
Convex Optimization-based Policy Adaptation to Compensate for

Distributional Shifts

Navid Hashemi, Justin Ruths, Jyotirmoy V. Deshmukh

Abstract— In many real-world cyber-physical systems, con-
trol designers often model the dynamics of the physical com-
ponents using stochastic dynamical equations, and the design
optimal control policies for the model. At any given time, a
stochastic difference equation essentially models the distribution
on next states conditioned on the state and controller action
at that time. Due to shifts in this distribution, modeling
assumptions on the stochastic dynamics made during initial
control design may no longer be valid when the system is
deployed in the real-world. In safety-critical systems, this can
be particularly problematic; even if the system follows the
designed control trajectory that was deemed safe and optimal,
it may reach unsafe states due to the distribution shift. In this
paper, we address the following problem: suppose we obtain
an optimal control trajectory in the training environment, how
do we ensure that in the real system this optimal trajectory
is tracked with minimal error? In other words, we wish to
adapt an optimal trained policy to distribution shifts in the
environment. We show that this problem can be cast as a nonlin-
ear optimization problem solvable using heuristic optimization
methods. However, a convex relaxation of this problem allows us
to learn policies that track the optimal trajectory with much
better error performance and faster computation times. We
demonstrate the efficacy of our approach on two different case
studies: optimal path tracking using a Dubin’s car model, and
collision avoidance using both a linear and nonlinear model for
adaptive cruise control

I. INTRODUCTION

Systems operating in highly uncertain environments are

often modeled using controlled Markovian stochastic differ-

ence equations or Markov decision processes (MDPs). Given

a state st (i.e., the state at time t), a discrete-time MDP

defines a distribution on st+1 conditioned on the state st and

the control action at. We call this distribution the transition

dynamics. For such systems, a number of model-based and

data-driven control design methods have been explored to

learn an optimal policy (i.e. a function from the set of

states to the set of actions) that minimizes some trajectory-

based cost function [1]. Model-based methods explicitly, and

data-driven methods implicitly, assume a specific distribution

for the transition dynamics. However, when the system is

The authors would like to thank the anonymous reviewers for their
feedback. This work was supported by the National Science Founda-
tion through the following grants: CAREER award (SHF-2048094), CNS-
1932620, CNS-2039087, FMitF-1837131, CCF-SHF-1932620, funding by
Toyota R&D and Siemens Corporate Research through the USC Center
for Autonomy and AI, and the Airbus Institute for Engineering Research.
Navid Hashemi and Jyotirmoy.V. Deshmukh are with the Thomas Lord
Department of Computer Science, University of Southern California, Los
Angeles, USA. Justin Ruths is with the Department of Mechanical and
System Engineering, University of Texas at Dallas, Dallas, USA. Emails:
(navid.hashemi, jyotirmoy.deshmukh)@usc.edu, jruths@utdallas.edu

deployed in the real-world, this distribution may not be the

same; this change in distribution is called a distribution shift.

The fundamental problem addressed by this paper is

adapting a pre-learned control policy to compensate for

distribution shifts. While it is possible to retrain the control

policy on the new environment, it is typically expensive

to learn the precise dynamics of the new environment and

then synthesize the optimal control policy on the learned

dynamics. However, a crucial observation that we make is

that while learning a precise high-fidelity model and the

optimal policy is expensive, learning a reasonable fidelity

model of the transition dynamics may be feasible. We call

such a learned model a surrogate model. In this paper,

we show that under certain kinds of distribution shifts, the

problem of adapting an existing optimal policy to the new

deployment environment can be framed as a nonlinear opti-

mization problem over the optimal trained trajectory and the

surrogate model. Furthermore, we show that if the surrogate

is a neural network (with rectified linear unit or ReLU based

activation), then there is a convex relaxation of the original

optimization problem that permits an efficient procedure to

find a modified action to minimize the error between the

desired optimal trajectory and the actual trajectory in the

deployment environment. Finally, we empirically show that if

the trained trajectory meets desired objectives of safety, then

such policy adaptation can provide safety during deployment.

The main technical idea in our work is inspired by recent

work in [2], where the authors proposed an efficient method

to provide probabilistic bounds on the output of a neural

network, given a Gaussian distribution on its inputs. We

show how we can use this result to propagate the effects of a

distribution shift. However, the result in [2] does not consider

the problem of finding optimal actions (which is a non-

convex problem). In this research, we propose a methodology

to convexify this result for finding optimal actions. We

demonstrate our technique on a tracking problem using a

Dubin’s car model and a collision avoidance problem that

uses adaptive cruise control.

Related work. The work in this paper is related to transfer

learning in robot learning, where the objective is to train

control policies using a simulator and then transfer them to

the physical robot. There are several approaches for transfer

learning; in [3], the authors use a modular approach to

separate the sensing, planning and low-level actuator control

components and learning the planning policy in the simulator.

This eases transferring the policy to the real robot. In [4], the

authors use a learned deep inverse dynamics model to decide

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5370

which real-world action is most suitable to achieve the same

state as in the simulator. Mutual alignment transfer learning

approaches employ auxiliary rewards for transfer learning

under discrepancies in system dynamics for simulation to

robot transfer ([5]). Approaches such as [6] compensate for

the difference in dynamics by modifying the reward function

such that the modified reward function penalizes the agent for

visiting states and taking actions in the source domain which

are not possible in the target domain. In [7], the authors

study robust adversarial reinforcement learning. Inspired

from ‖H‖∞ control, they assume destabilizing adversaries

such as the gap between simulation and the real environment

as uncertainties and devise a learning algorithm that is robust

to the worst case adversary. Transfer learning has also been

investigated in the multi-agent setting [8], where the problem

of training agents with continuous actions is studied to

ensure that the trained agents can still generalize when their

opponent’s policies alter. In [9], the authors propose to use

Bayesian optimization (BO) to actively select the distribution

of the environment variable that maximizes the improvement

generated by each iteration of the policy gradient method.

