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Abstract— Carbon footprint optimization (CFO) is important
for sustainable heavy-duty e-truck transportation. We consider
the CFO problem for timely transportation of e-trucks, where
the truck travels from an origin to a destination across a
national highway network subject to a deadline. The goal is to
minimize the carbon footprint by orchestrating path planning,
speed planning, and intermediary charging planning. We first
show that it is NP-hard even just to find a feasible CFO solution.
We then develop a (1 + ϵF , 1 + ϵβ) bi-criteria approximation
algorithm that achieves a carbon footprint within a ratio of
(1+ϵF ) to the minimum with no deadline violation and at most
a ratio of (1 + ϵβ) battery capacity violation (for any positive
ϵF and ϵβ). Its time complexity is polynomial in the size of
the highway network, 1/ϵF , and 1/ϵβ . Such algorithmic results
are among the best possible unless P=NP. Simulation results
based on real-world traces show that our scheme reduces up
to 11% carbon footprint as compared to baseline alternatives
considering only energy consumption but not carbon footprint.

I. INTRODUCTION

Electrifying transportation is a promising and continuing
trend toward achieving carbon neutrality for fighting climate
change. Within the transportation sector, the trucking indus-
try has garnered increasing attention due to its significant
environmental impact. For instance, heavy-duty trucks in the
US produce 25% of the CO2 emissions in the transportation
sector [1], despite only accounting for 4% of the total vehicle
population. Furthermore, heavy-duty trucks are responsible
for 8.8% of the total carbon emissions in the US.

Adopting electric trucks (e-trucks) presents significant po-
tential for greening the heavy-duty truck industry as they pro-
duce zero CO2 emissions during operation. However, charg-
ing e-trucks with energy generated from carbon-intensive re-
sources (e.g., coal or petroleum) instead of carbon-free ones
(e.g., renewable energy) incurs a non-trivial carbon footprint.
The average carbon intensity (unit: kg CO2 emission/kWh)
of coal and petroleum generated electricity is 1.02 kg/kWh
and 0.91 kg/kWh, respectively [2]. In contrast, renewable
energy has a carbon intensity of zero. Therefore, to fully
unlock the environmental benefits of e-trucks, it is crucial
to charge them using electricity with low carbon intensity.
Meanwhile, the carbon intensity of the electricity exhibits
significant temporal and spatial variations due to fluctuating
renewable penetration [3]. It is thus critical to decide when
and where to charge during an e-truck transportation task.
This observation, combined with the time-sensitive nature
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of truck operations [4], emphasizes the need for joint op-
timization of path planning, speed planning, and charging
planning for e-trucks to minimize their carbon footprints for
sustainability.

In this paper, we study the carbon footprint optimization
(CFO) of a heavy-duty e-truck, traveling from an origin to
a destination across a national highway network subject to
a hard deadline, by exploring the complete design space
of path planning, speed planning, and en-route charging
planning.

Most related existing studies focus on minimizing the
energy consumption of conventional internal combustion
engine (ICE) trucks [5], [6], [7], electric trucks [8], [9] and
electric vehicles [10], [11], [12], [13], [14]. However, energy-
efficient operations may not necessarily lead to a low carbon
footprint. Our simulation based on real-world traces also
shows that carbon-aware solutions achieve up to 11% less
carbon footprint than the energy-efficient ones. Moreover,
the temporal-spatial variation of the carbon intensity results
in a non-convex and non-monotone objective that introduces
additional challenges. Indeed, the existing discretization
technique in [14], which relies on the monotonicity of the
discretized function, is not directly applicable to the CFO
problem. Our approximation algorithm differentiates from
the existing ones, e.g., [14], in that we consider a realistic
non-convex objective with both necessary battery and dead-
line constraints. A recent work [15] also considers carbon-
aware truck operations. However, our work differentiates
from it in that we present new theoretical hardness results
(cf. Theorem. 1) and an approximation algorithm for the CFO
problem. We summarize our contributions in the following.

▷ In Sec. II, we present the modeling and problem settings
of CFO. We then show that it is NP-hard even just to find a
feasible solution to the CFO problem, which directly implies
that the NP-hardness of the problem.

