
Out of Distribution Detection via Domain-Informed
Gaussian Process State Space Models

Alonso Marco, Elias Morley and Claire J. Tomlin

Abstract— In order for robots to safely navigate in unseen
scenarios using learning-based methods, it is important to ac-
curately detect out-of-training-distribution (OoD) situations on-
line. Recently, Gaussian process state-space models (GPSSMs)
have proven useful to discriminate unexpected observations by
comparing them against probabilistic predictions. However, the
capability for the model to correctly distinguish between in- and
out-of-training distribution observations hinges on the accuracy
of these predictions, primarily affected by the class of functions
the GPSSM kernel can represent. In this paper, we propose
(i) a novel approach to embed existing domain knowledge in
the kernel and (ii) an OoD online runtime monitor, based on
receding-horizon predictions. Domain knowledge is provided in
the form of a dataset, collected either in simulation or by using
a nominal model. Numerical results show that the informed
kernel yields better regression quality with smaller datasets,
as compared to standard kernel choices. We demonstrate
the effectiveness of the OoD monitor on a real quadruped
navigating an indoor setting, which reliably classifies previously
unseen terrains.

I. INTRODUCTION

As machine learning (ML) becomes increasingly inte-
grated into autonomous robotic systems like service robotics
[1], [2] and self-driving cars [3], the need for reliable and
safe ML models has never been more critical. Particularly in
human-centric and safety-critical settings, even minor repre-
sentation errors in ML models can have severe consequences
[4]. Hence, it is crucial to identify the shortcomings of these
models. One key issue is their potential unreliability when
faced with data that differs from what they were trained on,
commonly known as out-of-training-distribution (OoD).

This challenge has motivated the emerging research area
of OoD detection [5]. The field encompasses a variety of
methodologies, ranging from invariant representation learn-
ing [6], [7] to causal learning for distribution shifts [8]. While
these techniques have been extensively studied in image
classification [9], [10], their application to all levels of the
full autonomy stack is still unfolding [11].

In the field of robotics, real-time OoD detection is crucial
for both real-time decision making and long-term reliability
[12], especially in uncertain environments. Algorithms need
to be uncertainty-aware and equipped with fallback strategies
for OoD scenarios, either issuing warnings or adopting more
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Fig. 1. A quadruped is exposed to different scenarios, unseen at train-
ing time, in order to assess the capability for out-of-training-distribution
detection.

conservative behaviors. However, research avenues in real-
time OoD detection are rather sparse. In [13], an OoD
detector is trained on grasping datasets to have a provable
low false negative rate. A similar idea is presented in [14],
where a failure predictor with guaranteed bounds is deployed
on a real drone. However, these are not real-time, but rather
sequential OoD monitors, since a full episode needs to be
observed before OoD can be assessed. The same episodic
scheme is followed in [15], where OoD is measured using a
task-specific performance cost. Our approach monitors OoD
in real-time, which is crucial for decision-making in safety-
critical situations, while remaining task-agnostic.

Real-time OoD runtime monitors offer significant advan-
tages in the field of legged locomotion, where recognizing
changes in environmental conditions is paramount to antici-
pate hazards. Yet, deploying these monitors in highly dynam-
ical systems, such as quadrupeds, poses major computational
and design challenges. In this work, we propose an OoD
runtime monitor that tracks prediction errors in a receding
horizon manner using Gaussian Process State-Space Models
(GPSSMs) [16]–[21]. These models provide a probabilistic
representation of the state-space dynamics and are well-
suited for predicting future states and their uncertainties,
making them ideal for safe navigation [22], [23].

Although GPSSMs have gained popularity for their abil-
ity to forecast state trajectories, they come with a few
drawbacks. On one hand, the distribution of forecast states
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is often intractable and requires numerical approximations.
On the other hand, they require large datasets for training,
which is often impractical in real-world robotics where
data is scarce [21]. To address the first issue, variational
inference approaches have been proposed to also reduce
the computational complexity [19], [21], yet large datasets
are still required. One effective strategy to alleviate the
second issue is to incorporate prior knowledge into the
GPSSM’s kernel function. Physics-aware models serve this
purpose by using first-principles as regularizers [24]. Yet,
these models often employ off-the-shelf kernels, overlooking
the potential benefits of embedding existing knowledge in
the kernel design. Recent work suggests that customizing the
kernel for specific control problems can improve the model’s
performance [22], [25]. In this work, we tackle both issues by
formulating the GPSSM as a Karhunen–Loève (KL) series
expansion [20], [26]–[28], which poses two key advantages:
(i) it enables efficient sampling schemes for state distribution
forecasting, and (ii) it provides a flexible framework for
designing kernels that integrate prior knowledge.

