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Abstract— Motivated by Industry 4.0 applications, we con-
sider quickest change point detection (QCD) when process
measurements are transmitted by a sensor over a lossy wireless
link to a decision maker (DM). The sensor node samples mea-
surements using a Bernoulli sampling process, and places the
measurement samples in a transmit queue of the transmitter.
The transmitter uses a retransmit-until-success transmission
strategy to deliver packets to the DM over the lossy link,
which is modeled as an independent Bernoulli process and has
different loss probabilities before and after the change. We pose
the QCD problem in the non-Bayesian setting under Lorden’s
framework [1], and derive a CUSUM algorithm. By defining a
suitable Markov process, involving the DM measurements and
the queue length process, we show that the problem reduces
to QCD of a Markov process. Characterizing the information
measure I per measurement sample at the DM, our analysis
proves the asymptotic optimality of our algorithm when the
false alarm rate tends to zero. We discuss extensions of the
analysis to periodic sampling and no-retransmission cases.
Through numerical analysis, we demonstrate trade-offs that
can be used to optimize system design parameters such as the
sampling rate of the measurement process in the non-asymptotic
regime.

I. INTRODUCTION

Online condition monitoring of industrial machinery is an
important part of the vision of Industry 4.0 [2]. Such moni-
toring can help detect incipient failure of components, such
as bearings, followed by maintenance actions or replacement,
thus preventing catastrophic system failures that can lead to
expensive repair and downtime. Due to the practical difficulty
of laying several wires from each machine to a central data-
processing computer, specially when moving parts have to be
monitored, Industrial IoT networks are expected to be largely
wireless. Indeed, some machine component manufacturers
(e.g., bearings, see Schaeffler OPTIME [3]) have already
packaged sensors with wireless communication chipsets. In
such a situation, the measurements from the sensors are
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subject to possible data loss on the wireless link. Further,
the increased vibrations in a faulty machine can lead to
degradation in the quality of the wireless link.

With the above considerations in mind, in this paper we
are motivated to study the classical problem of quickest
change point detection (QCD) in a stochastic process (e.g.,
the vibration process in a bearing) with the novel feature
that the measurements can experience random loss, and,
therefore, delay due to retransmissions. When the change
in the measured process coincides with a degradation of
the wireless channel, the packet loss process also provides
information about the change, in addition to the contents of
the delivered measurement packets.

We consider the following model. The wireless channel
is slotted (see, e.g., 6TiSCH [4]), with each transmitted
packet occupying one slot. Packet delivery success is known
to the transmitter by an acknowledgment within the slot.
An unacknowledged packet is reattempted until success.
The sensor collects at most one sample per channel slot.
A packet carrying a measurement sample is placed in the
link transmission queue. The problem of the decision maker
(DM) at the receiver of the wireless link is to use the
measurements, and any other information, to quickly detect
a change in the measurement process at the sensor, while
controlling the false alarm rate.

We formulate this QCD problem in the framework of
Lorden [1], where we attempt to minimize the worst case
(in the sense of an essential supremum) average delay to
detection (ESADD) under a constraint on the false alarm
rate measured by the average run length to false alarm
(ARL2FA). In the situation that the wireless packet loss
probability changes after the change occurs, and assuming
the knowledge of the packet loss probability before and after
the change point, we provide a sequential detection algorithm
based on Page’s CUSUM algorithm [5]. By augmenting the
observation space with the queue length process, we show
that the QCD problem reduces to a sequential detection
problem for Markov processes, and prove analytically, using
Lai’s [6] framework, that the proposed algorithm is asymp-
totically the optimal sequential detector as the ARL2FA →
∞. We provide a numerical analysis of the non-asymptotic
performance of the algorithm, and show the effect of the
delays due to the transmission queue and the sampling rate
on the average delay to detection (ADD). We also show,
through simulations, that there exists an optimum sampling
rate that minimizes the ADD in the non-asymptotic regime.

a) Related literature: The QCD problem has a long
history. In [1], Lorden proved the asymptotic optimality
of the CUSUM algorithm (originally proposed by Page in
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[5]) in minimizing the worst-case delay to detection as
the false alarm constraint ALR2FA tends to infinity. The
optimality of CUSUM in minimizing the ESADD for non-
asymptotic ARL2FA was shown in [7]. The QCD problem
in the context of a wireless network, that introduces delays
and possible losses in the availability of observations, has
not received much attention in the literature to the best of
our knowledge. In [8], this problem has been studied in a
Bayesian setting where multiple sensors, that observe the
same process, transmit their observations to a fusion center
over a wireless network. While there is no packet loss in this
formulation, there is asynchrony in the arrival (at the DM)
of the batch of measurement packets from the same sample,
leading to the question about how the partial arrivals from a
batch should be processed.