▷ In Sec. III, we develop a bi-criteria (1+ϵF , 1+ϵβ)-
approximation algorithm that achieves at most (1 + ϵF )
carbon footprint of the optimal solution with at most (1+ϵβ)
battery capacity, for arbitrary ϵF and ϵβ . The computational
complexity of our algorithm is polynomial in the network
size, 1/ϵF , and 1/ϵβ . Such algorithmic results are among
the best possible unless P=NP.

▷ In Sec. IV, we conduct simulations on real-world traces
and the results show that our carbon-footprint optimized
scheme saves up to 11% carbon footprint as compared to
baseline alternatives considering only energy consumption
but not carbon footprint.

Due to the space limitation, all proofs are included in the
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technical report [16].

II. MODELS AND PROBLEM SETTINGS

In this section, we discuss the system model and problem
formulation of our proposed carbon footprint optimization
(CFO) problem. We further show that the problem is NP-
hard, even for finding a feasible solution.

Transportation Graph and Energy Consumption. We
consider an e-truck traveling across a national highway
system modeled by a directed graph G = (V,E). Here
V = Vr ∪ Vc is the set of nodes, where Vr denotes the set
of nodes connecting highway road segments and Vc denotes
the set of nodes for the charging stations. We denote the set
of edges by E where each edge represents a road segment.
For each edge e ∈ E, we define its minimum and maximum
traveling time by tlbe and tube respectively. Without loss of
generality, we assume homogeneous road condition (e.g.,
road grade) on each road segment and define the function
ce(te) : [tlbe , t

ub
e ] → R as the energy consumption function

for an e-truck traveling across edge e with traveling time te.
In practice, ce(te) is non-increasing over [tlbe , t

ub
e ] as there

is no benefit to drive with both high energy consumption
and large traveling time [5]. We denote the minimum and
maximum energy consumption for the road segment e ∈ E as
clbe , c

ub
e , respectively. Note that for e-trucks, ce(te) can take

negative values over certain road segments (e.g., downhill
paths) because of regenerative breaking [17].

E-Truck Charging. We model that an e-truck needs to
make two decisions at a charging station: wait for tw ∈
[tlbw, t

ub
w ] unit of time and charge for tc ∈ [0, tubc ] unit of

time. Here we allow an e-truck to wait at the charging station
for cleaner electricity. The lower bound tlbw denotes the time
overhead at the charging station (for e.g., parking and paying
the bills). We model the charging process at charging station
v as a concave function Φv(t), which represents the final
State-of-Charge (SoC) from zero after charging for t unit of
time. We denote by βv as the SoC when the e-truck arrives
at node v ∈ Vc. Then, with initial SoC βv , the increment of
SoC after a charging time tc at the charging station v ∈ Vc
can be determined as

ϕv(tc, βv) = Φv(Φ
−1
v (βv) + tc)− βv, (1)

where Φ−1
v is the inverse function of Φv .

SoC Evolution. According to the energy consumption
model, the SoC decreases by ce(te) traveling over edge
e = (u, v) ∈ E with v /∈ Vc with time te, i.e.,

βv = min {B, βu − ce(te)} , (2)

where B is the battery capacity. According to the energy
consumption and the charging model, suppose an e-truck
travels across edge e = (u, v) ∈ E with traveling time te
and charges at v ∈ Vc with charging time tc, the SoC update
rule is given by

βv = min{B, βu − ce(te) + ϕv(tc, βu)}. (3)

Carbon Intensity and Carbon Footprint. For each
charging station v ∈ Vc, we model the carbon intensity as a

piecewise monotone function πv(τ) (unit: kg/kWh) with τ
being the moment of charging process , i.e.,

πv(τ) =


πv,1(τ), if τ ∈ [0, τ̃1);

. . . , . . . ;

πv,nπ
(τ), if τ ∈ [τ̃nπ−1, τ̃nπ

];

(4)

In (4), πv(τ) consists of nπ pieces with breaking points
τ̃1, τ̃2, · · · τ̃nπ

, and each piece πv,i,∀i = 1, ..., nπ , is a mono-
tone function with a well-defined inverse function π−1

v,i (·).
Note that in practice the carbon intensity is measured and
forecast at the hourly scale [3] and often interpolated as a
piece-wise linear function, which fits into our model.

