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Abstract— In this paper, an online Q-learning algorithm is
proposed to address the infinite-horizon guaranteed cost control
problem for linear time delay systems with completely unknown
dynamics. The developed approach leverages a Lyapunov-
Krasovskii functional as the state value function and integrates
guaranteed cost control principles. Specifically, based on Bessel-
Legendre integral inequality, a Q-function tailored for handling
guaranteed cost control in time delay systems is formulated.
Furthermore, an integral reinforcement learning method based
on an actor/critic approximator framework is used to dynami-
cally estimate the Q-function parameters. Finally, the proposed
approach is successfully applied to an interconnected power
system.

I. INTRODUCTION

Time delays are common in various aspects of daily life,
particularly in systems requiring processing time, communi-
cation, as well as in chemical and power processes. These
time delays can result from a variety of effects such as
signal propagation, reaction kinetics, and system dynamics as
mentioned in [1]. According to [2], these delays disrupt the
instantaneous feedback loop resulting in unpredictable be-
haviors. Mathematically, modeling and analyzing time delay
systems involves dealing with delay differential equations,
which can be notoriously challenging to solve and analyze.
Moreover, these systems are highly sensitive to initial con-
ditions and external disturbances, making them susceptible
to unexpected variations in behavior. In many practical
systems, it is desirable to develop control systems that ensure
stability and guarantee an adequate performance bound. One
approach to address this challenge is the guaranteed cost
control method.
The concept of guaranteed cost control of uncertain systems
was initially proposed in [3] and has been investigated
by numerous researchers. This approach aims to develop
a controller such that the resulting closed-loop system is
asymptotically stable while ensuring an adequate upper
bound on the closed-loop value of a quadratic cost function
as shown in [4]. The question of guaranteed cost control has
also been explored for linear systems with time delay subject
to uncertainties. As an example, [5] introduced a delay-
dependent memory controller with variable gains, where
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the gains are tailored based on online estimations of fault
parameters using an indirect adaptive method. Moreover, [6]
proposed an approach to address the guaranteed cost control
problem for continuous-time periodic piecewise linear sys-
tems with time delay. However, the design of these control
methods mentioned above depends on the knowledge of the
system dynamics.
In practical applications, having a complete and accurate
system dynamics is not possible. Therefore, to handle this
limitation, one may opt for learning-based approaches. Re-
cently, Q-learning algorithms have been employed to deal
with the infinite horizon optimal control problems with
completely unknown linear or non-linear system dynamics.
Notably, in [7], an online algorithm based on Adaptive Dy-
namic Programming was introduced to learn the continuous
time optimal control for a linear system with completely
unknown dynamics. Additionally, [8] presented an online
model free Q-learning approach for solving the infinite
horizon optimal control problem of a linear time invariant
system. This approach concurrently estimates the Q-function
and overcomes the limitations of the off-policy Q-learning
outlined in [9], which depends on a sequential algorithm
and requires an initial stabilizing control policy. Moreover,
[10] proposed an online Q-learning model free approach in
a non-iterative manner for continuous-time nonlinear affine
systems. Drawing from the preceding works and related
references, there are still gaps to be addressed. An important
research line is how to design a model free infinite horizon
guaranteed cost control for time delay systems with unknown
Dynamics?
This paper presents an online Q-learning algorithm to tackle
the challenge of the infinite-horizon guaranteed cost control
problem for linear time delay systems with unknown dy-
namics. First, we revisit the guaranteed cost control problem
and how to synthesise feedback gain using Linear Matrix
Inequality (LMI). Then, we present our contributions, which
can be summarized as follows:

1) We associate the state value function to the augmented
Lyapunov functional, while projecting the state over
the Bessel-Legendre orthogonal basis.

2) We construct an adequate Q-function for systems with
constant delays. This Q-function enables the develop-
ment of a model free Q-learning algorithm for linear
time delay systems with unknown dynamics.

3) We show how to learn the Q-function using integral
reinforcement learning based on actor/critic approxi-
mator.
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Finally, the efficacy of the proposed method is validated
through a practical case study conducted on an intercon-
nected power system. Due to space limitations the proofs
will be published elsewhere.

