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Abstract— We compute fundamental performance limitations
in the data rate constrained control of continuous-time linear
stochastic control systems using information theoretic tools
and principles. Specifically, we find the minimum achievable
mean square error for steering a linear system to sequences
of uncertain steering objectives under a rate constraint as the
solution of a convex optimization problem. We propose the
redundancy of a control system as a measure of the relative
inefficiency of information transmission through a linear control
system vs. an ideal communications channel.

I. INTRODUCTION

In almost all practical applications of interest, a control or
state estimation algorithm is implemented on an embedded
system and, as a result, subject to data rate constraints on
both its inputs and outputs. Maximum clock rates and bit
depths limit the amount of data, in bits/sec, that an algorithm
may employ towards a specific task. These digital constraints
are also universal, in the sense that the same maximum data
rate applies to a controller irrespective of its design paradigm,
e.g. state space, machine learning, or neuromimetic. We may
ask the following question: to what extent is the performance
of a control algorithm determined by its data rate constraint?

We answer this question in the context of a prototypical
steering problem, in which a linear control system must
repeatedly steer itself to a sequence of desired points in state
space. The performance of the control algorithm is a mean
square error measure. In addition to data rate constraints,
stochastic effects and uncertainty are also seen as intrinsic to
digital implementations and the performance of a controller
is therefore limited by the effects of thermal noise, clock
jitter, and other errors. This steering problem is intended
to model a wide range of typical applications in which the
control algorithm does not know the next steering point in
the sequence, and is limited by uncertainty and process noise.

Our approach to quantifying the fundamental performance
limitations of data rate constrained steering in the presence
of noise and uncertainty is based on principles of information
theory, specifically those of rate distortion theory. Our main
result is the formulation of a convex optimization prob-
lem whose solution yields the minimum achievable mean
square steering error by any controller for a continuous-
time stochastic linear system in the presence of noise, un-
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certainty, and rate constraints. Our results inform the design
of sampling and quantization strategies in digital control and
contribute to a growing body of interdisciplinary work at the
intersection of control and information theory.

Related literature. Inspired by information-theoretic princi-
ples, information-based approaches to state estimation and
control often involve maximization of an appropriate infor-
mation measure, such as the mutual information between
the input and output of a measurements channel [12], or the
Kullback-Leibler divergence between an uninformative prior
and a state distribution [14]. In [8], [9], [15] the authors
solve optimization problems whose objectives are the entropy
between states, controls, and measurements. Entropy-based
approaches are often justified by the observation that entropy
serves as an indirect proxy for the amount of uncertainty in
a random variable.

Our methodology is similar in some respects to these
information-based approaches, except that our primary per-
formance measure is a mean square steering error. The
operational significance of our information measure, the
mutual information between the steering objective and the
system state, is established by fundamental source coding
theorems.

Our main result, Theorem III.2, applies both covariance
assignment theory and rate distortion theory in order to
find the optimal distribution of system state minimizing the
mean square steering error, in the presence of a data rate
constraint. Our work is thus related to prior work on linear
quadratic Gaussian density steering [11], [5]. The objective
of these and other works on density steering is to steer the
control system’s marginal statistics to a desired marginal
density with the aid of information-based measures such as
the Kullback-Leibler divergence or Wasserstein metric.

In communications and information theory, as in this work,
the objective is to design deterministic encoders and decoders
that achieve an acceptable level of average performance.
Analysis of a large class of such deterministic mappings
is enabled by constructing statistical descriptions of their
behavior in the presence of a source of uncertainty. Conse-
quently, although the main contributions of this work can be
interpreted as results on rate-constrained density steering, the
analysis is relevant to the design of controllers and estimators
for steering a control system as accurately as possible to
specific points in state space.