Given the carbon intensity function πv(·) at a charging
station v ∈ Vc, the initial SoC βv , the arrival moment τv ,
and the charging time tc, the induced carbon footprint is

Fv(βv, tc, τv) =
1

η
πv(τv)ϕ(tc, βv), (5)

where we denote by 0 < η ≤ 1 the charging efficiency of the
battery. Note that here we adopt the first-order approximation
of the carbon footprint, i.e., we assume the carbon intensity
is fixed during the charging process. This is reasonable as
the typical charging time is less than 30 minutes while the
carbon intensity is usually measured hourly [3].

Carbon Footprint Optimization Problem. We consider
the Carbon Footprint Optimization (CFO) problem of an e-
truck traveling across a national highway network from an
origin s ∈ V to a destination d ∈ V subject to the deadline
T . For ease of presentation, we consider that the e-truck
starts at moment zero, i.e., τs = 0. The e-truck equips with
an initially fully charged battery with capacity B. We denote
a path by p⃗ = [s = p1, p2, · · · , pnp = d] ∈ P , where np is
the number of nodes in path p⃗ and P is the set of all paths
from s to d. We denote the traveling time from pi to pi+1

as tri for all i ∈ {1, 2, · · · , n − 1}. Further, we denote by
Ip ⊂ {1, ..., np} the set of index for charging stops, i.e.,
for any j ∈ Ip, pj ∈ Vc is a charging stop. We define the
Carbon Footprint Optimization (CFO) problem as follows:

min
∑
j∈Ip

Fpj (βj , t
c
j , τj) (6a)

s.t.
np∑
i=1

tri +
∑
j∈Ip

(
twj + tcj

)
≤ T, (6b)

τj =

j−1∑
i=1

tri +
∑

k∈Ip;k<j

(twk + tck) + twj , (6c)

βj = min
{
B, βj−1 − c(pj−1,pj)(t

r
j−1)

+ ϕpj

(
tcj , βj−1

)}
,∀j ∈ Ip, (6d)

βi = min{B, βi−1 − c(pi−1,pi)(t
r
i−1)},

∀i ∈ {1, 2, · · · , np}\Ip (6e)
βi ≥ 0,∀i ∈ {1, 2, · · · , np}, (6f)
β0 = B, (6g)

var. p⃗ ∈ P, (6h)
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tri ∈ [tlb(pi−1,pi)
, tub(pi−1,pi)

], βi,∀i ∈ {1, 2, · · · , np},
(6i)

twj ∈ [tlbw, t
ub
w ], tcj ≥ 0, τj ,∀j ∈ Ip. (6j)

Our objective in (6a) is the carbon footprint incurred
by charging at mp = |Ip| charging stops. The deadline
constraint is in (6b). In (6c), we obtain the arrival time at j-th
stop, which is required for determining the carbon footprint
in (6a). The evolution of SoC is determined by (6d) and (6e),
according to our discussions in (2) and (3). We require the
SoC to be always non-negative in (6f) and set the initial SoC
as the battery capacity in (6g).

Theorem 1. The CFO problem is NP-hard. Further, it is NP-
hard even just to find a feasible solution for the problem.

Theorem 1 implies that unless P=NP, one could not expect
to solve the problem or find a feasible solution within a
time complexity polynomial to the network size and the
input size of B and T . In such case, the best possible
algorithmic results one could expect is then a polynomial
time bi-criteria approximation scheme [18]. We will design
one such algorithm and characterize its performance in the
next section.

III. A BI-CRITERIA APPROXIMATION ALGORITHM

In this section, we develop a (1 + ϵF , 1 + ϵβ) bi-criteria
approximation algorithm that achieves a carbon footprint
within a ratio of (1 + ϵF ) to the minimum with no deadline
violation and with at most a ratio of (1+ϵβ) battery capacity
violation (for any positive ϵF and ϵβ) and a time complexity
polynomial in the size of the highway network, 1/ϵF , and
1/ϵβ . The essence of our approximation algorithm is a test
procedure as outlined in Algorithm 1. Given a guess Ω > 0 of
the optimal objective OPT to the CFO problem, Algorithm 1
approximately compare them and report if OPT > Ω or
OPT ≤ (1 + ϵF )Ω. Then we use a bisection technique (cf.
Algorithm 2) over the possible range of OPT with this test
procedure to obtain an Ω close enough to OPT and recover
its corresponding solution to the CFO problem.