Unlike the authors of [6] who propose a reward modification

technique, in this work we propose a policy modification

technique to tackle the problem when the environment model

in training is different from what is expected.

The rest of the paper is organized as follows. In Section II

we discuss the preliminaries, terminology and technical

notation. In Section III, we discuss our policy adaptation

approach, and provide experimental results in Section IV.

We conclude with related work in Section V.

II. PRELIMINARIES

Notation. A multi-variate Gaussian distribution is denoted

as N (µ,Σ), where µ and Σ represent the mean vector and

covariance, respectively. For a Gaussian-distributed random

vector r ∈ R
n, we denote its mean value by µr and its

covariance by Σr. Let c ∈ R
n, then an ellipsoid centered at c

with the shape matrix Ω is denoted as E(c,Ω), i.e., E(c,Ω) =
{

x
∣

∣(x− c)⊤Ω−1(x− c) ≤ 1
}

. Given a non-convex set Y ,

we use the notation H(Y) to denote the set of ellipsoids that

cover Y , i.e., {E(c,Ω) | Y ⊆ E(c,Ω)}.

Markov Decision Process, Optimal Policy. We now formalize

the notion of the type of stochastic dynamical systems that

we address in this paper as Markov decision processes.

Definition 1 (Markov Decision Process (MDP)): A

Markov decision process is a tuple M = (S,A, T, ι), where

S and A denote the set of states and actions respectively,

T (s′ | s, a) is the probability distribution on the next state

conditioned on the current state and action, and ι is a

distribution on S that is sampled to identify an initial state

of the MDP1.

1Technically, this definition pertains to the transition structure of a
stochastic dynamical system. Typically, dynamical systems are defined
in terms of difference or differential equations describing the temporal
evolution of a state variable. We assume that T (s′|s, a) is thus the infinite
set of transitions consistent with any given system dynamics.

In our approach, we are interested in finite-horizon trajec-

tories sampled from the MDP’s transition dynamics. A policy

π(a | s) of the MDP is a distribution of the set of actions

conditioned on the current state. Given a fixed policy of the

MDP, a T -length trajectory (denoted τ) or behavior of the

MDP is a sequence of states s0, . . . , sT such that s0 ∼ ι,
and for all t ∈ [0, T − 1], st+1 ∼ T (s′ | st, at ∼ π(a | s =
st)). In control-design problems, we assume that there is a

cost function J on the space of trajectories that maps each

trajectory to a real value. An optimal policy π∗ is defined

as the one that minimizes the expected value of the cost

function over trajectories starting from a state s0 sampled

according to the initial distribution ι.

Distribution shifts. Obtaining an optimal control policy is

often a computationally expensive procedure for MDPs

where the underlying transition dynamics are highly non-

linear. Several design methods, both model-based methods

such as model-predictive control [10], stochastic optimal

control [11], and model-free methods such as data predictive

control [12] and deep reinforcement learning [13] have been

proposed to solve the optimal control problem for such

systems. Regardless of whether the method is model-based or

model-free, these methods explicitly or implicitly assume a

model or the distribution encoded by the transition dynamics

of the environment. A key issue is that this distribution may

change once the system is deployed in the real-world. To

differentiate between the training environment and the de-

ployment environment, we use Ttrn and Tdpl to respectively

denote the transition distributions.

Problem Definition. Suppose we have a system where we

have trained an optimal policy π∗ under the transition

dynamics Ttrn, and for a given initial state s0 sampled

from ι, we sample an optimal trajectory τopt for the system

using the policy π∗. We denote this as τ ∼ (ι, π∗). Let

τ = (s0, s1, . . . , sT). Let τ(t) be shorthand to denote st. For

a trajectory that starts from the same initial state (but in the

deployment environment), we want to find the adapted policy

π̂ such that the error between τopt and the trajectory under

Tdpl dynamics at time instant t ∈ [1, T] is small. Formally,

π̂(t) = argmin
π

E
at∼π(a|st),

st+1∼Tdpl(s
′|st,at)

[

‖τopt(t+ 1)− st+1‖2
]

(1)

A key challenge in solving the optimization problem in

(1) is that Tdpl is not known. In this paper, we propose that

we learn a surrogate model for the deployment transition dy-

namics. Essentially, a surrogate model is a data-driven model

that approximates the actual system dynamics reasonably

accurately. There are several choices for surrogate models

including Gaussian Processes [14], probabilistic ensembles

[15], and deep neural networks (NN). In this paper, we

focus on NN surrogates, as they allow us to consider convex

relaxations of the policy adaptation problem.

Surrogate-based policy adaptation. We now show that

surrogate-based policy adaptation can be phrased as a non-

linear optimization problem. First, we specify the prob-

5371

lem of finding good surrogates. In this work, Tdpl(st+1 |
st, at) is assumed to be a time-invariant Gaussian dis-

tribution with mean µ(s, a) and covariance Σ(s, a). A

surrogate model for the transition dynamics is a tuple

(µNN (s, a; θµ),ΣNN (s, a; θΣ)), where µNN and ΣNN are

deep neural networks with parameters θµ and θΣ respectively.

