
Manifold Clustering Based Nonlinear Model Reduction with
Application to Nonlinear Convection

T. Wu, D. Wilson, S.M. Djouadi

Abstract— This paper proposes a new cluster method
combined with Dynamic Mode Decomposition with Control
(DMDc), and the Proper Orthogonal Decomposition (POD) to
construct more accurate reduced order models. DMDc and
POD are popular data-driven techniques that extract low-
order models from high-dimensional complex dynamic systems.
However, these methods are inherently linear, i.e., the data
is assumed to belong to linear manifolds. However, this may
lead to inaccuracies in the reduced models commensurate
with the presence of nonlinearities. To capture the nonlin-
ear behavior, manifold clustering is introduced to group the
snapshots obtained by experiments or numerical simulation
into several sub-regions based on the underlying non-linear
structure. Manifold clustering is a powerful approach for
exploratory data analysis, allowing the discovery of patterns
and structures that are not apparent in raw high-dimensional
data. It does not require knowing the number of clusters
and the intrinsic manifold dimensions in advance. Manifold
clustering is combined with DMDc and POD to construct the
local reduced-order models. Time clustering is applied to the
snapshots generated by a nonlinear convective flow governed
by the 2D Burgers’ equations with boundary actuation. The
manifold cluster reduced order model outperforms standard
and other cluster-based (K-means) reduced order models.

I. INTRODUCTION
The Proper Orthogonal Decomposition (POD) [1] and Dy-

namic Mode Decomposition with control (DMDc) [2] are so-
phisticated analytical methods employed to extract dynamic
features and construct reduced-order models of complex
systems. These methodologies are particularly significant in
fields where the systems are governed by high-dimensional,
nonlinear dynamical equations, such as in fluid dynamics, at-
mospheric science, and more recently, in the burgeoning area
of data-driven science and machine learning. The combined
use of POD and DMDc [3] [4] [5] [6] in fluid dynamics
serves a dual purpose. While POD offers a lens through
which the most energetic and influential flow features are
viewed, DMDc expands the view to encompass the dynamics
of how the flow evolves under the influence of external
control. Together, these methods empower researchers and
engineers to not only observe and describe fluid behaviors
but also to exert precise influence over these behaviors,
paving the way for advanced flow control techniques that
can be applied to modern aerodynamics, climate modeling,
and energy systems.
However, popular reduced order models such as DMD and
POD [7] are inherently linear, that is, the snapshots are
assumed to belong to a linear vector space. In [8] [9]
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[10] [11] [12], the authors propose to quantify the global
nonlinear manifold geodesic by partitioning the data mani-
fold into several regions and then approximating using local
Euclidean distances. Snapshot data were grouped into several
sub-regions using the K-means algorithm, and reduced-order
models based on POD and DMDc were constructed in each
sub-region. The results show a significant improvement over
conventional POD and DMDc.

The general notion of clustering is used in various domains
such as data compressing, image processing, etc. In [13],
[14], [7] [15], Centroid Voronoi Tessellations (CVT) is a
clustering method based on k-means algorithm. CVT is
used to construct a reduced order model by choosing the
cluster centroids as the reduced basis. In [16], the authors
group snapshots into several clusters in the state space, then
cluster centroids partition the state space in complementary
non-overlapping regions, based on these regions, the state
transition matrix is constructed using a Markov process
and finally applied to a mixing layer problem. In [17],
differential geometry properties of Riemannian manifolds are
used to produce suitable reduced-order bases for nonlinear
dynamical systems.

Here, other than the K-means cluster method, we
investigate manifold clustering that works by combining the
concepts of manifold learning and clustering to group data
points that lie on the same manifold in a high-dimensional
space. The development of manifold clustering originated
from the manifold hypothesis, which suggests that while
datasets might appear high-dimensional, they often rest on
underlying low-dimensional manifolds [18]. Early studies in
the realm of manifold learning, particularly with techniques
such as Isomap (Isometric Mapping) [19] and Locally
Linear Embedding (LLE) [20], offered essential methods
to approximate the intrinsic geometry of these manifolds.
These initial efforts laid the crucial groundwork for the
advancement of manifold clustering techniques. When the
data is modeled as a union of several manifolds, manifold
clustering is needed in addition to manifold learning [21]. In
[22], [23], [24], different types of manifold clustering have
been proposed to solve the problem when the manifolds
intersect each other [18].