In Algorithm 1, we seek to find a feasible path that is
within the given objective upper bound Ω or report infeasibil-
ity otherwise. We discretize the SoC and the objective value
and then use dynamic programming (DP) to obtain the op-
timal path under discretized values. We carefully determine
the discretization precision to achieve the (1 + ϵF , 1 + ϵβ)
approximation while ensuring polynomial time complexity.
Meanwhile, our discretization procedure guarantees that DP
is able to find a feasible solution if OPT ≤ (1 + ϵ)Ω.

We divide the algorithm into two phases. In the first
phase, we compute the energy-constrained fastest path from a
charging station to other nodes without intermediary charging
stops. In the second phase, we decide the charging locations
and scheduling by utilizing the information from phase I.
Then we recover the solution based on the results of those
two phases or report infeasible otherwise.

Phase I: Energy-Constrained Fastest Path from Single
Source. We use the rounding and scaling technique [5],

Algorithm 1 APXTEST(s, d, T,B,Ω, ϵβ , ϵF )

1: δβ ← ϵβB
|V |+|Vc|+1 , Mβ ← ⌈ |V |+|Vc|+1

ϵβ
⌉+ |V |+ |Vc|+1

2: δF ← ϵFΩ
|V |+|Vc|+1 , MF ← ⌈ |V |+|Vc|+1

ϵF
⌉+ |V |+ |Vc|+1

3: β̂0 ← ⌊(1 + ϵβ)B/δβ⌋ · δβ
4: Phase I: energy-constrained path without charging

stops.
5: for ∀iu ← 0, 1...,Mβ ,∀u ∈ Vc ∪ {s} do
6: βu ← iuδβ
7: ψu,βu

(u, βu)← 0 and ψu,βu
(·, ·)←∞ otherwise.

8: for ∀iv ← 0, ...,Mβ ,∀v ∈ V do
9: for ∀(w, v) ∈ E,∀ic ← ⌊ c

lb
e

δβ
⌋...⌊ c

ub
e

δβ
⌋ do

10: (βv, ĉ)← (ivδβ , icδβ)
11: β̂w ← βw(βv, ĉ) according to (9).
12: if βw ∈ [0, (1 + ϵβ)B] then
13: Update ψu,βu

(v, βv) according to (11).
14: Phase II: charging planning.
15: σs,β̂0

(s, 0, β̂0)← 0 and σs,β̂0
(·, ·, ·)←∞ otherwise.

16: for ∀iρ ← 0, ...,MF , ∀iF ← 0, ..., iρ do
17: for ∀ic ← 0, ...,Mβ , ∀iv ← 0, ...,Mβ , ∀iu ←

0, ...,Mβ , do
18: for ∀u ∈ Vc ∪ {s}, ∀v ∈ Vc ∪ {d} do
19: (ρ, F̂ )← (iρδF , iF δF )
20: (βu, βv, βc)← (iuδβ , ivδβ , icδβ)
21: β′

u = min{B, βu + βc}
22: σu ← σs,β̂0

(u, ρ− F̂ , βu)
23: tw ← gv(βu, tc, σu, F̂ ) (cf. problem (14))
24: tc ← Φ−1

u (β′
u)− Φ−1

u (βu)
25: tr ← ψu,β′

u
(v, βv)

26: σ̃ ← σu + tr + tw + tc
27: σv ← σs,β̂0

(v, ρ, βv)
28: if σ̃ ≤ σv then
29: σs,β̂0

(v, ρ, βv)← σ̃

30: Let i∗ρ ∈ {0, ...,MF } be the minimal iρ such that
σs,β̂(d, iρδF , 0) ≤ T

31: if ρ∗ exists then
32: sol ← the solution corresponding to ρ∗

33: else
34: sol ← NULL
35: return sol

[14] to ensure the performance and guarantee polynomial
time complexity. In particular, we discretize the SoC into
Mβ states with precision δβ (cf. line 1 of Algorithm 1).
For each discretized energy consumption ĉ, we compute its
corresponding travel time by

t̂e(ĉ, δβ) =


tlbe , if ⌈ ĉ

δβ
⌉ = ⌈c

ub
e

δβ
⌉;

c−1
e (ĉ), if ĉ ∈ [clbe , c

ub
e );

∞, otherwise.