Contributions and organization. Our first contribution is
a new representation of the so-called rate distortion func-
tion of a multivariate Gaussian source of information as
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a convex optimization problem in Theorem II.2. We show
its equivalence to the classical reverse waterfilling algorithm
[2], [6]. Our second main result, Theorem II.3, establishes
the operational significance of the rate distortion function to
the steering problem, viewed as an instance of a remote or
noisy source coding problem in information theory. These
two main results are presented in Section II along with a
review of rate distortion theory.

We apply these theorems in Section III, where we formally
define the steering problem and provide our final main result,
regarding the minimum achievable mean square steering
error (MMSE) in rate-constrained control. Our analysis in-
vestigates the sensitivity of this MMSE to sampling rate
and system stability. We then briefly define and discuss
the information-based notion of control system redundancy.
Inspired by the coding redundancy relevant to source coding
problems, the redundancy we propose measures the differ-
ence between the behavior of a control system and that of an
ideal communications channel, in the context of the steering
problem. Section IV concludes with remarks on future work.

II. THE INFORMATION RATE OF A MEMORYLESS
GAUSSIAN SOURCE

Let xd be a continuous vector-valued random variable
taking values on some subset V ⊆ Rn, and p(xd) its
density. If all samples from this density are iid then we
say xd ∼ p(xd) is a (stationary) memoryless source. A
reproduction of xd is a random variable x̂d := g ◦ f(xd)
where the compressor f : V → U maps a realization of the
random variable xd onto its representation in some set U and
the decompressor g : U → V maps the representation back.
If the set U = {uk}Kk=1 ⊂ Rn is finite, K < ∞, then we
call the elements of U codevectors or symbols and the f , g
together with the sets V , U a source code of size K. If the
maps f and g are suitably extended to operate on a sequence
of L iid samples drawn from p(xd) then we say the source
code has blocklength L. This defines the source code rate

R̄ :=
1

L
log2(K).

The error in the reproduction of a source is called its
distortion. In this work we are only concerned with mean
square error distortion. A source code design g ◦ f is said
to be admissible with distortion D if its mean square error
satisfies

D̄ := E[‖xd − g ◦ f(xd)‖22] ≤ D. (1)

Given the marginal density p(xd), recall that the mutual
information I(xd; x̂d) = H(xd) − H(xd|x̂d) between the
source random variable xd and its reproduction x̂d is a
function only of the conditional density function p(xd|x̂d).
This density may be viewed as a statistical description
of a given deterministic source code design g ◦ f . The
rate distortion function is defined as the solution of the
following variational problem over the set of all statistical
characterizations, or backwards test channels, of admissible
source codes:

R(D) := min
p(xd|x̂d)

I(xd; x̂d) s.t. E[‖x− x̂‖22] ≤ D (2)

The Converse Source Coding Theorem [2, Theorem 3.2.2]
states that the code rate R̄ of any admissible source code with
any blocklength L > 0 and distortion D̄ < D is such that
R̄ ≥ R(D). An important consequence of this fundamental
theorem, the Information Transmission Theorem establishes
the operational significance of the rate distortion function as
the necessary and sufficient code rate of an admissible source
code. The following is Theorems 3.3.1-2 of [2] restated for
a memoryless source p(xd).

Theorem II.1 (Information Transmission Theorem [2]). The
memoryless source p(xd) can be reproduced with maximum
admissible distortion D+ ε for any ε > 0 at the output of a
channel of capacity C if and only if R(D) + ε < C.

As noted in [2], the operational significance of R(D) does
not depend on arbitrarily long blocklengths. Theorem II.1
also applies to both finite and variable length codes.

It is well-known that if the memoryless source is a zero-
mean Gaussian with covariance Σd, i.e. p(xd) = N (0,Σd),
then variational problem (2) reduces to a minimization over
the set of conditional covariance matrices of the (backwards)
test channel. Computing R(D) is then possible via a simple
procedure known colloquially as reverse waterfilling (cf. [6,
Theorem 10.3.3], [2, equation (4.5.21)]):

R(D) =RL(D) :=
1

2

n∑
i=1

log

(
σ2
i

Di(θ)

)
,

D =

n∑
i=1

Di(θ), Di(θ) = min{θ, σ2
i }

(3)

where σ2
i is the ith eigenvalue of Σd. Note that if σ2

i < θ then
log(σ2

i /Di(θ)) = 0 and the ith principal component of the
source contributes no bits to the minimum admissible code
rate RL(D). Reverse waterfilling transforms the source into
n independent components and truncates those with variance
below the “water level” θ.