This paper is a continuation of the work undertaken
in [8] [9] [11]. Herein, the manifold clustering method
is used to group the system snapshots obtained through
experimental data or numerical simulation into several sub-
regions where the underlying manifold structure is similar in
each region to construct a reduced-order model for each sub-
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region. Moreover, for comparison purposes, the K-means
algorithm [25] is used to group the snapshots that have
similar behavior into clusters. In particular, time clustering is
applied to the snapshots generated of a nonlinear convective
flow governed by the 2D Burgers’ equation with boundary
actuation resulting in a cluster-reduced order method that
yields better results than the K-means cluster DMDc and
POD-reduced order models. The main discovery is that the
manifold clustered reduced order model outperforms the
K-means clustered reduced order model. The 2D Burgers’
equation is used as a surrogate to the Navier-Stokes equation
since it has the same nonlinearity as the latter [26] [27].
It is a fundamental partial differential equation occurring
in several fields including fluid mechanics, acoustics, gas
dynamics, and traffic flow [28].
This paper is organized as follows. Section II provides a
brief background about DMDc and POD, and two types of
clustering methods, the K-means and Manifold clustering
algorithms, followed by the proposed clustered reduced
order modeling method. Section III presents a numerical
study that illustrates the performance of the manifold cluster
reduced order model with comparison to the K-means
cluster reduced order models. Concluding remarks are
provided in Section IV.

II. BACKGROUND: DMDC, POD, AND CLUSTERING

A. DMDc

DMD aims to extract information about a dynamical
system from an ensemble of experimental or numerical
snapshot data. Dynamic Mode Decomposition with Control
(DMDc) extends the capabilities of DMD by incorporating
control inputs or external forcing into the analysis [29].
This enhancement is particularly valuable in systems where
control strategies significantly influence the system’s behav-
ior. By integrating control inputs into the DMD framework,
DMDc enables the identification of control-affine dynamic
modes, prediction of system responses under different control
scenarios, and design of optimal control strategies [29].
Letting xk ∈ Rn, uk ∈ Rl be a measurement/snapshot
made at time k, DMDc assumes that (xk, xk+1, uk) can be
approximated by a linear operator A and B as [29]:

xk+1 = Axk +Buk (1)

where B ∈ Rn×l, Where uk ∈ Rl and B ∈ Rn×l. To handle
the incorporation of control input, consider a new matrix of
control input snapshots defined as [29]:

Γ =

 | | |
u1 u2 . . . um−1

| | |

 (2)

In conjunction with the previously defined matrices X and
X

′
, the dynamical system can be represented according to

[29]

X ′ ≈ AX +BΓ (3)

represented in matrix form:

X =

 | | |
x1 x2 . . . xm−1

| | |

 (4)

X ′ =

 | | |
x2 x3 . . . xm

| | |

 (5)

Where m is the total number of the snapshots and X ′ is the
time shift snapshots matrix of X , The goal of DMDc is to
find the best linear operators A and B to approximate the
dynamical system with actuation. In this case, to construct
the relationship between unknown A, B with known data X
and Γ, (3) is rewritten as [29]:

X ′ ≈
[
A B

] [ X
Γ

]
= CΩ (6)

where C = [A B], Ω = [X Γ]T . With a similar form as
DMD in [29], DMDc is defined as:

C = X ′Ω† (7)

where C can be found by minimizing the Frobenius norm
∥C −X ′Ω†∥F . As in DMD, SVD is used on the augmented
input data matrix Ω, that is, Ω = UΣV ∗ ≈ Ũ Σ̃Ṽ ∗, with the
truncation value r. Then, the approximated linear operators
A and B can be found as:

C ≈ X ′Ṽ Σ̃−1Ũ∗

[A B] ≈ [X ′Ṽ Σ̃−1Ũ∗
1 X ′Ṽ Σ̃−1Ũ∗

2 ]
(8)

where C ∈ Rn×(n+l), Ũ1 ∈ Rn×r, Ũ2 ∈ Rl×r, Ũ =
[Ũ1 Ũ2]. To find a reduced order representation of dynamic
systems, a second SVD on the output matrix X ′ is used
[29], where X ′ ≈ Û Σ̂V̂ with the truncation value p, here
Û ∈ Rn×p, Σ̂ ∈ Rp×p, V̂ ∗ ∈ Rp×m−1. Then the reduced
order system matrices for A and B can be realized with the
linear transformation x = Û x̃:

Ã = Û∗AÛ = Û∗X ′Ṽ Σ̃−1Ũ∗
1 Û

B̃ = Û∗AÛ = Û∗X ′Ṽ Σ̃−1Ũ∗
2

(9)

The reduced-order dynamical system with the given control
inputs can be constructed as follows:

x̃k+1 = Ãx̃k + B̃ũk (10)

After presenting the background for standard DMDc, POD
is introduced next.

B. POD

POD is a widely used numerical method that reduces the
computational burden in complex high-dimensional systems.
The snapshot method is used to construct the POD modes of
the ensemble data xi, i = 1, · · · , N generated by the open-
loop system. The N ×N correlation matrix L is defined as
[1] [30]:

Li,j =< xi, xj > (11)
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where:
< xi, xj >=

∫
Ω

xix
∗
jdx (12)

belongs to L2(Ω) standard inner product and x∗
j is the

complex conjugate of xj , where Ω is the spatial domain.
Next, compute the eigenvalues of L, and sort the first M
eigenvalues in descending order such that [1]:

(

∑M
i=1 λi∑N
i=1 λi

) ≥ 1− δ (13)

where the ratio is the percentage of energy contained in
the ensemble snapshots that is preserved in the POD basis.
By choosing a desired relatively small δ, the smallest M is
determined and each eigenvector {αi}Mi=1 is normalized as :

∥αi∥2 = 1/λi (14)

The orthonormal POD basis {ϕi}Mi=1 can be constructed as:

ϕi(x) =
N∑
j=1

αi,jxj (15)

where αi,j is the jth component of αi. The approximated so-
lution X is a linear combination of the POD basis described
as:

X ≈
M∑
i=1

αiϕi (16)

where ϕi(x) is the i-th POD basis and αi(t) is its correspond-
ing temporal coefficient. The POD reduced order mode can
be represented as [1]:

min
ϕ

∥X −
M∑
i=1

αiϕi∥2F s.t. < ϕi, ϕj >= δij (17)

C. Clustered Reduced Order Basis

This work is a continuation of our previous work [11]
where we used K-means clustering in conjunction with
DMDc. It turns out that the particular clustering employed
affects the performance of the reduced order model. The K-
means clustering method groups the snapshots by calculating
the minimal distance between each data point and the kth
cluster centroid according to the Euclidean distance [25]:

d(xi, xj) =
√
(xi − xj)T (xi − xj) (18)

where d is the Euclidean distance between two distinct
snapshots xi and xj .
Let ci be the argument of the minimum distance between xi

and xcj , i.e.,

ci = arg min
j=1,...,K

d(xi, xcj ) (19)

The new centroids are:

xcj =

∑N
i=1 1ci=jxi∑N
i=1 1ci=j

(20)

where j = 1, . . . ,K, K is the number of clusters, and
1cj=j = 1 if ci = j and 1cj=j = 0 otherwise.