(7)

Recall that clbe , c
ub
e are the minimum and maximum energy

consumption for the road segment e ∈ E, respectively.
We then use dynamic programming (DP) to compute the
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energy-constrained fastest solutions without charging stops.
We denote by ψu,βu(v, βv) the minimal traveling time from
u to v with initial SoC βu and the final SoC lower bounded
by βv . Then the Bellman equation is given by

ψu,βu(v, βv) = min

{
ψu,βu(v, βv − δβ),

min
(w,ĉ)∈N (v,βv)

{
ψu,βu

(
w, βw (βv, ĉ)

)
+ t̂(w,v)(ĉ, δβ)

}}
,

(8)

with the initial condition ψu,βu(u, βu) = 0. Here the previ-
ous SoC state βw is given by

βw(βv, ĉ) =


(1 + ϵβ)B − ĉ, if βv = (1 + ϵβ)B & ĉ < 0;

βv + ĉ, if (βv + ĉ) ∈ [0, (1 + ϵβ)B];

∞, otherwise.
(9)

Note that here we drop the harvested energy when battery
overflow happens. The state set N (v, βv) is given by

N (v, βv) =

{
(w, ĉ) : e = (w, v) ∈ E,

ĉ ∈
{
icδβ : ic ∈ ⌊clbe /δβ⌋, ..., ⌊cube /δβ⌋

}
,

βw(βv, ĉ) ∈ [0, (1 + ϵβ)B]

}
. (10)

Therefore, given any u, v ∈ V , any discretized states βu, βv ,
any road segment e = (w, v) ∈ E, and discretized energy
consumption ĉ, we update ψ in line 13 of Algorithm 1 as
follows:

ψu,βu
(v, βv) = min

{
ψu,βu

(v, βv),

ψu,βu(w, βw) + t̂e(ĉ, δβ)
}
.

(11)

The overall phase I procedure is summarized in line 4-13
of Algorithm 1. For any source node u with the initial SoC
βu, we update ψ in a bottom-up manner: we first update for
all nodes with final SoC βv = δβ , and then βv = 2δβ , until
βv =Mβδβ and get the complete value function ψ.

Phase II: Routing and Planning for Charging. In phase
II, we discretize the objective value with precision δF and
the total number of discretized values MF . We then use
DP to compute the approximate solution. We denote by
σs,β̂0

(v, ρ, βv) the minimal travel time from the source s

to v ∈ Vc ∪ {d} with initial SoC β̂0, the final SoC lower
bound βv and the objective upper bound ρ. Then the Bellman
equation is given by

σs,β̂0
(v, ρ,βv) = min

{
σs,β̂0

(v, ρ− δF , βv),

min
(u,tw,tc,βu,F̂ )∈M

[
σs,β̂0

(u, ρ− F̂ , βu) + tw + tc

+ ψu,(ϕu(tc,βu)+βu)

(
v, βv

)]}
, (12)

with the initial condition is σs,β̂0
(s, 0, β̂0) = 0. The state set

M is given by

M =

{
(u, tw, tc, βu, F̂ ) : ∀u ∈ Vc ∪ {s},

Fu(βu, tc, τu + tw) ≤ F̂ ,
τu = σs,β̂0

(u, ρ− F̂ , βu), tw ∈ [tlbw, t
ub
w ],

∀F̂ ∈ {0, δF , . . . , δFMF },
∀βu ∈ {0, δβ , . . . , δβMβ},

∀ϕu(tc, βu) ∈ {0, δβ , . . . , δβMβ}

}
. (13)

Therefore, in phase II, given the discretized objective value
F̂ , the discretized SoC βu at u, the SoC βv at v, and the
charged energy βc, we can determine the charging time and
the travel time between (u, v) (cf. line 24 and line 25 in
Algorithm 1). However, to solve the Bellman equation (12), a
simple enumeration over the discretized objective values and
battery states is not sufficient because the decision variable
waiting time tw remains undetermined. To obtain the waiting
time that satisfies the Bellman equation (12), we need to
find the minimal waiting time subject to the objective upper
bound:

gu(βu, tc, τu, F̂ ) = min
tw∈[tlbw ,tub

w ]
tw (14a)

s.t. Fu(βu, tc, τu + tw) ≤ F̂ . (14b)

We set gv = ∞ if the problem (14) is infeasible. The
problem (14) is non-convex due to the constraint (14b).
However, we are able to solve it by exploring the piecewise
monotone property of the carbon intensity function.

