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Abstract— Modern data sets, such as those in healthcare
and e-commerce, are often derived from many individuals or
systems but have insufficient data from each source alone to
separately estimate individual, often high-dimensional, model
parameters. If there is shared structure among systems however,
it may be possible to leverage data from other systems to help
estimate individual parameters, which could otherwise be non-
identifiable. In this paper, we assume systems share a latent
low-dimensional parameter space and propose a method for
recovering d-dimensional parameters for N different linear
systems, when there are only T < d observations per system.
To do so, we develop a three-step method which estimates the
low-dimensional subspace spanned by the systems’ parameters
and produces refined parameter estimates within the subspace.
We provide finite sample subspace estimation error guarantees
for our proposed method. Finally, we experimentally validate
our method on simulations with i.i.d. regression data and as
well as correlated time series data.

I. INTRODUCTION

In a variety of fields such as healthcare and e-commerce,
it is often desirable to estimate parameters or provide rec-
ommendations for individuals based on data. Consider the
common situation where we have N different individuals,
each with T observations collected in (Xi, Yi) ∈ RT×d×RT .
Assume the data is generated as

Yi = Xiβ
(0)
i + wi, i ∈ [N ] (I.1)

where wi ∈ RT is some independent noise vector, and β
(0)
i

are parameters of interest.
Such a linear model is ubiquitous in statistics, and standard

least squares regression provides an estimate of β
(0)
i based

on (Xi, Yi) when T ≥ d and Xi is well-conditioned.
Realistically, however, while a data set may contain many

individuals, the data available from each individual may
be limited, especially compared to the dimension of the
parameter space considered. For instance, in the healthcare
setting, patient data may be fragmented and stored on dif-
ferent electronic health record systems, so that each record
system may have many individuals but imcomplete data from
each [1]. This may lead to problems of non-identifiability for
individual systems, as in the case where we only have T < d
observations of a d-dimensional linear model.

If there is a shared structure among individuals, however,
it may be possible to leverage information from other in-
dividuals who share similar characteristics to overcome the
challenge of non-identifiability of individual parameters.

Laboratory for Information & Decision Systems, Massachusetts Institute
of Technology. {maryann,thibauth,dahleh}@mit.edu

In this paper, we examine this possibility and propose a
method of estimating each system’s d-dimensional parameter
by exploiting data from other systems along with the as-
sumption that the parameters lie in a common r-dimensional
subspace, where r < d. The questions we wish to answer are:
can a sufficiently large number N of systems compensate for
a small amount T of data per system in the task of estimating
all the parameters? If so, how does the sample complexity
scale in the parameters N,T, r and d of the problem?

If we simply count the degrees of freedom of the model,
we have r(d− r)+Nr parameters to estimate (the common
r-dimensional subspace of parameters plus individual factor
loadings or coefficients). Intuitively, one may expect that
NT ≥ r(d − r) + Nr parameters are needed to jointly
identify all parameters of the system. It is not obvious how
to rigorously justify this intuition, nor how to develop and
implement an estimation algorithm for this setting.

To begin to tackle this complex and broad-ranging ques-
tion, we propose an estimation method based on three sepa-
rate least squares optimizations. The method first computes
initial estimates of each system’s parameter vector, which
may be significantly far from the true value, but which still
contain information about the common underlying subspace
spanned by the true system parameters. Next, an estimate of
this low dimensional subspace is obtained by extracting the
top r principal subspace of the first step estimates. From this,
we can obtain a refined estimate of each system’s individual
parameters by solving another least squares problem, this
time constrained to be over the estimated subspace. This last
step requires T ≥ r for parameter identifiability, which can
be a considerably easier condition to satisfy than the naive
requirement of T ≥ d, as d≫ r in many real world datasets.

We provide finite sample subspace estimation error guar-
antees for a variant of our proposed method that takes into
account the possible ill-conditioning of the pseudo-inverse-
based least squares solution which arises when T ≈ d.
The analysis relies on obtaining concentration bounds for
the sample covariance of the first-step estimates, and then
proving that subspace estimation on these first-step estimates
will obtain the true underlying subspace in expectation.