If S̃ is the set of all the snapshots, and if S̃i represents the
ith cluster with center xci , then S̃ = ∪k

i=1S̃i, where the
union is a union of disjoint sets. It is readily seen that the
K-means algorithm is based on the notion that a cluster is
centered around a single point when measuring similarity.
However, snapshots generated by simulation or experiments
from processes governed by nonlinear PDEs reside on low-
dimensional manifolds. It is more advantageous to consider
clusters as groups of snapshots around compact manifolds
leading to manifold clustering [21]. Here, we adopt the
manifold clustering method proposed in [18] where the data
is assumed unorganized, i.e., it is not known which snapshots
belong to which manifolds and the latter may intersect. In
addition, the method identifies the number of manifolds and
their intrinsic dimensions and partitions the snapshots into
the manifolds they belong to. To deal with the presence of
single and intersecting manifolds, unsymmetrical normalized
spectral clustering [31] is first applied to partition the snap-
shots coarsely into different connected subsets according to
the following steps [18]:

• Construct a similarity graph G = (V,E) with vertex set
V and edge set E: draw an edge between snapshot Xi

and Xj if Xi is among the L nearest neighbors of Xj ,
and vice versa. The nearest neighbor is determined if the
Euclidean distance d(Xi, Xj) is less than a threshold.

• Construct the weight matrix W = (wij) as wij = 1 if
snapshots Xi and Xj are connected, and wij = 0 if not.

• Spectral decomposition: Define the diagonal matrix F
with Fii =

∑
j wij , and the matrix E = F − W .

Compute the first r eigenvectors u1, u2, · · · , ur cor-
responding to the r smallest eigenvalues by solving
the generalized eigenvalue problem. The number r is
determined by using the so-called eigenmap heuristic
[32]:

If |λj − λj−1| ≤ 10−6 < |λj+1 − λj | then r = j
(21)

where 10−6 is used to replace zero to void numerical
issues. Let the matrix U := [u1, u2, · · · , ur].

• Cluster by the K-means algorithm: Group the vectors
corresponding to the rows of the matrix U using K-
means.

After the different groups have been identified, we need to
determine whether their structure is intersecting or single. In
[18], it is suggested to resort to the intrinsic dimension id,
that is, if the snapshots belong to a single manifold then the
intrinsic dimension of each point on this manifold should
be the same, otherwise, they are different. The points in
the intersecting areas have, in general, higher dimensions
than the other areas. Thus, the snapshots with the highest
dimension dmax are grouped in the intersecting manifolds
[18]. The latter can be accurately identified using the ϵ-
neighbors rule.
The intersecting area due to different manifolds passing
across each other should be revealed [18]. Here the K-plane
clustering algorithm [33] is employed to reveal the different
manifolds in each intersecting cluster. Given the number of
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clusters k and their dimensions d1, d2, · · · , dk, the steps are
as follows [33] [18]:

• Initialization: Randomly assign each snapshot to a clus-
ter to obtain an initial partition. Then, alternate between
the following steps until convergence.

• Cluster update: Find a center µi and a set of bases Φi =
[ϕid1

, ϕid2
, · · · , ϕidk

] for the i-th cluster such that the
reconstruction error is minimum.

• Cluster assignment: For each snapshot Xm in the inter-
secting clusters, determine the space j such that:

(Xm − µj)
T (I − ΦjΦ

T
j )(Xm − µj) =

min
i=1,2,··· ,k

(Xm − µi)
T (I − ΦiΦ

T
i )(Xm − µi) (22)

The intrinsic dimension id is estimated locally by using the
local covariance matrix of the snapshots. More specifically,
for each snapshot Xi, find its nearest M nearest snapshot
neighbors X1

i , X
2
i , · · · , XM

i , and compute the local covari-
ance matrix Covi as [34]:

Covi =
1

M

M∑
j=1

(Xj
i −mi)(X

j
i −mi)

T (23)

mi =
1

M

M∑
j=1

Xj
i is the mean vector (24)

The intrinsic dimension is then determined by sorting the
eigenvalues of Covi in descending order λi

1 ≥ λi
2 ≥ λi

2 · · · ,
and if [18]:

λi
j

λi
1

< 0.05 ≤
λi
j−1

λi
1

(25)

then, id = j−1. In the next section, the clusters S̃i are used
to derive cluster DMDc and POD. The manifold clustering
algorithm can be summarized as follows:

Algorithm 1: Manifold clustering
Input: Snapshots dataset X = x1, . . . , xn

1 Create a graph G = (V,E) with a node for each
snapshots, and an edge between pairs of neighboring
snapshots and set the edge weight to that distance;