We can train such NNs by minimizing the following loss

functions:

Lµ(θµ) = E
s∼S,s′∼Tdpl(s′|s,a)

‖µNN (s, a; θµ)− s′‖2 (2)

LΣ(θΣ) = E
s∼S
‖ΣNN (s, a; θΣ)− Σs(s

′)‖2 (3)

In the above equations, the expectation is computed by stan-

dard Monte Carlo based sampling. In the second equation,

Σs represents the sample covariance of s′ w.r.t. the sample

mean.

Assuming that we have learned surrogate models to a

desired level of accuracy, the next step is to frame policy

adaptation as a nonlinear optimization problem. We state the

problem w.r.t. a specific optimal trajectory τopt sampled from

the optimal policy (though the problem generalizes to any

optimal trajectory sampled from an arbitrary initial state).

Note that τopt(0) = s0.

∀t ∈ [0, T−1] : at = argmin
a∈A

‖τopt(t+1)−µNN (st, a; θµ)‖2

(4)

We observe that as the equation above consists of a neural

network, it is a highly nonlinear optimization problem. In

the next section, we will show how we can convexify this

problem.

III. POLICY ADAPTATION

Solution Overview. The quantity in Eq. (4) being minimized

is, at each time t, the residual error between the optimal

trajectory and the mean predicted state by the deployment

environment, conditioned on its state and action. Let rt+1 =
τopt(t+ 1)− µNN (st, at; θµ). Our main idea is:

1) At any given time t, assume that the state st lies in a

confidence set described by an ellipsoid E(µst ,Ωst),
2) assume that the action at lies in a confidence set also

described by an ellipsoid E(µat
,Ωat

),
3) show that the residual error rt can be bounded by an

ellipsoid, the center and shape matrix of which depends

on the action at.
4) Find the action at that minimizes the residual error by

convex optimization.

We now explain each of these steps in sequence. First,

we motivate why need to consider confidence sets. Suppose

the system starts in state s0, then the state s1 is distributed

according to the transition dynamics of the deployment

environment. In reality, we are only interested in the next

states that are likely with at least probability threshold p.

For a multi-variate Gaussian distribution, this corresponds

to the sublevel set of the inverse CDF of this distribution,

which according to the following lemma can be described

by an ellipsoid:

Lemma 1: [16] A random vector r ∈ R
n, with Gaussian

distribution r ∼ N (µ,Σ), satisfies,

Pr

[

1

ρn
(r − µ)⊤Σ−1(r − µ) ≤ 1

]

= p, (5)

where, ρn = Γ−1(n2 ,
p
2) and Γ−1(., .) indicates the n-

dimensional lower incomplete Gamma function.

The above lemma allows us to define ellipsoidal confi-

dence sets using truncated Gaussian distributions. An ellip-

soidal confidence region with center µ and shape matrix

ρnΣ (where ρn is as defined Lemma 1) defines a set with

probability measure p.

Now, as the policy we are considering is stochastic (which

we also model as a Gaussian distribution), an action that can

be taken is described by a conditional Gaussian distribution.

Let µat
be the mean of the distribution of the action at time

t, then all actions with probability greater than p can be

described by an ellipsoid confidence set E(µat
,Ωat

).
Because the distribution of transition dynamics may have

shifted, applying an action ∼ π∗(a|st) may result in a

residual error rt+1 that is unacceptable. So, we want to find

a new action at which reduces the residual error. We assume

that at is in an ellipsoidal uncertainty set by picking actions

that have probability greater than a fixed threshold p. We

note that the center or the shape matrix of the ellipsoidal set

for the action is not known, but is a decision variable for

the optimization problem. We note that the relation between

at and rt+1 is highly nonlinear. However, we show, how we

can convexify this problem.

Before we present the convexification of the optimization

problem, we need to introduce the notion of the reachable

set of residual values. We call this the residual reachset. For-

mally, given the ellipsoidal confidence region E(µst ,Ωst) for

the state st, and the ellipsoidal confidence region E(µat
,Ωat

)
for the action at, the residual reachset Rt+1 is defined as

follows:

Rt+1(µat
,Ωat

) = {µNN (st, at; θµ)− τopt(t+ 1) |
st ∈ E(µst ,Ωst), at ∈ E(µat

,Ωat
)}

(6)

In the above equation, we note that the residual reachset is

parameterized by at and Ωat
, and we wish to find the values

for at and Ωat
that minimize the size of the residual reachset.

However, the residual reachset is a non-convex set. To make

the optimization problem convex, we basically approximate

the residual reachset by an ellipsoidal upper bound in the set

H(Rt+1(µat
,Ωat

)) (the set of all ellipsoidal upper bounds).

We can now express the problem of finding the best

adapted action distribution as the following optimization

problem:

(µ̂at
, Ω̂at

, Ω̂Rt+1
) = argmin

µat
,Ωat

,ΩRt+1

Logdet(ΩRt+1
)

s.t. Rt+1(µat
,Ωat

) ⊂ E(0,ΩRt+1
)

(7)

We set the center of ellipsoidal bound of residual reachset

to be 0 so as to minimize the size of the residuals. Equa-

tion (7) selects the best action ât ∈ E(µ̂at
, Ω̂at

) s.t. the the

ellipsoid E(0, Ω̂Rt+1
) is the smallest ellipsoid that bounds

5372

the residual reachset. In this optimization, the volume of this

ellipsoid is represented by Logdet.