b) Outline of the paper: The rest of the paper is
organized as follows. In Sec. II, we describe our system
model and describe the QCD problem statement. We provide
a CUSUM algorithm for QCD in Sec. III and prove the
asymptotic optimality of our algorithm in Sec. IV. Sec. V dis-
cusses the applicability of our approach to certain extensions
of the system model. Discussion about the non-asymptotic
aspects of the algorithm and numerical results are provided
in Sec. VI. Sec. VII concludes the paper.

II. SYSTEM MODEL AND NOTATION

We consider a discrete-time system where a sensor node
samples a random process at a sampling rate 0 < r < 1,
which is the probability that a new sample is generated
in each discrete time interval. The sample is encapsulated
in a packet, and immediately added to the transmit queue
of the transmitter of a wireless link connecting the sensor
to the DM. The wireless channel is slotted with a known
packet loss probability. If its queue is nonempty at the
beginning of a slot, the transmitter transmits one packet; if
the packet succeeds an acknowledgment is received back in
the same slot, else the packet is backlogged for reattempt
in the next slot. We assume that packets are attempted till
success. The time slots are of unit size (in practice the time
taken to transmit one packet and receive its acknowledgment,
along with the interpacket gaps and guard times) and are
indexed by k ∈ Z = {. . . ,−1, 0, 1, 2, . . .}, where slot k
refers to the time interval (k − 1, k]. We assume that the
nodes in the network are all time synchronized. Further,
we assume in-order reception of the transmitted packets,
by the sensor node, at the DM. The sensor node samples
a measurement Xj at time denoted tj , where j = 1, 2, . . ..
The measurements are independent, and have a probability
distribution

Xj ∼

{
f0 if tj < ν,

f1 if tj ≥ ν,

where ν ≥ 1 is an unknown deterministic time, referred to as
the change point at which the distribution of the observations
changes from a known distribution f0 to a known distribution
f1. We assume that this change point occurs at the end of the
slot ν. This change in the distribution of the measurements

may occur due to the development of a fault in one of
the components of the machinery, whose health is being
monitored by the sensor node. Further, the channel over
which the sensor node transmits to the DM has a probability
of successful transmission p0 for k ≤ ν and p1 for k > ν.
We assume that the channel is conditionally independent of
the sampling process given the change point ν.

The problem that we set out to solve in this work is
for the DM to detect the change in the distribution of the
samples as quickly as possible, when the DM receives data
sequentially, while controlling the false alarms to be below
a given threshold. We first define the notation to be used in
the rest of the paper before we state our problem formally.

• Pν ,Eν denote the underlying probability law and the
expectation, when the change occurs in the slot ν. In
particular, P0 denotes the probability law when the
change has already occurred before the start of the
detection procedure.

• P∞,E∞ denote the probability law, and the expectation,
when the change does not occur (ν = ∞).

• Sν denotes the number of packets that arrived at the
transmit queue after the QCD process starts until the
change point ν, i.e., it counts the number of arrivals in
the time (0, ν].

• Qk is the number of samples in the queue at the begin-
ning of the time slot k (see Fig.1). Packet arrivals into
the queue during the time (k − 2, k − 1] are accounted
for in Qk. The sensor node attempts a transmission in
slot k if Qk > 0.

• Dk denotes the index of the last measurement packet
successfully received at the DM up to the end of slot
k.

• Yk denotes the packet loss/success observed at the DM.
Yk is defined below.

• Zk is the received measurement at the DM in slot k.
To denote that there was no transmission on the channel
due to an empty transmit queue, we say that the channel
service process and the received data is ∅. (Yk, Zk) are
defined as

(Yk, Zk) =


(1, XDk

), on successful transmission,
(0, ∗) , on unsuccessful transmission,
(∅, ∅) , on no transmission.

• The probability of successful transmission over the
channel is

P (Yk = 1 | Qk > 0) =

{
p0 if k ≤ ν,

p1 if k > ν.