2 Create k × n weight matrix W = [wij ], take spectral
decomposition on W obtaining eigenmap

3 For each connected subset, compute the intrinsic
dimension id, select the connected subset as a
cluster if id′s are equal. if id′s are different,
construct a new graph Gnew and repeat step 2

4 Repeat until Step 3 converges
Output: s1, s2, . . . , sk :
the results of clustering

D. Cluster DMDc and POD

Each cluster of snapshots S̃i is used to build the matrix
of snapshots Xi at time k and X ′

i at time k + 1. In this
case, since for any m × n matrix M = (mij), ∥M∥2F =

∑m
i=1

∑n
j=1 |mij |2. The following Lemma, proved in [11],

shows that clustering DMD/DMDc provides better results
than standard DMD/DMDc in general:
Lemma: [11]

min
A

∥X ′ −AX∥2F =min
A

K∑
i=1

∥X ′
i −AXi∥2F

≥
K∑
i=1

min
A

∥X ′
i −AXi∥2F

=

K∑
i=1

∥X ′
i −AiXi∥2F

(26)

where the sum is taken over K clusters. However, the
clustering technique used does affect the performance of the
reduced-order model as shown here. A similar result can be
shown to hold for POD as well.

III. NUMERICAL RESULTS

A. A Prototype Nonlinear Convective Flow

Let Ω1 ⊆ R2 be the rectangle given by (a, b]× (c, d) [35]
[27]. Let Ω2 ⊆ Ω1 be the rectangle given by [a1, a2]×[b1, b2]
where a < a1 < a2 < b and c < b1 < b2 < d. The problem
domain, Ω, is given by Ω = Ω1\Ω2. In this configuration,
Ω2 is the obstacle. Dirichlet boundary controls are located
on the obstacle bottom and top, denoted by ΓB and ΓT ,
respectively. The dynamics are described by the 2D Burgers’
equation [35] [27]:

Fig. 1. Problem Geometry

∂

∂t
w(t, x, y) +∇ · F (w) =

1

Re
∆w(t, x, y) (27)

for t > 0 and (x, y) ∈ Ω. In (27) F (w) has the form

F (w) =

[
C1

w2(t, x, y)

2
C2

w2(t, x, y)

2

]T
(28)

where C1, C2 are non-negative constants. This system has
a convective nonlinear term similar to the Navier-Stokes
equations governing turbulent fluid flows. The quantity Re
is the Reynolds number counterpart. Here, the boundary
control is assumed to be separable for simplicity [35] [27].
Under this assumption, at the bottom and top of the obstacle,
boundary conditions are specified as [27], [35]:

w (t,ΓB) = uB(t)ΨB(x)

w (t,ΓT ) = uT (t)ΨT (x)
(29)
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where uB(t) and uT (t) are the boundary controls at the
obstacle bottom and top, respectively. The profile functions
ΨB(x) and ΨT (x) describe the spatial influence of the
controls on the boundary. A parabolic inflow condition is
specified of the form [27], [35]:

w (t,Γin) = f(y) (30)

At the outflow, a Neumann condition is specified according
to [27], [35]

∂

∂x
w (t,Γout) = 0 (31)

The boundary values along ΓU are supposed to be zero for
all times, that is,

w(t,ΓU ) = 0 (32)

The initial condition is given as

w(0, x, y) = w0(x, y) ∈ L2(Ω). (33)

B. Numerical setting

To generate the snapshots, a finite difference approxima-
tion [35] is used to obtain the solution snapshots for the
convective flow from left to right with parabolic inflow
condition f(y), and where C1 = 1 and C2 = 0. The
rectangle Ω1, Ω2 are set to be (0, 0.99] × (0, 0.48] and
[0.15, 0.24] × [0.15, 0.33]. The parameter Re is specified
as 300, 500, 800. Finite difference spatial discretization is
performed as in [35]. A grid with spatial size h = 0.015 is
built to generate the snapshots using inputs of the following
forms:

uB(t) = m1 sin

(
3

16
πtf1

)
, uT (t) = m2 sin

(
3

8
πtf2

)
(34)

where the steady state solution arising from the inflow is
taken as the initial condition in the simulation. In Equation
(34), snapshots are taken with ∆t = 0.02 increments starting
from t = 0 and ending at T = 40. The resulting ensemble
consists of roughly 2000 time snapshots each with dimension
2156.