The following observation leads to an equivalent character-
ization of RL(D) as the solution of a maximum determinant
(max-det) problem. Let e := xd − x̂d, Λ := Cov(e) =
Cov(xd|x̂d), and observe that

H(xd|x̂d) = H(xd − x̂d|x̂d) ≤ H(e) ≤ H(z) (4)

where z ∼ N (0,Λ) has the same covariance as the error e.
Since I(xd; x̂d) = H(xd)−H(xd|x̂d) we obtain

RL(D) =
1

2
log det(Σd)− max

Λ�0

1

2
log det(Λ) (5)

s.t. Λ � Σd, tr(Λ) ≤ D

Equation (5) expresses the Shannon lower bound for this
source, cf. [2, eqn. (4.3.11)], as a max-det problem over the
set of all backwards channel conditional covariances Λ.

Our first result represents R(D) as a max-det problem in
the parameters defining the forwards channel p(x̂d|xd). The
proof may be found in the appendix.

Theorem II.2. The rate distortion function of the n-
dimensional multivariate Gaussian memoryless source
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p(xd) = N (µd,Σd) is the solution of the max-det problem

R(D) = min
β,Λ,Σ

1

2
log det(Σd)−

1

2
log det(Λ)

s.t.
[
Σd − Λ βT

β Σ

]
� 0, Λ,Σ � 0

tr(Σ− 2β + Σd) ≤ D, β ∈ Rn×n.

(6)

The optimal β, Σ define the optimal forwards test channel

p(x̂d|xd) = N (µd + βΣ−1
d (xd − µd), Σ− βΣ−1

d βT ). (7)

It is not surprising that representation (6) of the standard
rate distortion function does not often, or perhaps at all,
appear in the literature given (3) and (5). In [16] the authors
compute the sequential rate distortion function relevant to
applications involving exclusively causal source coding. A
special case of their max-det problem reduces to (5).

Expressing the standard rate distortion function as a max-
det problem in the forwards channel parameters is a neces-
sary first step in our analysis of the steering problem in the
next section. First, note that so far we have assumed that we
may implement any source code g ◦f with desired statistics,
a design freedom that is rarely encountered in practice [18].
The noisy or remote source coding problem considers the
additional distortion introduced by constraints on the design
of the source code, usually in the form of additional fixed
channels separating the source from its destination. The
steering problem is a special case in which the forwards
test channel p(x̂d|xd) is constrained to yield output statistics
p(x̂d) of a particular form. Consistent with the approach
of [2, Theorem 3.5.1], we introduce below a modified rate
distortion function and establish, as our second main result,
its operational significance as the necessary and sufficient
code rate.

For the Gaussian memoryless source p(xd) = N (µd,Σd)
it suffices to consider only Gaussian test channels p(x̂d|xd).
Equation (7) identifies every such channel by parameters
(β,Σ) ∈ Rn×n×Sn+. Let H : Rn×n×Sn+ → Rn×n×Rn×n
be a linear function in β, Σ and A := H−1(0) denote its
zero level-set. Let p(x̂d|xd) ∈ A denote, by an abuse of
notation, a forwards test channel with (β,Σ) ∈ A. Finally,
let RA(D) denote the constrained rate distortion function
obtained by solving (6) with the additional linear constraint
H(β,Σ) = (0, 0). The proof of the following can be found
in the appendix.

Theorem II.3. The source p(xd) can be reproduced with
fidelity D + ε for any ε > 0 at the output of a channel of
maximum capacity C per source symbol by a test channel
p(x̂d|xd) ∈ A if and only if R(D) ≤ RA(D) + ε < C.