Contributions: Our first contribution is a data-driven
method for constructing GPSSM kernels that incorporates
existing knowledge in the form of a queryable nominal
dynamics model, such as a simulator or a first-principles
representation. The key step is embedding the nominal model
into the kernel via its Fourier representation. To this end, we
minimize an autoencoder loss that reconstructs the nominal
model. The resulting GPSSM requires less data to achieve
the same prediction accuracy as with standard kernels.

Our second contribution is an OoD runtime monitor that
automatically detects scenarios unseen at training time. Our
experiments on a real quadruped show that by leveraging
the proposed GPSSM, the OoD runtime monitor can more
accurately detect new terrains as compared to other GPSSMs
that use standard non-informed kernels (e.g., Gaussian, or
Matérn [29]). To the best of our knowledge, our work is the
first to explicitly design a deployable online runtime monitor
for OoD detection on a real quadrupedal robot.

The paper is structured as follows. In Sec. II, we explain
the proposed GPSSM as a KL series expansion. In Sec. III,
we detail the proposed methodology to construct a kernel by
embedding domain knowledge, given as a nominal dynamics
model. In Sec. IV, we explain how state forecasting can be
used to detect OoD situations. Finally, in Sec. V, we evaluate
empirically the capabilities of the proposed model for OoD
detection on a real quadruped, which navigates a room while
being exposed to various changes in the environment, such
as rocky terrain and external forces.

II. GAUSSIAN PROCESS STATE-SPACE MODEL USING
MERCER KERNELS

Let xt ∈ X ⊆ RD be the system state and ut ∈ U ⊆
RDu the control input at time t. The transition to the next
state xt+1 follows the system dynamics ftrue : X × U →
X . Whereas the true dynamics are unknown, they can be
represented by a dynamics model f(·) = [f1(·), . . . , fD(·)]>,
which is described as a Gaussian process state-space model

(GPSSM) [19]

fd(·) ∼ GP(md(·), kd(·, ·)), d = 1, . . . , D

xt+1 ∼ N (f(xt, ut), Q)

x̂t+1 ∼ p(x̂t+1|xt+1),

(1)

where each component fd : X ×U → R follows an indepen-
dent Gaussian process (GP) with kernel kd : X×X → R and
mean function md : X → R, and Q = diag([σ2

1 , . . . , σ
2
D]).

For simplicity, we assume a Gaussian observation model1

x̂t+1 ∼ N (xt+1, σ
2
n I).

In the following, we focus on modeling a single compo-
nent of the dynamics fd without loss of generality. For ease
of presentation, we denote zt = [x>t , u

>
t ]> and Z = X ×U .

We drop the subindex d in both fd and σ2
d and define the d

component of a state observation as Xt = [x̂t]d.

A. Karhunen–Loève expansion

The Gaussian process (GP) representing the dynamics f
can be defined in weight space as [29, Sec. 2.1]

f(zt) =

M∑
j=1

βjφj(zt), (2)

with M > 0 independently distributed random weights
βj ∼ N (mj , vj), mean mj ∈ R and variance vj > 0,
and deterministic features φj : Z → R. This formulation
is known as the Karhunen–Loève (KL) series expansion of
a GP [26]. The covariance function associated with (2) is
given as [30]

k(zt, z
′
t) =

M∑
j=1

vjφj(zt)φj(z
′
t), (3)

which is a (positive definite) Mercer kernel [26]. Informally,
the KL expansion (2) is equivalent to a standard GP formu-
lation GP(m(zt), k(zt, z

′
t)) with a positive definite kernel k

that admits a series representation (3).