The construction of an ellipsoidal bound over the reach-

set of a neural network given a single ellipsoidal confidence

region is derived in [17]. The author has upgraded this

technique later for multiple ellipsoidal confidence regions in

Theorem 1 of [18]. We rephrase the key results from these

papers in our context in Lemma 2.

Lemma 2: In what follows, (bℓ,Wℓ) ∈ θµ represent the

bias vector and the weights of the last layer in µNN . Suppose

st ∈ E(µst ,Ωst), at ∈ E(µat
,Ωat

). Then, the residual

reachset Rt+1(µat
,Ωat

) is upper-bounded by E(0,ΩRt+1
)

(as defined in (7)) if the following constraint holds:

τ1Mst + τ2Mat
+Mφ−Mout ≤ 0, where τ1, τ2 ≥ 0. (8)

Here, Mφ is a quadratic constraint proposed in [17], repre-

senting ReLU hidden layers in the neural network and2,

Mst =
1

ρn
E⊤

1

[

−Σ−1
st

Σ−1
st

µst

µ⊤
st
Σ−1

st
−µ⊤

st
Σ−1

st
µst + ρn

]

E1,

Mat
= E⊤

2

[

−Ω−1
at

Ω−1
at

µat

µ⊤
at
Ω−1

at
−µ⊤

at
Ω−1

at
µat

+ 1

]

E2

E1 =

[

In 0n×m 0
n×(

∑ℓ+1

i=2
Ni) 0n×1

01×n+m 01×(
∑ℓ+1

i=2
Ni) 1

]

,

E2 =

[

0m×n Im 0
m×(

∑ℓ+1

i=2
Ni) 0m×1

01×n+m 01×(
∑ℓ+1

i=2
Ni) 1

]

Mout =

[

C b
0 1

]⊤ [
−Ω−1

Rt+1
0

0 1

] [

C b
0 1

]

,

and C =
[

0 0 · · · Wℓ

]

, b = bℓ − τopt(t+ 1),
In the above lemma, as the adapted action and the shape

matrix representing its covariance is assumed to be known

Mat
is a fixed matrix; however, in the optimization problem

that we wish to solve, in the corresponding matrix Mat
, µat

and Ωat
will appear as variables, which causes the problem

to become nonlinear. We can address this by performing two

transformations. The first transformation, through a change

of variables, concentrates the nonlinearity in a single scalar

entry of Mat
. We set Uat

= τ2Ω
−1
at

, Vat
= τ2Ω

−1
at

µat
, and

the resulting Mat
is shown as below:

M∗
at

= E⊤
2

[

−Uat
Vat

V ⊤
at

−
(

τ2µ
⊤
at
Ω−1

at

)

(

Ωat

τ2

)

(

τ2Ω
−1
at

µat

)

+ τ2

]

E2

= E⊤
2

[

−Uat
Vat

V ⊤
at

−V ⊤
at
U−1
at

Vat
+ τ2

]

E2

(9)

The proposed matrix, M∗
at

, is nonlinear where the nonlinear-

ity shows up in the scalar variable V ⊤
a U−1

a Va.

We also note that the adapted actions should satisfy

actuator bounds [ℓ,u], we include this as a convex constraint

below:

Uat
ℓ ≤ Vat

≤ Uat
u, (10)

2The parameter Ni in transformation matrices E1, E2 is the number of
ReLU activations in layer i of µNN .

and we defer the proof to the appendix B. Before stating the

final theorem, we make an observation about (7). Without ad-

ditional constraints, the optimal solution to (7) always returns

Ω̂at
such that tr(Ω̂at

) = 0 (proof in the appendix A). This

causes numerical errors, as Lemma 2 requires computing the

inverse of this matrix. To avoid such a problem, we impose

a tiny lower bound on the trace of this matrix.

Finally, given that all the constraints for the optimization

of E(µat
,Ωat

) are provided, we can collect them in a

convex optimization that results in the modified action set.

The following Theorem characterizes the correctness of the

modified action and its conservatism. We defer the proof to

the appendix.
Theorem 1: Given the regulation factor δ > 0, and defin-

ing Ω = Ω−1
Rt+1

, assume decision variables τ1, τ2 ≥ 0. Then

the following convex optimization,


















min
Mφ,Vat

,Uat
,τ1,τ2

−Logdet(Ω)

s.t. −τ1Mst−E
⊤

2

[

−Uat Vat

V ⊤

at
τ2

]

E2 −Mφ +Mout ≥ 0,

Uatℓ ≤ Vat ≤ Uatu, tr(Uat)δ ≤ τ2.
(11)

results in values (Vat
, Uat

) such that the modified deter-

ministic decision âct can be approximated with âct = µ̂at
=

U−1
at

Vat
.

Regarding the possible robustness issues with models (adver-

sarial examples) we need to make a comparison between π∗

and âct as a precautionary measure and select for the best

choice for the modified action ât, via,

ât = argmin
a∈{π∗, âc

t}

‖τopt(t+ 1)− µ∗
NN (st, a; θµ)‖2. (12)

See Appendix D for more details. We summarize the main

steps of our proposed method in algorithm 1.