Notation: The symbols N, N>0, R, and R⩾0 represent
the sets of natural numbers, strictly positive natural numbers,
real numbers, and positive real numbers, respectively. The
set S+n ⊆ Rn×n is the set of symmetric positive definite
matrices. For any function x : [−h,+∞) → Rn, the
notations x and xh stand for x and x(t − h), for all
t ≥ 0 and all h ∈ R⩾0, respectively. The notation u

stands for u(t), for all t ≥ 0. The notation
(

k
l

)
is the

binomial coefficients given by k!
(k−l)!l! . The notation

√
M

represents the square root of a matrix M . The symmetric ma-

trix
[
A B
∗ C

]
stands for

[
A B
BT C

]
. The half-vectorization,

denoted vech(A), of a symmetric n × n matrix A is a
column vector of size n(n+1)

2 × 1, obtained by stacking the
elements from the lower triangular portion of A: vech(A) =[
A11 A21 A22 A31 A32 A33 . . . Ann

]⊺
. The no-

tation ⌈x⌉ denotes the ceiling of a real number x, while ⊗
denotes the Kronecker product of quadratic polynomial basis
vector. The notation ∥.∥T represents the Chebyshev-weighted
semi-norm, which is defined by ∥x∥T =

∫ 1

−1
∥ẋ(u)∥√
1−u2

du,
while ∥.∥ refers to the Euclidean norm.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the linear time delay system described by,{
ẋ(t) = Ax(t) +Adx(t− h) +Bu(t), t ≥ 0,

x(t) = ϕ(t), t ∈ [−h, 0],
(1)

where x ∈ Rn is a state vector, ϕ : [−h, 0] → Rn is the
initial condition function, u ∈ Rm is the control input and
A, Ad ∈ Rn×n, B ∈ Rn×m are the plant and input matrices
respectively. Additionally, h ∈ R⩾0 is the time delay.

Assumption 1. The following assumptions are made:
• The state x(t) is measurable;
• h ∈ R⩾0 is constant and known delay.

Note that in the case where h is unknown some delay
estimation techniques can be used see e.g., [11]. Associated
with system (1), we define the following quadratic cost
function as follows:

J(x(0), u) = min
u

∫ ∞

0

(x⊺Mx+ u⊺Ru) dt, (2)

where M ∈ Rn×n and R ∈ Rm×m are user-predefined
symmetric positive definite matrices and the pair (

√
M,A)

is detectable. The main objective is to determine the optimal
value of the Lyapunov-Krasovskii functional V ∗(x, t) given
by,

V ∗(x, t) = x̄⊺(t)Px̄(t) +

∫ t

t−h

x⊺(r)Sx(r) dr

+

∫ t

t−h

∫ t

β

ẋ⊺(r)Wẋ(r) dr dβ. (3)

A. Problem definition

Let us first recall the notion of guaranteed cost controller
as in [12].

Definition 1. Consider the time delay system (1), if there
exists a control law u∗ : Rn → Rm and a positive scalar
J∗ such that, the closed-loop system is stable and the value
of the cost function (2) satisfies J ⩽ J∗. In this case J∗ is
said to be a guaranteed cost and u∗ : Rn → Rm is said to
be a guaranteed cost control law for system (1).

The problem addressed in this paper is to find a feedback
control u : Rn 7→ Rm, formally defined by,

u∗ = Kx, (4)

where K is the control gain matrix to be determined, such
that system (1) is asymptotically stable. Moreover, among all
possible controls satisfying this property, we want to select a
control which minimizes the cost function J , but without any
prior information on the system dynamics, i.e., the system
matrices A, Ad, and B are unknown, such that J < J∗,
where J∗ is a positive scalar.

III. GUARANTEED COST CONTROL

In this section, a concise description of the synthesis of the
guaranteed control problem is provided before proceeding
into the actor-critic adaptive structure based model-free Q-
learning approach. The following lemma from [13] will be
used in the sequel.