B. Predictive posterior

We are interested in the above formulation to predict the
dynamics at new locations f(z∗). Let us assume access to an
approximate description of the dynamics through a nominal
model fnom : Z → R that captures the general behavior of
the system, e.g., a simulator. We use fnom to acquire a dataset
of T state-control-state tuples D = {ẑt, Xt+1}T−1t=0 ∼ ν(zt),
where the measure ν(zt) is given implicitly as a distribution
over dynamically feasible trajectories in Z , and the observa-
tions are Xt+1 = fnom(ẑt). The predictive posterior is solely
determined by the posterior over the weights p(β|D) =
N (µ,Σ), which is given analytically [31, Sec. 9.3] by

µ =Σ(V −1m+ σ−2ΦZX)

Σ =(V −1 + σ−2ΦZΦ>Z )−1,
(4)

with feature matrix ΦZ = [Φ(ẑ0), . . . ,Φ(ẑT−1)], feature
vector Φ(ẑt) = [φ1(ẑt), . . . , φM (ẑt)]

>, observations X =

1While integrating non-Gaussian observation models is possible, this is
known to be challenging [19], [21] and out of the scope of this paper.
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[X1, . . . , XT ]>, and prior parameters m = [m1, . . . ,mM ]>

and V = diag([v1, . . . , vM ]). The predictive posterior over
f(z∗) at a new location z∗ is

f(z∗)|D ∼ N
(
µ>Φ∗,Φ

>
∗ ΣΦ∗

)
, Φ∗ = Φ(z∗). (5)

C. Computational complexity and model expressiveness

In general, a larger number of features M in (3) produces
a more expressive model [25]. Specifically, if M →∞, the
series in (3) converges to a closed-form expression [25],
[30] for particular feature choices (e.g., Gaussian-shaped
features give rise to the squared exponential kernel [29, Sec.
4.2.1]). Since such closed-form kernels entangle infinitely
many features, they yield more expressive models than their
truncated counterpart. However, the GP posterior with such
kernels suffers from O(T 3) complexity. On the contrary, the
truncated series formulation (2) poses two main benefits: (i) it
has cost O(M3T ), i.e., linear with the number of datapoints2

and (ii) it yields flexibility in constructing Mercer kernels
that integrate existing domain knowledge. We discuss this
idea next.

III. CONSTRUCTING A DATA-DRIVEN DOMAIN INFORMED
KERNEL

In this section we propose a methodology to integrate exist-
ing domain knowledge into a Mercer kernel (3).

A. Integrating domain knowledge via Fourier features

The nominal model fnom introduced in Sec. II-B holds
prior information about the dynamics. Our approach is in-
tegrating such model into the GPSSMs as the prior mean
function [32] through the mean coefficients of the KL
expansion (2), i.e.,

E

 M∑
j=1

βjφj(zt)

 =

M∑
j=1

mjφj(zt) = fnom(zt). (6)

While there exist many viable function families to represent
φj(zt), we choose a Fourier series expansion [33] due to its
well-studied connection with the frequency domain [29].

Let fnom be square integrable with respect to ν. Then, its
truncated multivariate Fourier series expansion can be written
as a neural network with one hidden layer [34] and a cosine
activation function

fnom(zt) =

M∑
j=1

S(ωj) cos(ω>j zt + ϕ(ωj)), (7)

where the frequencies ωj ∈ Ω ⊆ RD+Du are spaced in a
regular grid ωj = ω̃[j1, . . . , jDz

]>, ji ∈ Z, and ω̃ > 0
is a base frequency. The modulus S(·) = |F [fnom](·)| is
known as spectral density [35] and ϕ(·) = ∠F [fnom](·) is
the system phase. They both depend on the Fourier series
coefficients F [fnom](ωj), defined through the multivariate
Fourier transform [35]

F [fnom](ωj) =

∫
Z
fnom(zt)e

−iω>
j ztdν(zt). (8)

2In practice, we keep M as large as computational resources allow.

This approach poses two main computational caveats.
First, having the frequencies in (7) regularly distributed is
problematic because (i) the grid size M increases exponen-
tially with the dimensionality, and (ii), an uncareful choice of
grid size may result in suboptimal placement of frequencies
in regions where the influence of S(ωj) and ϕ(ωj) is
negligible3. Second, the integrand in (8) is only observable
at sparse locations, sampled from ν(zt) (see Sec. II-B). In
the following, we propose a numerical approach to mitigate
both issues. We denote Sj = S(ωj) and ϕj = ϕ(ωj).