A. Scalability

The conservatism of tight ellipsoidal bound approximation

introduced in [17] increases with the complexity of neural

network’s structure and results in inaccurate solution for

Theorem 1. However, for a highly nonlinear deployment

environment, this is necessary to train a deep neural network

for the surrogate. In response to this problem, (similar to

[19]), we utilize an embedder network, Mp, which maps

the state st to another space s′t ∈ R
n′

(s′t =Mp(st; θp)),
such that s′t is more tractable than st for training purposes.

We next define the surrogate model and its parameters θµ
based on s′t as,

µst+1
= µNN (s′t, ât; θµ).

Given this setting for a highly nonlinear deployment envi-

ronment, the neural network µNN is not necessarily a deep

neural network. Thus, given the pair (st, at) as the input

vector and st+1 as output, we arrange a training procedure

for the function,

µst+1
= µNN (Mp(st; θp), at; θµ)

to learn the parameters θµ, θp together and utilize θµ in the

convex programming. In another word, given the distribution

5373

of st and the parameters θp, we can approximate the distri-

bution for s′t with Gaussian mixture model techniques [20]

to introduce its confidence region to the convex optimization

(through µNN) for policy modification.

IV. EXPERIMENTAL RESULTS

Comparison with PSO. We assume simple car environment

and compare the performance of our convex programming

technique with Particle Swarm Optimization, (PSO) [21]3, on

solving the optimization (4). PSO has shown acceptable per-

formance in low dimensional environments. Thus, we plan

to show our convex programming technique can outperform

PSO even if the scalability is not an important issue. The

environment represents the following simple car model:

ẋ = ucos(θ), ẏ = usin(θ), ˙sin(θ) =
u

ℓ
tan(φ)cos(θ),

˙cos(θ) = −
u

ℓ
tan(φ)sin(θ)

(13)

The system represents a car of length ℓ moving with constant

velocity u and driven with control action φ. The training

environment is characterized by ℓ = 2.5 and, u = 4.9 while

the deployment environment is slightly different with ℓ = 2.1
and u = 5.1. We collect a training data set from deployment

environment with time step 0.01 second.

We train two surrogates for the deployment environment

µNN , µ∗
NN from deployment environment. The former is uti-

lized in optimization (11) and is a ReLU neural network with

dimension [5, 8, 4]. This ReLU neural network is obtained

from the proposed procedure in section III-A. The latter

is utilized for comparison discussed in equation (12) and

Appendix D, which is a deep tanh() neural network of di-

mension [5, 200, 200, 200, 200, 200, 200, 200, 4]. The results

of policy modification are presented in Fig.1. This figure

presents the optimal trajectory, τopt, in green color. This

trajectory is simulated with an optimal control and hight-

fidelity surrogate for the training environment computed from

a model-based algorithm. The blue curves are the results

of algorithm 1 for (500 steps), which closely tracks the

optimal trajectory in all the three states x, y, θ. The red

curves represent the deployment environment’s trajectory

when there is no policy modification. The run time for

convex programming is between[0.005, 0.027] on a personal

laptop with YALMIP and MOSEK solver. Thus, we restrict

the run time of PSO with 0.027 to have a fair comparison

and employ it for policy modification. In one attempt, we

utilize PSO for optimization (4) on the same model with

convex programming, µNN where the resultant trajectory

is demonstrated in black. In another attempt we utilize

PSO over the deep model µ∗
NN and the resultant trajectory

is demonstrated in magenta. The results clearly show our

convex programming outperforms the PSO in both cases.

3While it is well-known that nonlinear optimization techniques lack
guarantees and can suffer from local minima, techniques like particle swarm
work well in practice, especially in low-dimensional systems. Hence, we
perform this comparison to show that convexification outperforms state-of-
the-art global optimization approaches to residual minimization.

Linear Environment of a Car. The training environment is a

stochastic linear dynamics as follows:

xt+1 =





1 0.1 0.0047
0 1 0.0906
0 0 0.8187



xt +





0.003
0.0094
0.1813



ut + νt,

νt ∼ N
(

[

0 0 0.2
]⊤

, exp(−8)I3
)

The deployment environment is also a stochastic linear

dynamics as follows:

xt+1 =





1 0.1 0.0046
0 1 0.0885
0 0 0.7788



xt +





0.004
0.0115
0.2212



ut + ηt,

ηt ∼ N
(

~0, exp(−8)I3
)

where the sampling time is ts = 0.1 s. The state xt ∈ R
3

is defined as xt = [xt, vt, at]
⊤

that are position, velocity

and acceleration of car respectively. The scalar action ut is

also bounded within ut ∈ [−3, 3]. Since the environment

is linear, it is not required to use the embedder network.

Thus, we train only one surrogate for the deployment envi-

ronment µNN with a 2 hidden layer ReLU neural network of

dimension [4, 10, 5, 3]. We also have access to the model of

training environment and a trained optimal feedback policy.

Therefore, we perform policy modification through algorithm

1 for deployment environment and the results are presented in

Fig.2. In this figure, the green curve presents the simulated

optimal trajectory. Blue and red curves also represent the

trajectory of deployment environment in the presence and

absence of policy modification, respectively. This figure

shows the algorithm 1 forces the deployment environment

to track the planner τopt and the policy modification process

is successful.

Adaptive Cruise Control. Consider the Simulink environment

for adaptive cruise control in MATLAB documentation 4.

We consider this trained feedback controller and assume we

have access to the model of training environment. We then

simulate the optimal trajectory τopt with model and controller.

