)-(21) is
similar to Remark 2 in [21]. This completes the proof.
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[12] A. Scheinker and M. Krstić, “Minimum-seeking for CLFs: Universal
semiglobally stabilizing feedback under unknown control directions,”
IEEE Transactions on Automatic Control, vol. 58, no. 5, pp. 1107–
1122, 2013.
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