To alleviate the first issue, we propose an irregular grid
that increases resolution in areas where Sj is large. Specif-
ically, we follow [34], where the optimal parameters κ∗ =
{S∗j , ϕ∗j , ω∗j }Mj=1 are obtained by minimizing the loss

min
κ

1

T

T−1∑
t=1

||Xt+1 −
M∑
j=1

Sj cos(ω>j ẑt + ϕj)||22 + λω||W ||22,

(9)

where W = [ω1, . . . , ωM ] regularizes the frequencies. With
this approach, the decoder network (7) shall place the learned
frequencies ω∗j in a non-uniform grid with higher resolution
in areas where S∗j and ϕ∗j are most influential. The recon-
struction loss is evaluated on the dataset D (see Sec. II-B).

We tackle the second issue by numerically approximating
(8) as a quadrature

∑T−1
t=1 Xt+1e

−iω>
j ẑtηt, which can be seen

as a one-layer encoder network, where the integration steps
ηt > 0 are jointly learned with κ.

The sought mean coefficients and features in (6) are

mj = S∗j , φj(zt) = cos((ω∗j )>zt + ϕ∗j ). (10)

The reconstruction quality is affected by the size M of the
irregular grid. We illustrate in Fig. 2 the impact of different
grid sizes using the following toy example:

Example 1. Let us consider the scalar “elbow” dynamical
system f(zt) = 0.8 + (zt + 0.2)(1− 0.5(1 + exp(−2zt))

−1)
[37], which we wish to reconstruct using the aforementioned
autoencoder. To this end, a dataset of size T = 50 is
collected from this dynamical system within the interval
zt ∈ [−10, 10]. The first two rows show the reconstructed
fnom after optimizing the autoencoder. The reconstruction
improves as we increase the number of features from M = 5
to M = 20 for a small number of optimization steps.
We also depict the true spectral density S(ω) and system
phase ϕ(ω) that uniquely characterize this dynamical system.
After optimization, the optimal frequencies ω∗j are found at
locations where both S∗j and ϕ∗j contribute the most to the
reconstruction.

The proposed formulation allows us to embed information
about fnom in the kernel (3) through the dataset Dn, which
is discussed next.

3The Riemann–Lebesgue lemma [36] establishes that S(ω) vanishes as
|ω| → ∞.
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Fig. 2. Reconstruction of the “elbow” dynamical system. Top row,
first column: True dynamical system (light blue line) and reconstructed
dynamical system (dark blue line) with M = 5 features. Second column:
Spectral density S(ω) of the true dynamical system. Third column: System
phase ϕ(ω) of the true dynamical system. The red dots indicate the optimal
values S∗

j , ϕ∗
j found after optimizing (9). Middle row: Analogous to top

row with M = 20. Bottom row: Reconstruction using the spectral density
of a Matérn 3/2 kernel.

B. Non-stationary domain-informed Mercer kernel

Given the informed features and mean coefficients (10), the
proposed kernel follows from (3)

k(zt, z
′
t) =

M∑
j=1

vj cos((ω∗j )>zt + ϕ∗j ) cos((ω∗j )z′t + ϕ∗j ).

(11)

A key difference between this kernel and commonly
used kernels (e.g., Gaussian or Matérn [29, Sec. 4.2]) or
similar kernels with harmonic-based series representations
[28], [38], [39], is that it is generally non-stationary, i.e.,
k(zt, z

′
t) 6= k(zt−z′t). We find stationarity to be a restricting

assumption, as it implies that the statistical properties of fnom
do not change over the input space, which is not necessarily
true for arbitrary dynamical systems. The non-stationarity
in (11) adds flexibility to the model without necessarily
overfitting to a specific function class. We illustrate the
shortcomings of stationarity in Fig. 2 (third row), where
we attempt to reconstruct fnom by using a Matérn kernel,
which is an isotropic stationary kernel. To this end, we first
transform (11) into a stationary kernel by fixing vj =

√
2 and

ϕj ∼ U(0, 2π), as in [39]. Then, the optimal frequencies ω∗j
are obtained by solving (9), and setting S∗j = SMatérn(ω∗j ),
where SMatérn(·) is the spectral density of a Matérn kernel,
given in [29, Sec. 4.2]. As shown, a non-informed stationary
kernel alone is unable to capture the properties of the true
dynamical system.