Lemma 1. Let N ∈ N and x : [α, β] → Rn be a continuous
and differentiable function. For any matrix Z ∈ S+n , the
following inequality holds:

−
∫ β

α
ẋT (u)Zẋ(u)du ≤ − 1

β−αζ
T
N

[∑N
k=0(2k + 1)πT

N (k)ZπN (k)
]
ζN , (5)

where

ζN =

{ [
x⊺(β) x⊺(α)

]⊺
, N = 0,[

x⊺(β) x⊺(α) 1
β−αχ

⊺
0 . . . 1

β−αχ
⊺
N−1

]⊺
, N > 0,

πN (k) =


[
I −I

]
, N = 0,[

I (−1)k+1I θ0kI · · · θ
N−1
k I

]
, N ≥ 1,

θjk =

{
(2j + 1)

(
(−1)k+j − 1

)
, j ⩽ k,

0, j > k,

Fk(u) = (−1)k
∑k

i=0

[
(−1)i

(
k
i

)(
k + i
i

)](
u−α
β−α

)i

,

χk =

∫ β

α

Fk(u)x(u)du.

The following result present a bilinear matrix inequality-
based condition allowing to synthesise a guaranteed cost
controller.

Theorem 1. Consider the time delay system (1) with the
cost function (2). Given an integer N , if there exist positive
definite matrices P ∈ S+(N+1)n, and S,W ∈ S+n , an
invertible matrix H ∈ Rn×n and a matrix K ∈ Rm×n such
that,

Λ− Γ⊺
NWΓN + 2E⊺HG+ e⊺1(M +K⊺RK)e1 < 0, (6)

3336



then, the control law (4) is a guaranteed cost controller.
Moreover, the cost function in (2) satisfies,

J(t) < J∗ =ϕ̄⊺(0)Pϕ̄(0) +

∫ 0

−h

ϕ⊺(ξ)Sϕ(ξ) dξ

+

∫ 0

−h

∫ 0

β

ϕ̇⊺(ξ)Wϕ̇(ξ) dξ dβ, (7)

where ϕ̄(0) =
[
ϕ⊺(0) χ⊺

0(0) . . . χ⊺
N−1(0)

]⊺
, and

ei=
[
0n×(i−1)n In 0n×(N+3−i)n

]
, i = 1, . . . , N + 3, (8)

K =
[
he⊺3 . . . he⊺N+2

]⊺
, (9)

EN−1 =


[
e⊺1 e⊺2

]
, if N = 0,[

e⊺1 e⊺2 e⊺φ

]
, if N > 0,

(10)

eφ =
[
e3 . . . eN+2

]
,

ΓN =
[
πN (0) πN (1) . . . πN (N)

]
, (11)

G = eN+3 − (A+BK)e1 −Ade2, (12)
E = e1 + e2 + eN+3, (13)

Λ = 2

{[
eN+3

EN−1

]⊺
P

[
e1
K

]
+ e⊺1Se1

}
− e⊺2Se2 + he⊺N+3WeN+3, (14)

W = diag {W, 3W, . . . , 2(N + 1)W} , (15)

χk =

∫ β

α

Fk(u)x(u)du. (16)

It is worth noticing that Theorem 1 contains the bilinear
term HBK, which can not be solved using LMIs-based
approaches. For completeness of the design method of a
guaranteed cost controller we provide a linear formulation
of Theorem 1.

Theorem 2. Consider the time delay system (1) with the
cost function (2). Given an integer N , if there exist positive
definite matrices P ∈ S+(N+1)n, and S,W ∈ S+n , an
invertible matrix H ∈ Rn×n, and a matrix V ∈ Rm×n

satisfying,[
Λ− Γ⊺

NWΓN + 2E⊺Ḡ+ e⊺1Me1 eT1 V
⊺

∗ −R

]
< 0, (17)

then, the control law (4) with K = V H−1 is a guaranteed
cost controller with the guaranteed cost (19), and

Ḡ =(AH +BV )e1 +AdHe2 − eN+3,

R =R−1.

Remark 1. The LMI computation in (6) introduces a novel
approach, differing from prior methods such as those dis-
cussed in [13], notably by incorporating the derivative
ẋ(t) into the augmented vector ξ(t). This computational
technique facilitates LMI linearization through coordinate
transformations, as demonstrated in [14]–[16], while em-
ploying augmented Lyapunov functionals. Notably, in current
literature, knowledge of system matrices A, Ad, and B is
essential for solving the LMI in (17).