This controller is trained over 14 hours, which clearly shows

how learning a new controller can be expensive and justifies

the contribution of our technique. The input of the trained

controller is the vector x = [
∫

verr, verr, vego]
⊤. Thus,

we take this vector as the state of the environment 5. This

environment is highly nonlinear due to the presence of logic-

based relations in a signal processing block in the model.

The model uses a velocity set-point as a parameter (vset),
which in the training environment is set to 30 m/s while

it is set to 34.5 m/s in the deployment environment. This

difference characterizes the distribution shift. Fig.3 shows the

evolution of the relative velocity and the relative position,

vrel, drel between lead and ego cars. The green line shows

4https://www.mathworks.com/help/reinforcement-learning/ug/train-ddpg-
agent-for-adaptive-cruise-control.html

5Here verr is a logic based function of xego, xlead, vego and vlead.
See the MATLAB documentation for more detail. Here, (vego, vlead) and
(xego, xlead) are the velocity and position for ego and lead car, respectively.

5374

Algorithm 1: Compensation Process for Distributional shifts

Input: s1 and trained autonomous agent, π∗

Result: Small reachset for residual with its center closer to origin.

Sample the optimal trajectory τopt.

foreach time step t do

•











if(t = 1) [â1 ← π∗]

else(t ≥ 2)

{

1- Apply Theorem 1 and compute âct

2- Select the best action between âct and π∗, with (12) and return ât.
• Use the observation st and ât to characterize the confidence region St+1 using the surrogate model.

• Record the observation st+1 generated by exertion of ât to the environment

end

0 100 200 300 400 500

-10

-5

0

5

0 100 200 300 400 500

-6

-4

-2

0

2

4

6

8

10

12

0 100 200 300 400 500

-1

-0.5

0

0.5

1

0 100 200 300 400 500

-1

-0.5

0

0.5

1

Fig. 1: Shows the comparison between PSO and our convex programming. The green and blue curves are the results of

algorithm 1 and optimal trajectory, respectively . The red curves represent the deployment environment’s trajectory when

there is no policy modification. We utilize PSO for optimization (4) on the same model with convex programming, µNN

where the resultant trajectory is demonstrated in black. We also utilize PSO over the deep model, µ∗
NN and the resultant

trajectory is demonstrated in magenta.

0 100 200

-150

0

60

0 100 200

-15

-10

-5

0

5

10

15

20

25

0 100 200

-4

-2

0

2

4

0 100 200

-3

-2

-1

0

1

2

3

Fig. 2: Shows the results of policy modification on stochastic linear environment of a car. In this figure, the green curve

presents the simulated optimal trajectory. Blue and red curves also represent the trajectory of deployment environment in

the presence and absence of policy modification, respectively.

0 1000 2000

-10

0

10

0 1000 2000

-10

0

100

Fig. 3: The green curves repre-

sent the optimal trajectory for

vrel and drel, while the red

and blue curves present the

trajectory of deployment envi-

ronment without policy adap-

tation and with adaptation, re-

spectively.

the simulation for vrel, drel when the optimal policy, π∗ is

applied to the training environment. On the other hand, blue

and red lines show the evolution of vrel, drel in the pres-

ence and absence of policy modification, respectively. Policy

modification process aims to force the states of deployment

environment to track optimal trajectory τopt. Consider the

parameter drel < 0 on red line at time t = 183s. Thus,

the distribution shift can cause a collision in the absence of

policy modification. Fig.3 shows that our policy modification

keeps the system safe from the collision.

5375

V. CONCLUSION AND FUTURE WORK

Conclusion. In this work, we formalize the problem of

adapting the policy of a stochastic dynamical system to

distribution shifts in its dynamics across its training and

deployment environments. We propose an approach based

on learning a neural network-based surrogate model for

the deployment environment and finding modified actions

that guarantee that the system tracks the desired optimal

trajectory (obtained during training) with minimal error. The

problem of finding modified actions can be formulated as a

general nonlinear optimization problem that can be solved

using heuristic techniques. However, we show that we can

convexify the problem and combine it with propagating ellip-

soidal uncertainty sets through neural networks to scalably

obtain adapted policies that perform better.

REFERENCES

[1] I. Khalil, J. Doyle, and K. Glover, Robust and optimal control.
Prentice hall, 1996.

[2] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and
robustness analysis of neural networks via quadratic constraints and
semidefinite programming,” CoRR abs:1903.01287, 2019.

[3] I. Clavera, D. Held, and P. Abbeel, “Policy transfer via modularity
and reward guiding,” in 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1537–1544.

[4] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell,
J. Tobin, P. Abbeel, and W. Zaremba, “Transfer from simulation to real
world through learning deep inverse dynamics model,” arXiv preprint

arXiv:1610.03518, 2016.

[5] M. Wulfmeier, I. Posner, and P. Abbeel, “Mutual alignment transfer
learning,” in Conference on Robot Learning, 2017, pp. 281–290.

[6] B. Eysenbach, S. Asawa, S. Chaudhari, R. Salakhutdinov, and
S. Levine, “Off-dynamics reinforcement learning: Training for transfer
with domain classifiers,” arXiv preprint arXiv:2006.13916, 2020.

[7] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversar-
ial reinforcement learning,” in International Conference on Machine

Learning, 2017, pp. 2817–2826.

[8] S. Li, Y. Wu, X. Cui, H. Dong, F. Fang, and S. Russell, “Robust
multi-agent reinforcement learning via minimax deep deterministic
policy gradient,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, 2019, pp. 4213–4220.