The proposed kernel enables embedding prior information
into the proposed GPSSM (1), which shall influence the long-
term state predictions. In the following, we discuss how to

use informed receding-horizon predictions to design an out-
of-training-distribution runtime monitor.

IV. OOD RUNTIME MONITOR WITH GPSSM

We are interested in quantifying how likely it is that the
robot navigates a scenario that is out-of-training-distribution
(OoD). In the following, we propose a runtime monitor
that compares the distribution of predicted states with the
posterior after conditioning on collected observations.

A. Prediction-based OoD detection

Let ut:H−1 = {ut, . . . , ut+H−1} be a control sequence
that rolls out the dynamical model forward in time H steps,
departing from the current state xt. The resulting latent state
sequence xt+1:H , assumed to be Markovian, is distributed as

q(xt+1:H |xt, ut:H−1) =

H−1∏
h=0

p(xt+h+1|xt+h, ut+h). (12)

Such distribution determines the future model predictions
from the current state xt. We let the system evolve for H
time steps under ut:H−1, and collect a set of observations
x̂t+1:H , which induce a posterior distribution over the states
p(xt+1:H |x̂t+1:H , xt, ut:H−1). Our goal is to use the Kull-
back–Leibler divergence DKL(q||p) > 0 as a proxy to detect
OoD. The intuition behind this approach is as follows: In-
distribution scenarios should be accurately predicted, result-
ing in a small divergence, while OoD scenarios should report
a large divergence. Furthermore, it is well known that a low
divergence DKL(q||p) yields a large evidence lower bound
(ELBO) while the (unknown) log-evidence remains constant,
i.e., DKL(q||p)+Eq [log p(x̂t+1:H |xt+1:H)] = log p(x̂t+1:H).
Therefore, we define the OoD loss as the negative evidence
lower bound

LOoD = −Eq [log p(x̂t+1:H |xt+1:H)] . (13)

The distribution over the predicted state sequence (12) is
non-Gaussian [21], which renders the expectation in (13)
analytically intractable. In practice, we approximate it using
a Monte Carlo sum [20], [27]. Since the likelihood (1)
factorizes, the approximated runtime monitor is

LOoD ≈
1

R

R∑
r=1

H∑
h=1

1

2σ2
n
||(x̂t+h − x̃(r)t+h||

2
2 + const., (14)

with rollouts x̃(r)t+1:H ∼ q(xt+1:H |xt, ut:H−1). We detail the
sampling approach next.

B. Sampling scheme

Given a control sequence ut:H−1, our goal is sampling
a future state sequence from (12). While this is generally
challenging, a key advantage of (1) over vanilla GPSSM is
that βd, d = {1, . . . , D} constitutes sufficient statistics for
predicting future states (see Fig. 3). Specifically, a posterior
sample β̃d ∼ N (µd,Σd) constitutes a deterministic instance
of the unknown dynamics f̃d(xt, ut) = β̃>d Φd(xt, ut), d =
1, . . . , D. In practice, we use the reparametrization trick
β̃
(r)
d = µd + Ldη̃

(r), r = {1, . . . , R} to pre-sample and
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xt xt+1 xt+2 xt+3

ut ut+1 ut+2

β x̂t+1 x̂t+2 x̂t+3

Fig. 3. Graphical model for the proposed Gaussian process state-space
model. Given a sequence of control inputs and the current state xt, the
distribution over future states is induced by β.

store R model instantiations at a fixed cost, where Ld is
obtained through the Cholesky decomposition Σd = LdL

>
d

and η̃(r) ∼ N (0, 1). Under the Gaussian observation model
(1), the next state is given deterministically as

x̃
(r)
t+1(xt, ut) =


(β̃

(r)
1 )>Φ1(xt, ut)

...
(β̃

(r)
D )>ΦD(xt, ut)

+ γ̃(r), (15)

with γ̃(r) ∼ N (0, Q+ σ2
n I). Hence, a sequence of H states

is obtained by recursively calling (15). The overall runtime
cost of sampling R trajectories is O(HDR) per time step.

V. RESULTS

In this section, we present two sets of results. First, we
assess the capability of the proposed method to detect out-of-
training-distribution (OoD) situations with a real quadruped.
We compare the performance of our GPSSM with another
model that uses standard non-informed kernels. Second, we
present a brief ablation study where we show that our
domain-informed kernel is indeed more data efficient than
existing GPSSMs that use standard kernels.