We assume that p0, p1 are known. To ensure stability of
the transmit queue, we make the following assumption:
Assumption: The sampling rate r < min {p0, p1}.

The DM uses a sequential algorithm to detect the change
point using the observations of the packet loss/success pro-
cess and the measurement samples that it receives. Denote
by Ft = σ (Yk, Zk; 1 ≤ k ≤ t), the σ-algebra generated by
the observations available at the DM up to the edge of slot
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k − 2 k − 1 k k + 1

Qk
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(Dk, Zk)

packet transmission

Packet Arrival
Fig. 1. Slot k corresponds to time ∈ [k − 1, k). The change point occurs
at the end of the time slot ν.

t. Then, the DM uses a sequential detection rule, an {Ft}-
stopping time T to raise an alarm declaring that a change has
been detected. We measure the performance of the detection
rule, following Lorden’s approach [1], in terms of the average
delay in the detection of the change point, measured using
the ESADD. We aim to minimize ESADD subject to the
ARL2FA ≥ γ, where γ > 0 is a large positive number, i.e.,
find a T ∗ that solves

inf
T∈Cγ

sup
ν≥1

esssupEν

[
T − ν + 1 | Zν−1

1 , Y ν−1
1

]
︸ ︷︷ ︸

.
=E1[T ]

, (1)

where Cγ = {T : E∞ [T ] ≥ γ}, Zν−1
1 = {Z1, . . . , Zν−1},

and Y ν−1
1 = {Y1, . . . , Yν−1}.

III. LOG LIKELIHOOD RATIO ANALYSIS

We assume that the transmitter queue length at the be-
ginning of the first slot, Q1, is known a priori to the DM.
The packets already in the transmitter queue, before the
QCD process starts, will need to be discarded by the DM.
The information Q1 could be conveyed to the DM by a
control packet that initializes the QCD process. As before,
we assume that control packets (initialization, acknowledg-
ments) always succeed (due to them being small, and being
transmitted with a more robust scheme that is not costed in
our current model).

The log-likelihood ratio of Pν vs. P∞, based on observa-
tions at the DM at time n, is log

Pν(Y
n
1 ,Zn

1 |Q1)

P∞(Y n
1 ,Zn

1 |Q1)
. Define

Li = 1{Qi>0} log
P0(Yi | Qi > 0)

P∞ (Yi | Qi > 0)

+ 1{Yi=1,Di>Q1+Sν} log
f1 (XDi

)

f0 (XDi)
. (2)

The following lemma shows that the log-likelihood ratio can
be written as a sum of likelihood functions, Li, with each
being a function of the observations at slot i alone.

Lemma 1. With Li as in (2), the log-likelihood ratio satisfies

log
Pν (Y

n
1 , Zn

1 | Q1)

P∞ (Y n
1 , Zn

1 | Q1)
=

n∑
i=ν+1

Li. (3)

The proof (provided in appendix) uses the fact that the arrival
process of the measurement samples is the same under both
the probability laws Pν and P∞.

The DM uses the CUSUM rule [5] with a CUSUM update
Li for detection of the change point. The detection rule is
an Ft–stopping time T , defined as

T (h) = min
{
n ∈ N : Cn > h,Cn = (Cn−1 + Ln)

+
}
,

(4)
where we initialize C0 = 0. The decision threshold h, is
tuned to achieve the target false alarm performance.

IV. ASYMPTOTIC ANALYSIS

In this section, we analyze the performance of
CUSUM (4), in the asymptotic regime as γ → ∞. Since
we assume r < min {p0, p1}, the transmit queue is stable.
Under the probability law Pν , we have a Geom/Geom/1
queue [9] with arrival rate r and service rate p1.

Define ζk = (Qk, Yk, Zk); see Fig. 1 for the embedding
of the component processes. It is clear from the evolution
of queue dynamics defined in Sec. III that ζk is a Markov
process, given the change point ν. Under the probability
law P0, where the channel success probability is p1, the
stationary distribution of the Markov process ζk is given by
Π

(p1)
ζ . The log-likelihood ratio of ζn1 , given Q1, under Pν

versus P∞ is equal to

ℓn = log
Pν (ζ

n
1 | Q1)

P∞ (ζn1 | Q1)
= log

Pν (Z
n
1 , Y

n
1 | Q1)

P∞ (Zn
1 , Y

n
1 | Q1)

since, given
(
Q1, Y

k
1 ,

)
, Qk is equal under both the proba-

bility laws, due to the arrival process not depending on the
hypotheses. By Lemma 1, we then have ℓn =

∑n
i=1 Li.