IV. MODEL FREE FORMULATION

In this section, we explore the Q-learning formulation for
model-free control problem of time delay systems as in (1).
The Q-function, Q(x, u) : Rn+m → R, is defined as in [17],

Q∗(x, u) :=V ∗(x) +
∂V ∗⊺

∂x
(Ax+Adxh +Bu)

+ x⊺Mx+ u⊺Ru, (18)

which represents the value of taking action u from state
x and following the policy (4) afterwards. In the context
of time delay systems, expressing the Q-function as in
(18) in a compact quadratic form poses a challenge. The
main obstacle lies in obtaining a precise finite quadratic
representation of the integral terms

∫ t

t−h
x⊺(r)Sx(r) dr and∫ t

t−h

∫ t

β
x⊺(r)Wx(r) drdβ. To solve this issue, we relay on

Bessel-Legendre based integral inequality [13, Lemma 3], to
approximate the Lyapunov–krasovskii functional in (3) by a
lower bound, denoted V (x, t), given by,

V (x, t) = x⊺Px+
1

h

N∑
k=0

(2k + 1)Ω⊺
kSΩk, (19)

where Ωk =
∫ 0

−h
Lk(u)x(u)du, Lk(u) =

(−1)k
∑k

l=0 p
k
l (

u+h
h )l, pkl = (−1)l

(
k
l

)(
k + l
l

)
and k = 0, . . . , N .

Let Ṽ (x, t) = V ∗(x, t) − V (x, t) be the approximation
error. The next results allows us to estimate an order that
ensures that Ṽ (x) is upper bounded by ϵ > 0.

Lemma 2. For any ϵ > 0, there exists a corresponding
integer N (ϵ) such that for all N ≥ N (ϵ), the following
holds: ∣∣∣Ṽ (x)

∣∣∣ ⩽ ϵ, (20)

where N (ϵ) =

⌈
2π∥x∥2

T |λ̄(S)|
hϵ

⌉
.

The following bellman equation is associated to V (x, t)
in (19),

Q(x, u) := V (x, t) + ∂V ⊺

∂x (Ax+Adxh +Bu) + x⊺Mx+ u⊺Ru, (21)

which from the monotonicity of the Bellman operator, [18]
satisfies,

Q(x, u) ⩽ Q̃(x, u) ⩽ Q∗(x, u), (22)

where Q̃(x, u) is formally defined by,

Q̃(x, u) := V (x, t) + ∂V ∗⊺

∂x (Ax+Adx(t− h) +Bu) + x⊺Mx+ u⊺Ru (23)

Note that the controller u = argmin
u

Q̃(x, u) in (23) ensures
a certain level of performance measured by the cost function
J and that the obtained controller is a guaranteed cost
controller and not necessarily optimal. It should be noted
that the choice of the parameter N significantly affects the
optimality of the resulting controller. As N increases, the
controller tends to become optimal, and the complexity of
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the computation also increases. Thus, for a given N ∈ N,
we express Q̃(x, u) by the quadratic form,

Q̃(x, u) = Θ⊺(t)ΨΘ(t), (24)

where

Θ(t) =
[
ξ(t)⊺ u⊺(t)

]⊺
,

ξ(t) =
[
x⊺(t) x⊺

h(t) Ω⊺
0(t) . . . Ω⊺

N (t) ẋ⊺(t)
]⊺

,

and Ψ ∈ R((N+4)n+m)×((N+4)n+m) is given by,

Ψ =

[
Ψxx Ψxu

∗ Ψuu

]
, (25)

with Ψxu = eT1 K
T , Ψux= −R−1, and

Ψxx=P + diag {S, 3S, . . . , 2(N + 1)S}+ Λ− Γ⊺
NWΓN

+ 2E⊺HG+ e⊺1Me1,

where Ψxx ∈ R(N+4)n×(N+4)n, Ψux = Ψ⊺
xu ∈ Rm×(N+4)n,

and Ψuu ∈ Rm×m. Finding the guaranteed cost controller
for the linear time delay system (1) requires computing the
Q-function provided in equation (24). This later is based on
the computation of the state over the orthogonal basis of the
Bessel-Legendre polynomial, see [13].

Lemma 3. (Guaranteed cost control) Given the Q-function
in (24), the value function V (x, t), underestimator of
V ∗(x, t), minimizes the cost function in (2), where P > 0,
S > 0 and W > 0 satisfying Theorem 1, and guarantees a
performance bound, Q̃∗ (x, u∗) := minu Q̃(x, u) ⩽ J∗.