III. THE STEERING PROBLEM

This section addresses the following question: what is
the minimum achievable mean square error in steering a
linear control system under a data rate constraint? Consider
the controllable n-dimensional continuous-time stochastic
control system

dx(t) =
(
Ax(t) +B u(t)

)
dt+ dw(t). (8)

where dw(t) is Brownian motion with E[dw(t)dw(t)T ] =
N dt. The controller is digital, meaning that at any time t,
the m-dimensional control signal u(t) is represented by m
(possibly uncompressed) binary numbers. Digital controls are
data rate constrained. For example, suppose the processor
clock, bus, or communications protocol operates at some
maximum rate f = 1/∆t Hz. If each control component
is also represented with maximum bit depth r, then the
controls are subject to a data rate constraint of fmr bits/sec.
In order to understand how these digital constraints limit the
performance of control system (8) we study its sampled data
representation

xk+1 = Fxk +Guk + ∆wk,

F = eA∆t, G =

∫ ∆t

0

eAτdτ B,

∆wk ∼ N (0,W ), W =

∫ ∆t

0

eAτNeA
T τ dτ

(9)

where xk+1 := x(tk+1) denotes state at time tk+1.
We are interested in applications where xk is (fully)

observed every M timesteps at total of L times. That is,
for every k = jM we observe xjM , where j ∈ [L] and
[L] := {1, . . . , L} denotes the 1-based index set of size L. At
each tjM a sequence of M open-loop controls are designed
based on the information available at that time.

The steering problem can be seen in this context as a data
rate constrained communications problem. Our objective is
to find a deterministic controller that minimizes the mean
square steering error

D̄ :=
1

L

∑
j∈[L]

∥∥x(j)
d − xjM

∥∥2

2
(10)

where {x(j)
d }Lj=1 is a set of L steering objectives. Assume

that the initial condition is uncertain, with x0 ∼ N (µ0,Σ0),
that the steering objectives are iid x

(j)
d ∼ N (µd,Σd), and

that the x0, x
(j)
d ,∆wk are independent for all j ∈ [L] and

for all k. The controller must encode each steering objective
into a sequence of M control vectors, each belonging to
an admissible control set U ⊂ Rm. Since the controls are
digital, U is a finite and discrete set of cardinality K, defining
the controller’s code rate

R̄ =
1

L
log2(KM)

in bits per source symbol. It follows from Theorem II.1 that
R̄ ≥ R(D). Given that steering objectives are iid, if it is
known that the steering problem is to be solved repeatedly
for large L then a plausible steering strategy is to control
the marginal statistics of the xjM to the same stationary
distribution. Our main result, Theorem III.2, computes the
optimal stationary distribution achieving this minimum mean
square steering error under a data rate constraint. We state
our results for the case M = 1.

First, we recall the following result from covariance as-
signment theory [13], [19]. Let Π⊥G = I − GG+ denote
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projection onto the orthogonal complement of the range of
the sampled-data control matrix G of (9).

Theorem III.1 ([19, Theorem 2.1]). There exists a constant
feedback gain control, uj = K(x

(j)
d − xj), rendering Σ ∈

Sn+ a fixed point of the discrete-time Lyapunov equation for
system (9),

Σ = (F −GK)Σ(F −GK)T +W +GKΣdK
TGT

+GK Cov(xd, xj)(F −GK)T

+ (F −GK) Cov(xj , xd)K
TGT

if and only if

Π⊥G
(
FΣFT +W − Σ

)
Π⊥G = 0. (11)

Condition (11) defines the set of assignable covariances
as the zero level-set of a linear function on Sn+. Its members
satisfy the Lyapunov equation modulo components in the
range space of the control matrix G.