Parameter choices: The prior variance vj over the weights
(1) is a design choice that affects the quality of the regression.
In practice, one can choose any vj > 0 set of eigenvalues,
e.g., constant [38]. Herein, we follow [28] and set vj = ξmj ,
with ξ > 0, i.e., proportional to the spectral density value
(see (10)). Intuitively, this choice assigns high confidence
(vj ≈ 0) to weakly weighted features (i.e., mj ≈ 0),
which causes them to have low impact in the model, while
strongly weighted features remain uncertain, yet flexible and
adaptable to the posterior. We utilize GPyTorch [40] to train
the non-informed GPSSMs that employ standard kernels,
conducting hyperparameter optimization for the same num-
ber of epochs as we do for the proposed model.

A. OoD runtime monitor in quadrupedal locomotion

In order to assess the efficacy of the proposed OoD run-
time monitor, we conduct experiments using the quadrupedal
robot Go1 [41] in an indoor environment. Our goal is to
detect various changes in the environment as the robot
traverses a circular path. To this end, we first gather motion

data as the robot walks in circles, without any environmental
perturbations. Subsequently, we train the domain-informed
GPSSM (Sec. II and III) using the collected data. Finally, we
deploy the OoD runtime monitor described in Sec. IV, which
leverages the trained model and detects environment changes.
The goal is for the OoD runtime monitor to correctly identify
the portions of the path affected by a variety of environment
changes, which we detail next.

Rope pulling: A rope is attached to the robot’s body while
the other end of the rope is anchored, inducing a pulling force
that deviates the robot from its intended circular path for a
certain portion of the trajectory (see Fig. 1).

Rocky terrain: The robot is required to navigate through
rocky terrain for a section of the trajectory.

Poking: The robot’s body is gently prodded with a pole at
various stages during its movement.

In the following, we describe our experimental setup,
design choices, and discuss the results.

1) Design choices: We use the same state and control
input representation as the ones for unicycle dynamics [42].
The state xt = [xt, yt, αt]

> concatenates the X-Y robot
position in the room and the heading angle αt ∈ [−π, π),
i.e., the robot’s orientation in the X-Y plane. The control
input ut = [vt, α̇t]

> gathers the desired forward velocity
vt and the desired rotation speed α̇t. Due to several real-
world effects, the unicycle dynamics [42] are affected by
several nonlinearities that are difficult to model, for example,
communication delays and sensor noise. Also, inherent dy-
namics in the manufacturer’s walking algorithms forbid from
accurately tracking the desired speeds. The proposed GPSSM
(1) absorbs such nonlinearities. We learn each component fd
using M = 1500 features and σd = 0.01, d = {1, 2, 3}.

Autoencoder training: As detailed in Sec. III-A, the au-
toencoder reconstructs a given nominal dynamics model
fnom. In this setting, the nominal model is implicitly rep-
resented through a dataset D of state-control-state tuples,
collected directly on the real system. Specifically, we collect
10 minutes of data at 10 Hz of the robot walking in circles on
flat ground and use this dataset to train the autoencoder with
λω = 0.1. We train for 100,000 epochs with a cosine decay
learning rate. The frequencies ωj are initialized by sampling
from a uniform distribution within the domain [−3, 3]5.

Sampling parameters: We follow the sampling scheme
proposed in Sec. IV-B to compute (14). At each time step,
we sample R = 20 system rollouts with a time horizon of
H = 30 timesteps (i.e., 3 seconds lookahead).

2) Experimental setup: The position and orientation of
the robot are estimated using a VICON motion tracker.
The desired speed commands are computed online using a
proportional controller that steers the robot toward a set of
20 waypoints distributed along a circle measuring 3 meters
in diameter. The desired forward velocity is given as vdes

t =
0.1+Kp||(xnext, ynext)− (xt, yt)||2, where (xnext, ynext) is the
position of the next waypoint. The desired angular velocity
is computed as α̇des

t = 0.2(θnext − θt). This controller is
fixed across all environments. The OoD loss is normalized
to be LOoD ∈ [0, 1] across all environments. We send desired
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Fig. 4. A quadrupedal robot follows an anti-clockwise circular motion,
while being exposed to three changes in the environment. Top-left: The robot
walks in flat terrain without environment changes. Top-right: The robot is
tied to a rope that creates a pulling force. Bottom-left: The robot walks on
rocky terrain. Bottom-right: the robot is poked in random directions as it
walks. The colormap transitions from blue (low OoD loss values) to red
(high OoD loss values). Future state predictions are overlaid in light green
at four different parts of the trajectory.

velocity commands to the robot’s on-board computer at 100
Hz via wireless communication. Our implementation uses
ROS in Python and C++ on a standard commercial laptop.