A model-free formulation of the guaranteed cost control
(4), can be obtained from Q̃(x,u)

∂u = 0 as follows,

u∗(x) = argmin
u

Q̃(x, u) = −Ψ−1
uuΨuxΘ. (26)

In the computational process, the vector Θ can be derived
from a sequence of system data from x(t − h) to x(t).
Additionally, the integral terms can be approximated using
Riemann numerical method [19]. The following subsection
introduce an actor/critic neural network structure to adjust
the Q-function based on data instead of a system model.

A. Actor/ Critic neural network structure

In the actor-critic approach, the actor’s parameters are
updated using gradients derived from the critic’s value es-
timates. The optimal value of the Q-function Q̃∗(x, u∗) can
be expressed as,

Q̃∗(x, u∗) : = vech(Ψ)⊺(Θ⊗Θ), (27)

where vech(Ψ) ∈ R 1
2 ((N+4)n+m)((N+4)n+m+1) represents

a half vectorization of the matrix Ψ. By denoting as
Wc := vech(Ψ), the function (27) can be written in
a compact form as, Q̃∗(x, u∗) = W ⊺

c (Θ ⊗ Θ), with
Wc ∈ R 1

2 ((N+4)n+m)((N+4)n+m+1) are the ideal weights
of the critic approximator where, vech(Ψxx) := Wc[1 :
l(l+1)

2 ], vech(Ψxu) := Wc[
l(l+1)

2 + 1 : l(l+1)
2 + lm], and

vech(Ψuu) := Wc[
l(l+1)

2 + lm + 1 : 1
2 (l +m)(l +m + 1)],

with l = (N + 4)n and the notation Wc[i : j] represents

a subset of elements from the vector Wc starting from row
i to j. Given the unknown optimal weights for computing
Q̃∗ and u∗, it is necessary to consider the following weight
approximations. The critic approximator can be written as,

ˆ̃Q(x, u) = Ŵ ⊺
c (Θ⊗Θ), (28)

where Ŵc ∈ R 1
2 ((N+4)n+m)((N+4)n+m+1) are the estimated

weights. Similarly, the expression of the actor approximator
can be formulated as:

û(x) = Ŵ ⊺
a x, (29)

where Ŵa ∈ Rn×m. To find the update law for the critic’s
weights, we define the following temporal difference error
for the critic approximator ec ∈ R as,

ec :=
ˆ̃Q(x(t), u(t))− ˆ̃Q(x(t− T ), u(t− T ))

+

∫ t

t−T

x⊺(r)Mx(r) + u⊺(r)Ru(r) dr

= Ŵ ⊺
c (Θ(t)⊗Θ(t))− Ŵ ⊺

c (Θ(t− T )⊗Θ(t− T ))

+

∫ t

t−T

x⊺(r)Mx(r) + u⊺(r)Ru(r) dr. (30)

While the temporal difference error for the actor approxima-
tor is given by,

ea := Ŵ ⊺
a x+ Ψ̂−1

uu Ψ̂uxΘ, (31)

where the values of Ψ̂uu and Ψ̂ux are going to be derived
from the vector Ŵc. To learn the optimal weights online, we
can define the squared-norm of the critic and actor errors as,

δc :=
1

2
∥ec∥2, δa :=

1

2
∥ea∥2. (32)

B. Weight update mechanism

To guarantee the convergence of ec to 0 and Ŵc to Wc,
the update law for the critic approximator can be formulated
using a normalized gradient descent method as follows,

˙̂
Wc = −αc

1

(1 + η⊺η)2
∂δc

∂Ŵc

= −αc
η

(1 + η⊺η)2
e⊺c , (33)

where η := (Θ(t) ⊗ Θ(t)) − (Θ(t − T ) ⊗ Θ(t − T )) and
αc ∈ R+ is a user-defined constant critic gain. Similarly, the
update law for the actor approximator is given by,

˙̂
Wa = −αa

∂δa

∂Ŵa

= −αaxe
⊺
a, (34)

where αa ∈ R+ is a user-defined constant actor gain. We
define the critic and actor weight estimation errors as W̃c =
Wc − Ŵc and W̃a = −ΨxuΨ