C. Reduced Order Modeling

Fig. 2. Under case 3, the full order solution and the manifold-clustered
DMDc reduced order model

Here, two types of cluster-reduced order models are
constructed, respectively. Different Re values with different

boundary inputs uB , uT are tested.
1) Re = 300, uB = sin(3/16× πt1.4), uT = 2× sin(3/8×
πt1.4),
2) Re = 500, uB = sin(3/16× πt1.4), uT = 2× sin(3/8×
πt1.4),
3) Re = 800, uB = sin(3/16× πt1.4), uT = 2× sin(3/8×
πt1.4)
4)Re = 800, uB = sin(3/16 × πt1.6), uT = 2 × sin(3/8 ×
πt1.2)
5) Re = 800, uB = 2×sin(3/16×πt1.6), uT = 3×sin(3/8×
πt1.2). Here we compare the accuracy of the reduced order

(a)

(b)

Fig. 3. Under case 2 and 4, the K-means and Manifold cluster-DMDc/POD
reduced order models are constructed. The MSE between the reduced-order
and full-order models is displayed after 20 runs.

model between manifold clustering and K-means clustering
combined with DMDc and POD. k = 5 is chosen to generate
clusters for each method. As mentioned in the previous
section, K-means clustering randomly chooses the centroids
at the beginning of the clustering process, which leads to
different constructed reduced-order models. For each case,
20 runs are set for the performance comparison. For instance,
as seen in Fig. 2, the manifold-clustered DMDc reduced
order model is shown to be efficient in representing the full-
order solution well. To evaluate the performance, the mean
square error (MSE) metric is used. In Fig. 3, the K-means
and manifold clustering methods are applied with POD to
obtain the reduced-order models. The proposed manifold
method outperforms the K-means cluster method. We take
the experiment for 5 cases with different cluster methods
combined with 2 reduced order techniques and take the
average MSE over 20 trials for each case. More details can be
found in Table I, under the condition given in the 5 cases with
k = 5 clusters, the clustered-DMDc reduced order model
has better performance than the clustered-POD reduced order
model. Here, our purpose is to investigate how the manifold
cluster reduced-order model performs from case 1 to case 5.
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The non-linearity of the system increases as Re increases and
more complex boundary inputs result. The manifold clustered
reduced models are all better than the K-means clustered
reduced order models.

log10(MSE) K-means Manifold-cluster
POD DMDc POD DMDc

Case 1 -3.20 -3.8 -3.33 -4.14
Case 2 -3.24 -3.74 -3.39 -4.21
Case 3 -3.38 -3.63 -3.49 -4.12
Case 4 -3.29 -3.56 -3.40 -4.08
Case 5 -2.71 -2.92 -2.94 -3.28

TABLE I
UNDER THE 5 CASES, THE PERFORMANCE OF THE K-MEANS AND

MANIFOLD CLUSTERING REDUCED ORDER MODELS CAN BE VIEWED IN

THE TABLE. FOR EACH CASE, WE RUN THE CODE 20 TIMES. FOR

INSTANCE, FOR CASE 4, THE PERFORMANCE OF THE CLUSTERED-POD
REDUCED ORDER MODEL CAN BE VIEWED IN FIG. 3

IV. CONCLUSIONS

A new model reduction method based on manifold clus-
tering combined with POD and DMDc is proposed. Its
performance is compared to the K-means cluster-DMDc and
cluster-POD using a prototype nonlinear convective flow
governed by the 2D Burgers’ equation for different cases.
The proposed manifold cluster method reduction outperforms
both K-means cluster-DMDc and cluster-POD. Future work
includes using the new reduced-order models to carry out
flow feedback control for the full-order model.
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