Lemma 1. The problem (14) can be solved in polynomial
time by finding the minimum waiting times satisfying (14b)
among all pieces in πu(τ), i.e.

t∗w = min
i=1,...,nπ

π−1
u,i(F̂ /ϕu(tc, βu)) (15)

The overall phase II procedure is summarized in line 14-
29 of Algorithm 1. After initializing the boundary case for
σ, we use DP to update the information of σ. In line 16,
we define the objective upper bound ρ from source s to the
node v and the objective upper bound F̂ from the node u to
v. In line 17, we denote by βu the arrival SoC at the node u,
by βv the arrival SoC at the node v, and by βc the amount
of charged energy at node u. We then compute the waiting
time tw in line 23, the charging time tc in line 24, and the
travel time tr between the node u and the node v in line 25.
We then update the σ in line 29 according to the Bellman
equation.

Overall, the test procedure Algorithm 1 approximately
compare Ω > 0 with the optimal carbon footprint OPT, and
report if OPT > Ω or OPT ≤ (1 + ϵF )Ω as summarized in
the following lemma.

Lemma 2. If the CFO problem is feasible and Ω ≥ OPT,
then Algorithm 1 must return a solution profile (p⃗, t⃗r, t⃗w, t⃗c)
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Algorithm 2 APXCFO(s, d, T, ϵβ , ϵF )

1: LB← 0
2: UB← |Vc|Bπub

3: while UB
LB > 2 do

4: Ω← (LB + UB)/2
5: if APXTEST(s, d, T,Ω, ϵβ , ϵF /2) = NULL then
6: LB ← Ω
7: else
8: UB ← Ω
9: sol ← APXTEST(s, d, T,UB, ϵβ , ϵF /2)

10: return sol

with the SoC profile β⃗ and the initial SoC β̂0 = (1 + ϵβ)B
that satisfy the following conditions:

a.

np∑
i=1

tri +
∑
j∈Ip

(twj + tcj) ≤ T, (16a)

b. 0 ≤ βi ≤ (1 + ϵβ)B, (16b)

c. F (p⃗, t⃗r, t⃗w, t⃗c) ≤ OPT + ϵFΩ. (16c)

The proof idea is to round the optimal solution to the
discretized solution such that the rounded solution satisfies
the conditions (16) and we can ensure that the rounded
solution has been examined in the loops of Algorithm 1.

Lemma 2 implies that if Algorithm 1 returns a feasible
solution in line 32, then we have OPT ≤ (1 + ϵF )Ω and if
Algorithm 1 returns an empty solution in line 34, we have
OPT ≥ Ω. This result naturally leads to our main algorithm
which bisects over the possible range of OPT.

Main Algorithm and Performance Analysis. We now
present the main algorithm outlined in Algorithm 2. We first
set the lower and upper bound of the optimal objective value
in lines 1-2. At each iteration we maintain a lower bound
and upper bound for the optimal objective value OPT and
update one of the bounds after probing the middle point
Ω. We terminate the iteration and recover the approximate
solution when the ratio between the upper bound and the
lower bound is less than two. We summarize the main results
for Algorithm 2 in the following two theorems.

Theorem 2. If the CFO problem is feasible, then Algo-
rithm 2 must return a solution profile (p⃗, t⃗r, t⃗w, t⃗c) with the
initial SoC β̂0 = (1 + ϵβ)B and the SoC profile β⃗ that
satisfy (16a), (16b) and

F (p⃗, t⃗r, t⃗w, t⃗c) ≤ (1 + ϵF )OPT. (17)

Theorem 3. The time complexity of Algorithm 2 is
O
(
(1 + 1/ϵ)

5
n5|Vc|2nπ logUB

)
, where n = |V |+|Vc| and

ϵ = min{ϵβ , ϵF }.

By combining Theorem 2 and Theorem 3, we show that
Algorithm 2 is a (1 + ϵF , 1 + ϵβ) bi-criteria approximation
scheme that achieves a carbon footprint within a ratio of
(1 + ϵF ) to the optimal carbon footprint with no deadline
violation and at most a ratio of (1+ ϵβ) battery violation for
any positive ϵF and ϵβ . The time complexity of Algorithm 2

is polynomial in the network size, 1/ϵF , 1/ϵβ . The algorithm
is among the best possible given the hardness of the CFO
problem (cf. Theorem 1).