−1
uu − Ŵa, respectively. Based

on the update laws in (33) and (34), the weights estimation
error dynamics can be expressed as,

˙̃Wc = −αc
ηη⊺

(1 + η⊺η)2
W̃c, (35)

˙̃Wa = −αaxx
⊺W̃a − αaxΘ

⊺Ψ̃xuΨ
−1
uu , (36)

where Ψ̃xu = mat(W̃c[
l(l+1)

2 + 1 : l(l+1)
2 + lm]. Since the

precise value of Ψuu is known, and it is equal to R which
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is defined by the predefined performance index provided by
the user. Thus, equation (36) can be rewritten as follows,

˙̃Wa = −αaxx
⊺W̃a − αaxΘ

⊺Ψ̃xuR
−1. (37)

C. Stability analysis

In this subsection, it is shown that the estimated weights
Ŵc achieve an exponential convergence to the optimal un-
known weights Wc for any given control input u under a
guaranteed persistence of excitation condition.

Lemma 4. Consider the update law of the critic approxi-
mator given by (33). For any control policy u the critic’s
weights estimation error dynamics given by (35) have an
exponentially stable equilibrium point satisfying

∥W̃c∥ ⩽ ρ1e
−ρ2(t−t0)∥W̃c(t0)∥, t > t0 ≥ 0, (38)

where ρ1 and ρ2 are positive constants provided that the
signal σ := η

1+η⊺η is persistently exciting, i.e., ∃α, δ ∈ R+

such that ∀t ∈ R+,
∫ t+δ

t
σ(r)σ(r)⊺ dr > αI , with I an

identity matrix of appropriate dimensions.

The next result provides the main Theorem on stability for
the proposed Q-learning method.

Theorem 3. Consider the linear time delay system given
by (1), the critic and actor approximator given by (28) and
(29), respectively. The tuning law for the weights of the critic
and actor are given by (33) and (34), respectively. Then the
equilibrium point of the closed loop system, characterized by
the state Φ :=

[
x⊺ W̃ ⊺

c W̃ ⊺
a

]⊺
for all initial conditions

Φ(ϕ), is proven to be asymptotically stable provided that the
critic gain αc is significantly larger than the actor gain αa

and the following inequality satisfied:

0 < αa < 1
δλ̄(R−1)

(
2λ(M +ΨxuR

−1Ψ⊺
xu)− λ̄(ΨxuΨ

⊺
xu)

)
, (39)

where δ is a constant of unity order.

V. SIMULATION RESULTS

In this section, a two-area interconnected power system
with time delay is considered to check the effectiveness of
the proposed model free Q-learning scheme. The system
experiences frequency deviations due to active power load
changes, leading to network instability. Although a local
governor can adjust generator output to counteract these
load changes, it typically causes frequency fluctuations. To
maintain stable system frequency at the standard 50 Hz, espe-
cially during load fluctuations, an additional Load Frequency
Control (LFC) is required. The dynamics of the LFC are
described by specific governing equations.

∆Pij = −∆Pji, i, j = 1, 2 i ̸= j

∆Ṗmi
= 1

Tti
(∆Pgi −∆Pmi

),

∆Ṗ12 = 2πT12(∆f1 −∆f2),

∆Ṗci = Ki∆P12 +Kiβi∆fi,

∆ḟi = −Kpi

Tpi
(∆Pli +∆Pij −∆Pmi)− 1

Tpi
∆fi,

∆Ṗgi = − 1
Tgi

(R−1
i ∆fi +∆Pgi +∆Pci(t− h)− ui),

(40)

where ∆fi, ∆Pmi , ∆Pgi , ∆Pci , and ∆P12 denote the fre-
quency deviation, generator mechanical power output, power

output of turbine generator, area control error signals, and tie-
line power flow from area 1 to area 2, respectively. While
Kpi , Ri, Ki and βi represent power system gain, speed
regulation coefficient, integral control gain and frequency
bias parameter, respectively. Tpi

, Tti , and Tgi are power
system, turbine, and governor time constants, and T12 is
stiffness coefficient. In the considered simulation, the load
disturbances ∆Pli are assumed to be zero and the time
delay in the two control areas is given by h = 0.5s. Table
I shows the model parameters, which vary due to real-
world factors and aging. Let the state vector be expressed as