Theorem III.2. The minimum achievable mean square error
of any controller steering system (9) to an assignable covari-
ance under a rate constraint R is given by the distortion rate
function

D∆t(R) := min
µ,β,Λ,Σ

tr(Σ− 2β + Σd)

s.t.

[
Σd − Λ βT

β Σ

]
� 0, Λ,Σ � 0

1

2
log det(Σd)−

1

2
log det(Λ) ≤ R,

Π⊥Gβ = 0, Σ satisfies (11),

Π⊥G(Fµ− µd) = 0,

µ ∈ Rn, β ∈ Rn×n. (12)

Conversely, the necessary and sufficient code rate of any
controller that achieves a given a distortion D is given by
the inverse of (12), the rate distortion function R∆t(D).

Proof. Let x ∼ p(x) = N (µ,Σ) denote the marginal
distribution of the system state. With the controls defined
in Theorem III.1, its conditional mean satisfies

E[x|xd] = (F −GK)µ+GKxd = βΣ−1
d xd + α

and so α = (F −GK)µ, βΣ−1
d = GK. This yields a linear

constraint Π⊥Gβ = 0.
The mean square error is minimized if α = (F−GK)µ =

(I − βΣ−1
d )µd, as in the proof of Theorem II.2. This yields

Π⊥Gα = Π⊥GFµ = Π⊥G(I − βΣ−1
d α)µd = Π⊥Gµd. (13)

Let D be some admissible mean square steering error, and
define R∆t(D) by applying the above linear constraints to
(6). If R∆t(D) is feasible then it has a unique minimum.
It follows from Theorem II.3 that this minimum defines the
necessary and sufficient code rate for steering the system’s
statistics to p(x). If R∆t(D) is infeasible then no controller
exists that can achieve the desired mean square error D for
system (9).
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Fig. 1. The Shannon lower bound RL(D) (black) is compared to the rate
distortion curves of a stable (As =

[
0 1
−1 −2

]
, blue) and unstable (Aus =[

2 1
−1 0

]
, magenta) linear system, both sampled at 100 Hz and driven by

Brownian motion with intensity N = 1e-3 I dt. The memoryless source
of steering objectives is zero-mean with covariance Σd =

[
0.1

0.9

]
. The

minimum achievable steering MSE for these systems is D∗
s = 0.55 (stable,

dashed blue) and D∗
us = 0.86 (unstable, dashed magenta).
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Fig. 2. Increasing the system sampling rate above about 5 Hz does not
significantly decrease the minimum achievable steering MSE of the stable
(blue) and unstable (magenta) systems of Figure 1.

Construct the inverse of R∆t(D), the distortion rate func-
tion D∆t(R), by swapping the roles of the trace and mutual
information terms as cost and constraint. It follows again
from the proof of Theorem II.3 that D∆t(R) describes the
minimum achievable mean square steering error using a
controller of code rate R.

Distortion, sampling rate, and data rate. Both R∆t(D) and
D∆t(R) are straightforward to solve for various sampled
data representations of both stable and unstable continuous-
time linear time invariant systems. We use [1], [7] to solve
all max-det problems. The process noise covariance (9) is
computed using a 4th-order adaptive Runge-Kutta method.

Figure 1 compares the rate distortion curves for two
different linear systems against the Shannon lower bound.
While an ideal communications channel can approach zero
distortion at rates exceeding 6 bits/symbol, there is a strict
minimum achievable distortion (MMSE) of D∗∆t = 0.55
and D∗∆t = 0.86 for the stable and unstable linear systems,
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Fig. 3. The necessary and sufficient data rates for steering the stable (blue)
and unstable (magenta) systems of Figure 1 with admissible MSE of 0.65
and 0.95, respectively.

respsectively. This performance is achieved by sampling both
systems at a rate of f = 1/∆t = 100 Hz.

Can this sampling rate be lowered without significantly
impacting the steering MMSE? Figure 2 shows that the
fundamental steering performance is relatively insensitive to
changes in sampling rate above 5 Hz. An order of magnitude
increase in sampling rate, from 10 to 100 Hz, is evidently
required to decrease the MMSE by about 0.1 units.