[9] S. Paul, M. A. Osborne, and S. Whiteson, “Fingerprint policy optimi-
sation for robust reinforcement learning,” in International Conference

on Machine Learning, 2019, pp. 5082–5091.

[10] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–
348, 1989.

[11] D. Bertsekas and S. E. Shreve, Stochastic optimal control: the discrete-

time case. Athena Scientific, 1996, vol. 5.

[12] A. Jain, F. Smarra, and R. Mangharam, “Data predictive control using
regression trees and ensemble learning,” in 2017 IEEE 56th annual

conference on decision and control (CDC). IEEE, 2017, pp. 4446–
4451.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[14] E. Alpaydin, Introduction to machine learning. MIT press, 2020.

[15] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” arXiv preprint arXiv:1805.12114, 2018.

[16] A. Papoulis and S. Unnikrishna Pillai, Probability, random variables

and stochastic processes, 2002.

[17] M. Fazlyab, M. Morari, and G. J. Pappas, “Probabilistic verification
and reachability analysis of neural networks via semidefinite program-
ming,” arXiv preprint arXiv:1910.04249, 2019.

[18] N. Hashemi, M. Fazlyab, and J. Ruths, “Performance bounds for neural
network estimators: Applications in fault detection,” in 2021 American

Control Conference (ACC), 2021, pp. 3260–3266.

[19] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal
linear embeddings of nonlinear dynamics,” Nature communications,
vol. 9, no. 1, pp. 1–10, 2018.

[20] D. A. Reynolds et al., “Gaussian mixture models.” Encyclopedia of

biometrics, vol. 741, no. 659-663, 2009.
[21] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-

ings of ICNN’95-international conference on neural networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[22] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and
robustness analysis of neural networks via quadratic constraints and
semidefinite programming,” IEEE Transactions on Automatic Control,
2020.

VI. APPENDIX

APPENDIX A: GENERIC COMPUTATIONAL ERROR

We present a brief summary of [17] and [18] in Appendix

E and here we directly focus on the necessary steps for

the proof. We denote Mt : (S × A) → Rt+1 as the

neural network where represents the residual. This network

is equivalent with µNN but the last bias vector is shifted with

τopt(t + 1). Assume Rt+1,R
c
t+1 are the residual reachsets

when (St × At) and (St × Ac
t) are introduced in, Mt

respectively (Ac
t ⊂ At). This implies, if at ∈ Ac

t , then

at ∈ At and therefore, for At = E(µat
,Ωat

),
[

at
1

]⊤ [
−Ω−1

at
Ω−1

at
µat

µ⊤
at
Ω−1

at
−µ⊤

at
Ω−1

at
µat

+ 1

] [

at
1

]

≥ 0,

which suffices to say, regarding the optimization (22), the op-
timal upper-bound for the Rt+1 produced by (St×At) is in

fact a feasible solution for the upper-bound of Rc
t+1 obtained

from (St×Ac
t) (see the summary of [17], [18] in Appendix

E). This implies the optimal objective function of optimiza-

tion (22) in the second problem (taking (St×A
c
t) as input) is

less than the optimal objective function of optimization(22)

in the first problem (taking (St×At) as input). Therefore, we

conclude Logdet(ΩRc
t+1

) < Logdet(ΩRt+1
). In another

word, we conclude, replacing At with Ac
t results in smaller

upper-bound on the residual reachset.

Now assume the optimal confidence region for modified

action, At in optimization (7) contains nonempty subset,

Ac
t ⊂ At. However, we know the ellipsoidal bound of

residual reachset is still reducible by replacing At with Ac
t .

This is a contradiction because we have already concluded

At results in smallest upper-bound for the residual reachset.

Thus, the optimal confidence region At contains no subset

and is a singleton. In another word tr(Ωat
) = 0.

APPENDIX B: CONSTRUCTION OF ACTUATOR BOUND

The proposed action should be inside the following hyper-

rectangle: ℓ ≤ at ≤ u. In Appendix A we proved that

the solution of optimization (11) is a singleton At = {at},
therefore we neglect the shape matrix, τ2U

−1
at

and only

bound the mean value in the mentioned hyper-rectangle,

ℓ ≤ U−1
at

Vat
≤ u, which implies, Uat

ℓ ≤ Vat
≤ Uat

u

APPENDIX C. PROOF OF THEOREM 1:

Based on [17] we know the sufficient condition for an

ellipsoid E(0,Ω) to bound the reachset of the residual is,

τ1Mst+E⊤
2

[

−Uat
Vat

V ⊤
at

−V ⊤
at
U−1
at

Vat
+ τ2

]

E2+Mφ−Mout ≤ 0

(14)

5376

we move the linear terms to the right and keep the nonlinear

term at the left,

E⊤
2

[

0 0
0 −V ⊤

at
U−1
at

Vat

]

E2 ≤− τ1Mst − E⊤
2

[

−Uat
Vat

V ⊤
at

τ2

]

E2

−Mφ +Mout

(15)

The matrix in the left of inequality is negative definite,

therefore if we introduce the new constraint,

−τ1Mst − E⊤
2

[

−Uat
Vat

V ⊤
at

τ2

]

E2 −Mφ +Mout ≥ 0 (16)

we have satisfied the required constraint in (15). Based on
our observations, this new linear constraint will not impose

conservatism because the value V ⊤
at
U−1
at

Vat
is always near

to zero, thus we are neglecting the negative value of the

nonlinear term. As we discussed before, we know Ωat
=

τ2U
−1
at

converges to zero, this implies there is a chance for

Uat
to become unbounded and this is why an infinitesimal

Ωat
is problematic for our convex optimization. In order to

avoid unbounded solution for Uat
, we provide a small lower

bound on the tr(Ωat
). We know Ωat

is a positive definite

matrix, therefore if tr(Ω−1
at

) is smaller than a big number,

σ, that suffices to have tr(Ωat
) to be greater than a small

number (lower bound on size of At). This can be rephrased

with the convex constraint tr(Uat
) ≤ τ2σ, or in another word,

tr(Uat
)δ ≤ τ2 where δ = 1

σ
is preferably a small number.