TABLE I: List of simulation parameters with assigned values

Parameters Values Parameters Values
Tt1 , Tt2 0.3, 0.17 K1, K2 0.5, 0.6
Tg1 , Tg2 0.1, 0.4 D1, D2 1, 1.5
R1, R2 0.05, 0.05 H1, H2 10, 12

x =
[
∆f1 ∆Pm1

∆Pg1 ∆Pc1 ∆P12 ∆f2 ∆Pm2
∆Pg2 ∆Pc2

]⊺. Based
on this, the LFC system parameter matrices are defined as
follows:

A =



− 1
Tp1

Kp1

Tp1
0 0 −Kp1

Tp1
0 0 0 0

0 − 1
Tt1

1
Tt1

0 0 0 0 0 0

− 1
R1Tg1

0 − 1
Tg1

0 0 0 0 0 0

K1β1 0 0 0 K1 0 0 0 0

2πT12 0 0 0 0 −2πT12 0 0 0

0 0 0 0
Kp2

Tp2
− 1

Tp2

Kp2

Tp2
0 0

0 0 0 0 0 0 − 1
Tt2

1
Tt2

0

0 0 0 0 0 − 1
R2Tg2

0 − 1
Tg2

0

0 0 0 0 K2 K2β2 0 0 0



,

Ad =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 − 1

Tg1
0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 − 1

Tg2

0 0 0 0 0 0 0 0 0


, B =



0 0
0 0
1

Tg1
0

0 0
0 0
0 0
0 0
0 1

Tg2

0 0


.

The matrices for the performance index (2) are chosen
as M := I and R := 0.5I , where I is the identity matrix
with appropriate dimensions. The algorithm from Theorem
3 is applied with parameters αc = 30, αa = 1.1, T = 0.1
s, N = 4, and a 1.5 s delay for the integral terms, while
the matrices A, Ad, and B are considered unknown. It is
necessary to note that the delay used for Bessel integrals
must be significantly larger than the system delay. Initial
weights for both actor and critic networks are randomly
assigned within the ranges of [0, 3] and [0, 1], respectively.
Fig. 1 shows the time evolution of the state trajectories of
the system. As seen in Fig. 2, one can observe that the
responses of frequency deviations ∆f1 and ∆f2 of the closed
loop system, subject to a transient variation in load demands
prior to t = 0, quickly converge to zero after a few seconds
of settling time. This convergence stems from the swift
adjustment of the control input signal, as illustrated in Fig.
4. Therefore, the model-free Q-learning approach can help
reduce frequency deviations between power areas. On the
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Fig. 1: Time evolution of the system
states.

Fig. 2: The frequency deviation of
LFC system under the control input.

Fig. 3: The frequency deviation with-
out control input.
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Fig. 4: The control input during the
learning process.

Fig. 5: The norm of the critic network
weights error.

Fig. 6: The norm of the actor network
weights error.

contrary, the frequency deviations of the open-loop system
without the control input diverge, as can be seen in Fig. 3,
which demonstrates the algorithm’s ability to dynamically
dampen frequency and power oscillations. The convergence
to zero of the norm of the critic weights error, depicted in
Fig. 5, demonstrates that the proposed method effectively
achieves a guaranteed cost control, minimizing the cost
function defined in (2). While, Fig. 6 shows the convergence
of the actor weights’ norm to the optimal value. It is worth
noting that when employing model-free Q-learning control
for unstable systems, selecting appropriate initial weight
ranges is important. The chattering phenomenon observed
in several figures, results from exploration noise added to
meet the PE condition in Lemma 4.

VI. CONCLUSION

In the present work, a model free approach is developed
to address the infinite horizon guaranteed cost control for
linear time delay systems with unknown dynamics. Based
on a sufficient condition obtained from LMI approach, the
appropriate Q-function to drive the control policy is formu-
lated in terms of the state and control variables using Bessel-
Legendre integral inequality. Furthermore, an actor critic
structure is developed to approximate simultaneously and
in an adaptive manner both the Q-function and the control
policy. Afterwards, the stability of the closed-loop system
and its convergence to the guaranteed cost control are verified
without any prior knowledge of the system dynamics.
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