3) Results discussion: In Fig. 4, we show that LOoD
keeps low values when the robot passes through parts of the
trajectory that were seen at training time. On the contrary,
LOoD reaches high values when the robot is exposed to
changes in the environment not captured at training time.
In the rope pulling case, we see that the sampled state
trajectories deviate significantly from the trajectory when the
rope is tense, but remain in-distribution when it is loose. We
see similar situations in the other two settings.

These results indicate that our model consistently remains
in-distribution when the environment is significantly similar
to the one it was exposed to at training time. In table I we
show the percentage of time steps in which the robot was
out of distribution. To determine this, we normalize the data
offline and classify OoD situations with LOoD > 0.5. We
compare these results with a Gaussian process state space
model that uses a standard Matérn 3/2 kernel, trained with
the same data from circular motions. As shown in table I,
this model’s predictions remain in distribution less often. In

TABLE I
PERCENTAGE OF TIME STEPS IN WHICH LOOD > 0.5 ACROSS ALL

TRAJECTORIES FOR EACH ENVIRONMENT.

Walking Rope Rocky Poking

Ours 1.8% 66.7% 64.4% 79.0%
GPSSM 87% 92.5% 98.7% 97.3%

TABLE II
DATA EFFICIENCY ANALYSIS.

25% 50% 75% 100%

SE -3.68 (0.09) -3.72 (0.03) -3.75 (0.01) -3.47 (0.20)
Matern -3.74 (0.03) -3.71 (0.05) -3.69 (0.08) -3.58 (0.17)
Ours -4.35 (0.04) -4.42 (0.02) -4.49 (0.04) -4.54 (0.03)

addition, the model has difficulties predicting reliably the
data it was trained on (i.e., first column). This indicates that
for such a small dataset, informing the kernel is beneficial
to yield more accurate predictions. We found the number
of features M = 1500 to be a key factor in obtaining
accurate state predictions. While a larger M did not yield
better results, smaller M affected the quality of the long-
term predictions, which made the OoD runtime monitor
unreliable.

B. Data efficiency assessment

It is desirable to analyze the extent to which the domain-
informed kernel increases data efficiency. To assess this, we
collect 10 minutes of data in the same setting described
above, but moving the robot through a set of randomly cho-
sen waypoints across the room. We leave 10% of the dataset
for testing and use the remaining portion as a training set.
Then, we slice the training dataset in batches of increasing
size (25%, 50%, 75%) and train the kernel of the informed
GPSSM with each of them. As a performance metric we use
the root mean squared error (RMSE) between the predictive
mean of the GPSSM and the actual observations to assess
the quality of the regression fit. We compare the performance
of our model with a standard GPSSM that uses (i) a
squared exponential kernel (SE) and (ii) a Matérn kernel.
In table II, we see that our model systematically achieves
a lower RMSE, which indicates that constructing the kernel
by integrating existing data does increase data efficiency.

VI. CONCLUSION

In this paper, we have proposed (i) a general methodology
to embed domain knowledge, given as a nominal model,
into the kernel of a Gaussian process state-space model
(GPSSM), and (ii) a runtime monitor for online out-of-
training-distribution (OoD) detection using GPSSMs.

The resulting non-stationary kernel encapsulates domain
knowledge using Fourier features, which are learned by
minimizing an autoencoder loss using data from an implicit
nominal model. Our results indicate that such a domain-
informed kernel needs less training data to achieve the
same regression quality as standard non-informed station-
ary kernels. In addition, we show that the proposed OoD
runtime monitor, validated on a quadruped robot navigating
in an indoor setting, can reliably detect previously unseen
scenarios.

Whereas this work focuses on detecting OoD situations
online, we plan to integrate the OoD runtime monitor with
sampling-based model predictive control methods [43] for
online decision-making, to enable safe navigation.
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