Discussion on constraint violation. Our proposed ap-
proximation algorithm may result in battery capacity vi-
olations (cf. (16b)). To obtain a feasible solution without
violating the battery capacity constraints of size B, we can
use APXCFO with a capacity of B/(1 + ϵβ). We refer
to the CFO instance with a capacity of B as CFO(B).
If CFO(B/(1 + ϵβ)) with a reduced battery capacity of
B/(1 + ϵβ) is also feasible1, then APXCFO can generate a
strictly feasible solution with a capacity of B and a deadline
of T . In practice, it should be easy for CFO(B/(1+ ϵβ)) to
be feasible by choosing a small enough ϵβ > 0.

IV. NUMERICAL EXPERIMENT

A. Experimental Setup

Transportation network. We collect the highway network
data from the Map-based Educational Tools for Algorithm
Learning (METAL) project [19], the road speed data from
HERE Maps, and the elevation data from the Shuttle Radar
Topography Mission (SRTM) project. We consider a typical
origin-destination pair from Atlanta to Nashville, represent-
ing 7.5 billion dollars of transported freight [20]. We pre-
process the network to the relevant region and merge the
edges with the same grade. The reduced network has 48
nodes and 242 edges.

Charging station data. We collect the charging station
locations from the OpenStreetMap (OSM) and obtain 11
charging stations in the considered region. We consider a
piecewise linear charging function [17]. We then collect and
compute the carbon intensity data from Energy Information
Administration (EIA) [2].

Energy consumption model. We consider an e-truck with
battery capacity B = 300 kWh with total weight of 36 tons.
We use the simulator FASTSim [21] to collect the energy
consumption data under different speeds and grades and then
fit the data with cubic polynomial functions.

Algorithm Comparison. We implement and compare the
following approaches.

▷ APX-C: our approximation algorithm with carbon foot-
print objective. We set ϵβ = ϵF = 0.1.

▷ APX-E: the energy-efficient baseline. We use our ap-
proximation algorithm with the energy minimization objec-
tive by setting the carbon intensity π(·) ≡ 1. We also set
ϵβ = ϵF = 0.1.
▷ LB: the lower bound of the optimal objective provided

by Theorem 2.

B. Benefit of Carbon Footprint Optimization

We vary the deadline from 7 hours to 12 hours and present
the result in Fig. 1. We observe that when the deadline
is tight (e.g., 7 hours), APX-E and APX-C incur similar
carbon footprint. Meanwhile, as the deadline gets relaxed, the

1Note that the CFO problem with a smaller battery capacity may not be
feasible, since the feasible region shrinks and may be empty.
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Fig. 1: Carbon footprint of different baselines with respect
to the deadline.

solutions of both APX-E and APX-C incur less carbon foot-
print, but our scheme APX-C gives larger carbon footprint
reduction and its performance is closer to the lower bound. In
particular, when the deadline is set to 12 hours, our proposed
APX-C algorithm can achieve an 11% reduction in carbon
footprint compared to APX-E. These findings highlight that
an energy-efficient solution, such as that produced by APX-
E, may not necessarily optimize carbon footprint since it
does not consider the carbon intensity during charging. It
is therefore imperative to implement the intelligent carbon
footprint aware design, which can result in substantial carbon
reduction as shown in Fig. 1.

V. CONCLUDING REMARKS

We address the problem of optimizing carbon footprint
(CFO) for sustainable and timely transportation of E-trucks.
We prove that even finding a feasible solution for this prob-
lem is NP-hard. We then develop a (1+ϵF , 1+ϵβ) bi-criteria
approximation algorithm that achieves a carbon footprint
within a ratio of (1 + ϵF ) to the minimum with no deadline
violation and at most a ratio of (1 + ϵβ) battery capacity
violation. Through simulations, we show that our algorithm
can achieve up to an 11% reduction in carbon footprint
compared to baseline alternatives. We remark that the method
used to design our algorithm in this paper can also be applied
to develop a distinct approximation algorithm that avoids
violating battery capacity but may violate deadlines. Further,
the formulation and approach can be extended to address
other problems, such as minimizing fuel costs for ICE-truck
transportation that requires gas refills under geographically
and temporally varying gas prices.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
for their insightful comments that help improve this work.
The work presented in this paper was supported in part by a
General Research Fund from Research Grants Council, Hong
Kong (Project No. 14207520).