Define the stationary expected value of the log-likelihood
ratio update Li under the distribution Π

(p1)
ζ as

I = E
Π

(p1)

ζ

[L1] = P0 (Q1 > 0) (I (p1, p0) + p1I (f1, f0)),

(5)
where I (p1, p0) = E

Π
(p1)

ζ

log P0(Yk|Qk>0)
P∞(Yk|Qk>0) and is the

Kullback-Leibler divergence between the Bernoulli distri-
butions with parameters p1 and p0, i.e., p1 log

p1

p0
+ (1 −

p1) log
1−p1

1−p0
. More generally, the quantity I (f1, f0) =

E
Π

(p1)

ζ

log
f1(Xj)
f0(Xj)

is the Kullback-Leibler divergence be-
tween the distributions of the samples f1 and f0. The
quantity P0 (Q1 > 0) can be computed using the Lit-
tle’s theorem [9] for queues. For a Geom/Geom/1 queue
with arrival probability r and service probability p1,
P0 (Q1 > 0) = r/p1. The quantity I can be rewritten as
I = r

(
1
p1
I (p1, p0) + I (f1, f0)

)
.

Since {ζk} is an aperiodic and recurrent Markov process,
by the ergodic theorem for Markov processes [10], we have

lim
n→∞

1

n
ℓn = lim

n→∞

1

n

n∑
i=1

Li = E
Π

(p1)

ζ

[L1] = I. (6)

In the sequel, we prove the asymptotic optimality of the
CUSUM rule (4) by showing that a lower bound exists on
the ESADD defined in (1) when the ARL2FA E∞ [T ] ≥ γ,
and then by proving that the CUSUM rule defined in (4)
achieves the lower bound asymptotically. The proofs for the
theorems are provided in the Appendix, where we use Lai’s
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[6] generalization of Lorden’s asymptotic theory to general
processes to prove the claims.

Theorem 2 (Lower bound on ESADD). For the Markov
process ζk, as the ARL2FA γ → ∞, we have

inf
{
E1 [T ] : E∞ [T ] ≥ γ

}
≥

(
I−1 + o(1)

)
log γ.

Next, we show that there exists an upper bound on the
ESADD of the CUSUM detector (4).

Theorem 3 (Upper bound on CUSUM ESADD). For the
CUSUM (4) with a threshold h, we have E∞ [T ] < ∞ and

E1 [T ] ≤
(
I−1 + o(1)

)
h, as h → ∞.

By the above two theorems, we claim that, as γ → ∞,
the CUSUM algorithm (4) achieves the lower bound on
the ESADD with a threshold h = log γ, and is hence an
asymptotically optimal sequential detection algorithm. For a
threshold h, and I defined as in (5), the detection rule thus
has ESADD E1 [T ] ≈ h

I (1 + o(1)).

V. EXTENSIONS

In this section, we show that our analysis holds for two
simple extensions of the system model.

A. Periodic sampling

In Sec. II, we assumed that the measurements are sampled
such that the probability of a packet arrival at the transmit
queue at each slot is given by the Bernoulli distribution
with parameter r. Suppose instead that we consider that the
sample measurements are produced by a periodic sampler,
with sampling interval s = 1/r. Then, there is a packet
arrival at the transmit queue once every s time instants.
We first note that since the packet arrivals are independent
of the change, Lemma 1 holds for this case, and the DM
uses the same CUSUM algorithm (4) in this case too. The
analysis in Sec. IV crucially uses the Markov property of
ζk. To preserve the Markovian property in this case, we
need to augment the state space of observations by defining
ζk = (Qk, Vk, Yk, Zk), where Vk, k ∈ N counts the number
of slots to the next packet arrival. Note that given V1, and
the sampling interval, Vk can be computed for all k > 1. The
analysis in Sec. IV too holds for this case after augmenting
the state space of observations.

B. QCD over a lossy link with no retransmissions

In Sec. II, we assumed that the packet transmissions
are attempted till success, and that the DM receives every
measurement sample that the sensor node samples. Suppose
now that the transmitter uses a best-effort service, i.e., it
attempts no retransmissions upon packet transmission failure.
The sensor, on sampling a new measurement, immediately
places it in a new packet and adds it to transmit queue. The
transmitter transmits this packet in the next slot and removes
the packet from the queue. In this case, the DM does not
receive all the measurement samples that the sensor node
samples. The DM must make a decision on whether a change
has occurred, based on the samples that it has received.