If the source emits steering objectives at the same system
sampling rate, f symbols/sec, then the necessary and suffi-
cient data rate for control is R∆t(D) × f bits/sec. Figure
3 shows how this data rate varies with f . Both curves
indicate that sampling the stable and unstable systems at rates
away from about 1.6 Hz and 4.3 Hz requires increased data
transmission in order to maintain the same MMSEs of 0.65
and 0.95, respectively.

These results confirm expectations regarding the effects of
linear system stability and temporal sampling on fundamental
steering performance: a stable system has a lower necessary
and sufficient code rate and MMSE than a comparable
unstable system. We have not, however, fully characterized
the relationship between rate, distortion, and system stability.
This relationship is likely determined by the geometry of the
source and the channel, the former defined by Σd, and the
latter by the system matrix A, the control matrix B, and the
Brownian motion intensity N . Consider, for example, the
chosen source covariance Σd = [ 0.1

0.9 ]. If the admissible
MMSE is large then any small transient motions of the
control system in the x-axis direction, due to either process
noise or instability, may be relatively unimportant compared
to the large variance in steering objectives along the y-axis.
This intuitive argument follows from the reverse waterfilling
principle discussed in Section II, under which an ideal source
code allocates bits first to encoding (steering) components of
the source with sufficiently large variance. Controllability is
important in this context as well. If the Brownian motion
process tends to diffuse in certain directions that are within
the range space of the sampled system control matrix, then
increases of intensity in those directions may not warrant

increases in the necessary and sufficient steering code rate.

On the redundancy of a control system. We conclude
this section with remarks on performance measures for
non-ideal communications channels. Let q(x) denote the
distribution of a discrete memoryless source. In [6] the
cost incurred in compressing this source with the wrong
source code is called its redundancy. Specifically, if the
code were designed for some other source with distribution
p(x) then its coding redundancy is defined by R(q, p) =
KL(q; p) :=

∑
x p(x) log(p(x)/q(x)), the Kullback-Leibler

divergence between q and p.
Inspired by this, we propose a measure of the cost in bits of

using a linear control system to communicate the memoryless
Gaussian source N (µd,Σd) of steering objectives. Let x̂d ∼
q(x̂d) = N (µ̂d, Σ̂d) the marginal density obtained by reverse
waterfilling with an ideal test channel. That is, Σ̂d minimizes
(6), and µ̂d = µd.

Definition III.1. The redundancy in steering linear control
system (9) is the Kullback-Leibler divergence between q(x̂d)
and the marginal p(x) = N (µ,Σ) where µ,Σ solve (12):
R(q, p) := KL(q; p).

From Figure 1 this information-based notion of steering
redundancy is only well-defined for distortions greater than
or equal to the control system’s MMSE. The distortion
redundancy, or difference between D(R), as the inverse of
(6), and D∆t(R) of (12), would be an alternative measure of
redundancy directly relevant to system performance. Future
work will explore the utility of these and other redundancy
measures in contexts where the distribution of steering ob-
jectives is not exactly known.

IV. CONCLUSION

We computed the minimum achievable mean square steer-
ing error for data rate constrained steering of a continuous-
time stochastic linear control system using fundamental
principles of information theory. Our analysis suggests that
this MMSE and its corresponding necessary and sufficient
code rate can be understood in terms of the geometry of the
source, Σd, and the geometry of the linear system’s sampled
data representation. Our results connect with existing work
on linear Gaussian density steering, covariance assignment
theory, and adds to a growing body of literature on applica-
tions of rate distortion theory in control.

Our approach was intrinsically open-loop, due to our
continued interest [17] in the design of digital controllers
capable of operating on a spectrum between open- and
closed-loop control, as proposed in [4]. Future work will
analyze the delay-distortion trade-off for this and related state
estimation and control problems.