Thus, to justify the presence of convex constraint tr(Uat
)δ ≤

τ2, we mention this is just a precautionary measure (δ is very

small) to avoid unbounded solutions.

APPENDIX D. COMPARISON

Due to presence of adversarial examples, we need to

certify the modified action performs better than autonomous

agent on deployment environment. Since we can not utilize

the environment directly for this purpose, we must employ

a deep surrogate model for deployment environment. On the

other hand, reading through [22] clarifies, although a deep

network is accurate, it results in noticeable conservatism for

convex programming in Theorem 1. Therefore, we train two

networks for surrogate in a highly nonlinear environment.

The former will be obtained from Embedded technique in

section III-A and will be utilized for convex programming.

The latter is a very deep network that provides reliability for

an accurate comparison between, π∗ and act . We call this

deep neural network as, µ∗
NN .

APPENDIX E. BRIEF SUMMARY OF [17]

We present the solution summary with parameters of

our specific problem for more clarification. Assume the

confidence regions for state and actions st ∈ St, at ∈ At

are fixed and known. Then the tool provided in [17], [18]

proposes a convex optimization for tightest ellipsoidal upper-

bound over residual’s reachset Rt+1. In this research, we

add another constraint and fix the center of the mentioned

upper-bound on the origin to make it certain that the residual

decreases in Euclidean norm. Therefore, the tool [17], [18]

is utilized to present the tightest upper-bound such that,

Rt+1 ⊂ E(~0,Ω
−1
Rt+1

). We know at ∈ At := E(µat
,Ωat

)
therefore:
[

at
1

]⊤ [
−Ω−1

at
Ω−1

at
µat

µ⊤
at
Ω−1

at
−µ⊤

at
Ω−1

at
µat

+ 1

]

Q1

[

at
1

]

≥ 0 (17)

We also know st ∈ St := E(µst , ρnΣst) therefore:

1

ρn

[

st
1

]⊤ [
−Σ−1

st
Σ−1

st
µst

µ⊤
st
Σ−1

st
−µ⊤

st
Σ−1

st
µst + ρn

]

Q2

[

st
1

]

≥ 0,

(18)

In the next attempt [17] suggests us to concatenate all the

post-activations, in the residual’s model Mt and generate a

vector x = [z1⊤, z2⊤, · · · , zL−1 ⊤]⊤. Then they propose a

symmetric matrix Qφ which satisfies the quadratic constraint,
[

x

1

]⊤

Qφ

[

x

1

]

≥ 0. (19)

The ultimate goal is to prove the residual ∆t+1 ∈
E(~0,ΩRt+1

). Therefore, defining Ω = Ω−1
Rt+1

we should

propose a constraint that implies,
[

rt+1

1

]⊤ [
−Ω 0
0 1

] [

rt+1

1

]

≥ 0 (20)

To propose such a constraint authors in [17] suggest defining

the base vector z = [s⊤t , a⊤t , x⊤, 1]⊤ and define the linear

transformation matrices E1, E2, E3 and matrix C as,
[

st
1

]

= E1z,

[

at
1

]

= E2z,

[

x

1

]

= E3z,

[

rt+1

1

]

=

[

C b
0 1

]

z,

and C =
[

0 0 · · · Wℓ

]

, b = bℓ − τopt(t + 1),
(bℓ,Wℓ) ∈ θµ represent the bias vector and the weights of
the last layer in µNN , and add the left side of equations (17),
(18), (19) which provides the following inequality:

z
⊤

(

τ1E
⊤

1 Q1E1
Mst

+τ2E
⊤

2 Q2E2
Mat

+ E
⊤

3 QφE3
Mφ

)

z ≥ 0,

(21)

for some τ1, τ2 ≥ 0. Thus, if the inequality,

z⊤ (τ1Mst + τ2Mat
+Mφ) z−

[

rt+1

1

]⊤ [
−Ω 0
0 1

] [

rt+1

1

]

≤ 0

holds, then the constraint (20) is satisfied. This constraint

can be reformulated as,

z⊤

(

τ1Mst + τ2Mat
+Mφ −

[

C bL
0 1

]⊤[
−Ω 0
0 1

] [

C bL
0 1

]

Mout

)

z≤ 0

thus applying the assumption, τ1Mst+τ2Mat
+Mφ−Mout ≤

0, is sufficient but not necessary to claim (20) is satisfied.

Therefore, the convex optimization:
{

min
Mφ,τ1,τ2

−Logdet(Ω)

s.t. τ1Mst + τ2Mat
+Mφ −Mout ≤ 0

(22)

presents the suboptimal tightest ellipsoidal upper-bound that

is centered on the origin over the residual reachset Rt+1.

5377