In this case too, since the packet arrival process at the
transmitter is the same under both the probability laws,
Lemma 1 holds, and the DM makes a decision using the
CUSUM detector (4). Note that Qk ∈ {0, 1}, when there
are no retransmissions, and Qk is i.i.d. whenever the packet
arrivals are i.i.d. and P0 (Q1 > 0) = r, where r is the packet
arrival rate, as before. The expected value of the CUSUM
update Lk under P0 is

I = E1 [L1] = r (I (p1, p0) + p1I (f1, f0)) . (7)

The process {ζk : k ≥ 1} is i.i.d. before and after the change,
and the usual CUSUM calculations [11] hold. The ESADD
in this case for the CUSUM detector (4) with a threshold h
is also h(I−1 + o(1)), where I is given by (7).

VI. DISCUSSION AND NUMERICAL ANALYSIS

In Sec. IV, the asymptotic performance of the CUSUM
algorithm, when the ARL2FA → ∞, was analyzed. Mous-
takides et al. [12] state that when the observation process
is Markov, the optimum threshold in the non-asymptotic
regime is a function of the initial state. However, in our
analysis in Sec. IV, we find that the asymptotic performance,
as ARL2FA → ∞, of our CUSUM algorithm is indepen-
dent of the initial state of the Markov process ζk. In the
asymptotic regime, as the target ARL2FA goes to ∞, the
CUSUM threshold also goes to ∞ [1]. In this regime, the
Markov process {ζ} approaches the stationary state under
the post-change distribution. Then, the initial state makes
little difference to the overall performance of the detection
algorithm.

In Fig. 2, we plot the the ratio of the simulated ADD
to the threshold (h) against the average sampling interval
(s = 1/r). To generate the plot, in the system described
in Sec.II, we fix the channel parameters as p0 = 0.61 and
p1 = 0.60. We take the sensor measurement distribution to
be Normal with a mean µ0 = 0 before the change and a mean
µ1 = 10 after the change; the variance is held constant at
σ2 = 1/2. For each run of the simulation, we sample Q1

from the stationary distribution of the queue, with arrival
r and service probability p0. We fix the change point to
have occurred before the start of the detection procedure and
run each simulation until the CUSUM statistic crosses the
threshold h. The ADD plotted in Fig. 2 is averaged over 106

repetitions. We compare the ratio ADD/h for various values
of h to the asymptotic value 1

I , computed in Theorem 3. We
note that, ADD/h approaches 1/I as h → ∞

In practice, the transmit queue adds a queuing delay
component (denoted by dQ) to the overall detection delay.
The queuing delay consists of two parts: a) the time required
for the packets already present in the transmit queue at the
first slot to be flushed out, b) the delay that the last packet
transmitted by the sensor node to the DM before a decision
about the change is made at the DM. If the sampling rate r
is close to p0, the former delay is high; if r is close to p1, the
latter delay is high. It is thus desirable to keep the r small to
reduce dQ. The sampling process, too, adds a sampling delay
component (denoted by dS) to the overall delay to detection.
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Fig. 2. Simulated ‘ADD/h’ vs Average Sampling Interval (s = 1/r) for
various values of threshold h. Notice how the simulated ADD/h approaches
the asymptotic ESADD/h = 1/I , computed in Theorem 3 as h increases.
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h = 2000,p1 = 0.6,p0 = 0.6

Fig. 3. Simulated ADD vs Sampling Rate r for various values of threshold
h. The queuing delay dQ increases as r ↑ p1. The sampling delay dS
increases with decreasing r. .

The average sampling delay with Bernoulli arrivals at a rate
r is 1/r. Decreasing the sampling rate increases the sampling
delay.

Fig. 3 shows the trade-off that exists between increasing
the sampling rate to decrease dS and decreasing the sampling
rate to keep the dQ low. We plot the ADD for two values
of the threshold h, and sweep the sampling rate r. The
simulation parameters to produce Fig. 3 are the same as
those in Fig. 2. In Fig. 3, we show the increase in the
sampling delay with a decrease in the sampling rate. When r
is swept close to p1 = 0.61, we see that the ADD shoots up
– this corresponds to the increase in dQ as the sampling rate
becomes close to the queue service rate p1. In Fig. 2, the
gap between the ESADD/h = 1/I curve and the simulated
ADD/h curves correspond to (dS + dQ)/h. Hence, as the h
increases, the difference between the two curves reduces.