APPENDIX

The proof of Theorem II.2 is a straightforward application
of the following Schur complement lemma, cf. [3].
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Lemma. The Schur complement Ψ−βTΣ−1β, with Ψ,Σ ∈
Sn+, β ∈ Rn×n, is given by

Ψ− βTΣ−1β = arg min
Λ�0
− log det(Λ)

s.t.
[
Ψ− Λ βT

β Σ

]
� 0

Proof of Theorem II.2. Let β ∈ Rn×n and Σ � 0 be n ×
n matrices defining our “test channel,” the joint 2n × 2n
covariance

Cov

(
x̂d
xd

)
:=

[
Σ β
βT Σd

]
,

with Σd given. Let Λ := Cov(xd|x̂d) = Σd − βTΣ−1β and
Γ := Cov(x̂d|xd) = Σ− βΣ−1

d βT .
Applying the Schur complement Lemma, we obtain the

mutual information between xd and x̂d as the solution of
the max-det problem (for given β and Σ):

I(xd; x̂d) =
1

2
log det(Σd)−

1

2
log det(Λ)

= min
Λ�0

1

2
log det(Σd)−

1

2
log det(Λ)

s.t.
[
Σd − Λ βT

β Σ

]
� 0

(14)

We may write E[x̂d|xd] = βΣ−1
d xd + α, for some vector

α. Setting α := (I − βΣ−1
d )µd removes the quadratic

dependence of the MSE on the means.

D̄ = E[‖x̂d − xd‖22]

= trE
[
E
[
x̂dx̂

T
d

∣∣xd]− 2E
[
x̂d
∣∣xd]xTd + xdx

T
d

]
= tr

(
Γ + βΣ−1

d (Σd + µdµ
T
d )Σ−1

d βT − 2βΣ−1
d αT

+ ααT − 2βΣ−1
d (Σd + µdµ

T
d )− 2αµTd + Σd + µdµ

T
d

)
= tr(Σ + Σd − 2β).

Minimizing (14) over β,Σ,Λ subject to the constraint D̄ ≤
D with the given α yields the desired result.

The proof of Theorem II.3 follows similar arguments in [2].

Proof of Theorem II.3. Consider a source code x̂d = g ◦
f(xd) with code rate R̄, blocklength L, and distortion D̄ ≤
D. Suppose this code admits a statistical characterization
by a conditional density p(x̂d|xd) ∈ A. By definition, this
source code reproduces a source sequence xLd := {x(j)

d }Lj=1

as x̂Ld := {x̂(j)
d }Lj=1, such that the average distortion Dj in

reproducing x(j)
d satisfies 1

L

∑
j∈[L]Dj ≤ D.

We want to show that R̄ ≥ RA(D) ≥ R(D). The
latter inequality follows from the fact that RA(D) is a
linearly constrained convex optimization over a closed sub-
set of Rn×n × Sn+. To see the first inequality, note that
1
L

∑L
j=1 I(x

(j)
d ; x̂

(j)
d ) ≤ R̄ (cf. [2, Theorem 3.2.2]) and

that, by construction R(Dj) ≤ RA(Dj) ≤ I(x
(j)
d ; x̂

(j)
d ).

Summing over j ∈ [L] and noting that both R and RA are
convex in their arguments yields the desired result.

Finally, let C̃ be the capacity of a channel, in nats per
channel use, and C its capacity in nats per source symbol.
We have MC̃ = LC, corresponding to transmission of
xLd in M channel uses. Let uM denote the sequence of
M channel inputs obtained from xLd , and yM the channel
output sequence from which x̂Ld is decompressed. It follows
that I(uM ; yM ) ≤MC̃. The Data Processing Theorem [10,
Theorem 4.3.3] yields I(xLd ; x̂Ld ) ≤ I(uM ; yM ) ≤ LC.
Applying again the above convexity argument yields

R(D) ≤ RA(D) ≤ I(xd; x̂d) ≤ I(u; y) ≤ C.
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