REFERENCES

[1] S. Davis and R. G. Boundy, “Transportation Energy Data
Book: Edition 39,” Oak Ridge National Lab. (ORNL), Oak
Ridge, TN (United States), Tech. Rep., 2021. [Online]. Available:
https://www.osti.gov/biblio/1767864

[2] U.S. Energy Information Administration (EIA), “June 2021 monthly
energy review,” Tech. Rep., 2021.

[3] D. Maji, P. Shenoy, and R. K. Sitaraman, “Carboncast: Multi-day
forecasting of grid carbon intensity,” in Proceedings of the 9th ACM
International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation (ACM BuildSys 2022), New York, NY,
USA, 2022, p. 198–207.

[4] B. H. Ashby, Protecting perishable foods during transport by truck.
US Department of Agriculture, Office of Transportation, 1987, no.
669.

[5] L. Deng, M. H. Hajiesmaili, M. Chen, and H. Zeng, “Energy-
efficient timely transportation of long-haul heavy-duty trucks,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, pp. 2099–
2113, 2017.

[6] Q. Liu, H. Zeng, and M. Chen, “Energy-efficient timely truck trans-
portation for geographically-dispersed tasks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 12, pp. 5148–5159,
2020.

[7] W. Xu, Q. Liu, M. Chen, and H. Zeng, “Ride the tide of traffic
conditions: Opportunistic driving improves energy efficiency of timely
truck transportation,” IEEE Transactions on Intelligent Transportation
Systems, pp. 1–17, 2023.

[8] J. Su, M. Chen, and H. Zeng, “Energy efficient timely transportation: A
comparative study of internal combustion trucks and electric trucks,” in
Proceedings of the 8th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation (ACM BuildSys
2021), New York, NY, USA, 2021, p. 224–225.

[9] Y. Zhang, X. Qu, and L. Tong, “Optimal eco-driving control of
autonomous and electric trucks in adaptation to highway topography:
Energy minimization and battery life extension,” IEEE Transactions
on Transportation Electrification, vol. 8, no. 2, pp. 2149–2163, 2022.

[10] Y. Liu, H. S. Seah, and G. Shou, “Constrained energy-efficient routing
in time-aware road networks,” GeoInformatica, vol. 21, pp. 89–117,
2017.

[11] A. Cela, T. Jurik, R. Hamouche, R. Natowicz, A. Reama, S.-I.
Niculescu, and J. Julien, “Energy Optimal Real-Time Navigation
System,” IEEE Intelligent Transportation Systems Magazine, vol. 6,
pp. 66–79, 2014.

[12] M. Baum, J. Dibbelt, D. Wagner, and T. Zündorf, “Modeling and
Engineering Constrained Shortest Path Algorithms for Battery Electric
Vehicles,” Transportation Science, vol. 54, pp. 1571–1600, 2020.

[13] M. W. Fontana, “Optimal Routes for Electric Vehicles Facing Un-
certainty, Congestion, and Energy Constraints,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2013.

[14] M. Strehler, S. Merting, and C. Schwan, “Energy-efficient shortest
routes for electric and hybrid vehicles,” Transportation Research Part
B: Methodological, vol. 103, pp. 111–135, 2017.

[15] J. Su, Q. Lin, and M. Chen, “Follow the sun and go with the
wind: Carbon footprint optimized timely e-truck transportation,” in
Proceedings of the 14th ACM International Conference on Future
Energy Systems, ser. e-Energy ’23, 2023, p. 159–171.

[16] J. Su, Q. Lin, M. Chen, and H. Zeng, “Minimizing carbon footprint for
timely e-truck transportation: Hardness and approximation algorithm,”
2023, arXiv:2308.09866.

[17] M. Baum, J. Dibbelt, A. Gemsa, D. Wagner, and T. Zündorf, “Shortest
Feasible Paths with Charging Stops for Battery Electric Vehicles,”
Transportation Science, vol. 53, pp. 1627–1655, 2019.
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