In Fig. 4, we plot the simulated ADD against the simulated
ARL2FA, for different values of sampling rate r. To generate
this plot, we fix p0 = 0.95, p1 = 0.90, and take the
sensor measurements distribution to be Normal with mean
µ0 = 0 prior to the change, and µ1 = 1 after change; the
variance is held constant at σ2 = 1/2. The figure confirms
the well known [11] linear growth of ADD with increase

log10(ARL2FA) in slots
4.0 4.5 5.0 5.5 6.0

A
D

D
 in

 s
lo

ts

60

80

100

Network-aware r = 0.87

Network-oblivious r = 0.87

Network-aware r = 0.2

Network-oblivious r = 0.2

Fig. 4. Simulated ADD vs ARL2FA for various Sampling Rate r, where
p0 = 0.95, p1 = 0.9. Plot compares the simulated performance of network-
oblivious detection with that of network-aware detection.

in the log(ARL2FA). Fig. 4 also shows the advantage of
the network-aware detection procedure that we describe in
this work over a detector that is network-oblivious. The
network-oblivious DM too uses a CUSUM detector; but,
being network oblivious, it updates the CUSUM statistic only
on the successful reception of a packet, and does not use the
channel service process observations {Yk}. We see from the
plot that the network-aware CUSUM detector has a much
lower ADD compared to the network-oblivious detector for
the same ARL2FA. In Fig. 3, we show the importance of
choosing the right sampling rate r for a given channel loss
probability. The sampling delay dS and dQ are added to the
detection delay even when the channel success probabilities
do not change with the change point. A network-oblivious
detector, on account of not having information about the
channel state, may choose a mismatched sampling rate,
resulting in a large delay penalty.

To conclude, we study the performance of the CUSUM
algorithm, defined in (4), using numerical simulations, and
assert the accuracy of our analysis by comparing against sim-
ulated runs of the CUSUM. Further, we show that a network-
aware DM that uses the additional information provided by
the channel performs much better than a network-oblivious
DM that only uses information in the received packets.

VII. CONCLUSION

We have studied the problem of QCD when a remote
DM receives delayed measurement samples from a sensor
node that transmits its measurements over a lossy link.
For the setting when the channel loss probability changes
after the change point, we design a CUSUM algorithm and
show its optimality, by modeling the observation process
as Markovian. We study the non-asymptotic detection delay
of our algorithm numerically and show a trade-off between
the sampling delay and the queuing delay. We also show
the gains made by a detector that is network-aware. We
plan to study the case of multiple sensors transmitting their
measurements over a network in future work.
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APPENDIX I
PROOF OF LEMMA 1

We write

log
Pν (Y

n
1 , Zn

1 | Q1)

P∞ (Y n
1 , Zn

1 | Q1)
=

n∑
i=1

log
Pi,ν

(
Yi | Q1, Y

i−1
1

)
Pi,∞

(
Yi | Q1, Y

i−1
1

)
+

n∑
i=1

log
Pi,ν

(
Zi | Q1, Y

i
1 , Z

i−1
1

)
Pi,∞

(
Zi | Q1, Y i

1 , Z
i−1
1

) , (8)

where Pi,ν and Pi,∞ are the probability distributions at
time i, given that the change occurs at a finite ν and
ν = ∞ (no change), respectively. We drop the dependence
of Yi on Zi

1 since Yi ⊥⊥ Zi given
(
Q1, Y

i−1
1

)
. To simplify

the first term in (8), we note that log
Pi,ν(Yi|Q1,Y

i−1
1 )

Pi,∞(Yi|Q1,Y
i−1
1 )

=

1{Qi>0} log
Pi,ν(Yi|Q1,Y

i−1
1 )

Pi,∞(Yi|Q1,Y
i−1
1 )

, since Yi = ∅ w.p. 1 on the set

where {Qi = 0} under both the probability laws. Further,

1{Qi>0} log
Pi,ν(Yi|Q1,Y

i−1
1 )

Pi,∞(Yi|Q1,Y
i−1
1 )

= 1{Qi>0} log
Pi,ν(Yi|Qi>0)
Pi,∞(Yi|Qi>0) ,

because Yi depends only on Qi, P
(
Qi | Q1, Y

i
1

)
depends

only on the arrival process, and P (Yi | Qi = 0) = 1{Yi=∅}
under both the probability laws. Then, the first summand in
(8) can be simplified to

∑n
i=ν+1 1{Qi>0} log

P0(Yi|Qi>0)
P∞(Yi|Qi>0) .

To simplify the second term in (8), note that Di

can be determined using
(
Q1, Y

i
1

)
, and that Zi de-

pends only on (Yi, Di). Hence, P
(
Zi | Q1, Y

i
1 , Z

i−1
1

)
=

P (Zi | Di, Yi) under both the probability laws. Further,
on the sample paths where {Yi = 0}, we have Zi =
∅. Also, on the sample paths where {Yi = 1}, we have

Zi = XDi
. Hence, we write log

Pi,ν(Zi|Q1,Y
i
1 ,Z

i−1
1 )

Pi,∞(Zi|Q1,Y i
1 ,Z

i−1
1 )

=

1{Yi=1} log
Pi,ν(XDi

|Di,Yi=1)
Pi,∞(XDi

|Di,Yi=1)
. Thus, the second term in (8)

can be written as
∑n

i=ν+1 1{Yi=1,Di≥sν+Q1} log
f1(XDi)
f0(XDi)

.

APPENDIX II
PROOF OF THEOREM 2

We will need the following Lemma to prove Theorem 2.

Lemma 4. Given {Sk : k ≥ 1}, a sequence of i.i.d. random
variables with E [S1] < ∞, if 1

n

∑n
i=1 Si

a.s.−−→ 0, then

lim
n→∞

P0

(
max
k≤n

1

n

k∑
i=1

Si ≥ δ

)
= 0,∀δ > 0.

Proof. Define Kn = argmaxk≤n
1
n

∑k
i=1 Si, a random vari-

able. For each ω in the set
{
ω : maxk≤n

1
n

∑k
i=1 Si ≥ δ

}
,

Kn(ω) < n, and Kn(ω) → ∞ as n → ∞. Thus, ∀δ > 0,
P0

(
1
n

∑Kn

i=1 Si ≥ δ
)

≤ P0

(
1

Kn

∑Kn

i=1 Si ≥ δ
)

n→∞−−−−→ 0

since 1
n

∑n
i=1 Si

a.s.−−→ 0 implies in probability convergence.
This concludes the proof.

Proof for Theorem 2. To prove this, we make use of Lai’s
[6, Thm 1] lower bound on the asymptotic ESADD. Follow-
ing the discussion in [6, Sec. IV], we only need to show

lim
n→∞

sup
x

P0

{
max
t≤n

t∑
i=1

Li ≥ I (1 + δ)n | ζ0 = x

}
= 0,

(9)
for each δ > 0. From (6), we obtain 1

n

∑n
i=1 Li

a.s.−−→ I . Let
us define λi = Li − I and apply Lemma 4 to show that

∀x,∀δ > 0, P0

{
max
t≤n

1

n

t∑
i=1

λi > δ | ζ0 = x

}
→ 0.

To show that (9) is true, it is sufficient to show that
supζ0=x

1
n

∑n
i=1 Li

a.s.−−→ I . We note that since {ζk}
is a Markov process, it is sufficient to only show that
supζ0=x L1 < ∞. This can be easily observed by noting
that the first term in L1 (see (2)) is bounded whenever
0 < p0, p1 < ∞, and the second term in L1 depends on ζ0
only through indicator functions. This proves the assertion
that supζ0=x

∑n
i=1 Li

a.s.−−→ I , and hence the theorem.

APPENDIX III
PROOF OF THEOREM 3

To prove this claim, we make use of Lai’s [6, Thm. 4]
upper bound on the asymptotic ESADD, for a CUSUM de-
tector, with threshold h. As before, following the discussion
in [6, Sec. IV], we need to show that

lim
n→∞

sup
x

P0

{
n∑

i=1

Li < (I − δ)n | ζ0 = x

}
= 0, (10)

for each δ > 0. For each x, and ∀δ > 0, the probability
P0 {

∑n
i=1 Li < (I − δ)n | ζ0 = x} approaches zero since

almost sure convergence implies convergence in probability
of 1

n

∑n
i=1 Li. To prove (10), we follow a similar approach

as in the proof of the previous theorem.
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