Finally, we demonstrate our method and variants on sim-
ulations with i.i.d. regression data. We also evaluate our
method on time series data with correlated regressors, and
find that the method is flexible enough to handle this sce-
nario. These results suggest the applicability of the three-step
estimation method for more general settings of estimation of
related with a common low rank structure.
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A. Related Work

a) Mixtures of linear regressions: The problem of
estimating parameters from limited observations of different
systems that share a common low dimensional structure
is related to the problem of mixtures of linear regressions
[2], [3] and multitask, or meta-learning [4], [5]. The main
difference to our setting is the systems’ parameters are
assumed to be clustered, rather than coming from a low
dimensional subspace.

b) Low rank matrix regression: Furthermore, a large
body of work studies the related problem of low rank matrix
regression, which usually uses a least squares estimator with
nuclear norm regularization to estimate a low rank matrix.
We can re-express (I.1) to make the comparison with matrix
regression explicit. Let Θ(0) :=

[
β
(0)
1 · · ·β

(0)
N

]
be the d ×

N matrix whose columns are the system parameters. Then
by assumption, rkΘ(0) = r. However, the data generating
process for observations (Xi, yi) is

yi = XiΘ
(0)ei + wi, i ∈ [N ].

where ei is the ith coordinate vector in RN . While we are still
trying to estimate a low rank matrix Θ(0), the dimension of
this matrix grows with the number of observations—unlike
in matrix regression where it is assumed constant—landing
us in a different regime for analysis and optimization.

c) Dictionary Learning: Finally, the problem of dic-
tionary learning, also known as sparse coding, and matrix
factorization, shares similar structure to the problem consid-
ered in this paper [6], [7], [8]. However, we only observe
system parameters through the lens of a design matrix X
whose rows do not fully span the parameter space. Even if
our design matrix X ∈ RT×d were the identity (so T = d),
though, we also do not impose a sparsity assumption on
the dictionary coefficients, as is standard in the dictionary
learning literature. The differences are further detailed in
Section IV-A.

d) Meta-learning and transfer learning: After the ini-
tial submission of this paper, we became aware of recent
related work on this problem. In [9], the authors present
a method of moments (MoM) estimator, and a similar
estimator is studied under more general assumptions in [10].
We discuss the relationship between these estimators and
ours and provide an empirical comparison in Section V-C.

More generally our work connects with the broader litera-
ture in machine learning that studies learning across related
tasks or data sets, usually referred to by the umbrella terms
meta-learning and transfer learning [11], [12].

II. PRELIMINARIES

A. General notations

We define for N ∈ N∗ the set [N ] := {1, 2, . . . , N}. The
inequality a ≲ b means that there exists a universal constant
C such that a ≤ Cb.

For vectors x, y ∈ Rd, ⟨x, y⟩ := x⊺y =
∑d

i=1 xiyi and
∥x∥2 :=

√
⟨x, x⟩ denote the Euclidean inner product and

norm, respectively.

For a matrix A, trA, A⊺ and A† denote its trace, transpose
and Moore–Penrose pseudoinverse, respectively. The identity
matrix in Rd×d is written Id. For matrices A,B ∈ Rd×r,
⟨A,B⟩ := tr(A⊺B) denotes the Frobenius or trace inner
product, ∥A∥F =

√
tr(A⊺A) is the Frobenius norm of A,

and ∥A∥2 is its spectral norm. Let O(d) := {Q ∈ Rd×d |
Q⊺Q = QQ⊺ = Id} denote the orthogonal group on Rd

and St(r, d) := {A ∈ Rd×r | A⊺A = Ir} denote the Stiefel
manifold of orthonormal r-frames in Rd.

B. Subspaces

For r ≤ d, Gr(r, d) denotes the Grassmanian manifold
of r-dimensional subspaces of Rd and we write PA for the
orthogonal projection onto a subspace A ∈ Gr(r, d). For
Q an orthogonal projection of rank r and A ∈ Gr(r, d),
the identities Q = PimQ and A = imPA show that the map
A 7→ PA is a bijection from Gr(r, d) to the set of orthogonal
projections of rank r. This allows us to identify the two sets
[13, Sec. 1.3.2]:

Gr(r, d) ∼= {P ∈ Rd×d | P = P ⊺ = P 2 ∧ trP = r}.

Note that the choice of an orthonormal basis of a subspace
A ∈ Gr(r, d) gives a representation of A by an element
A ∈ St(r, d), although the representation is non-unique. For
such a matrix A we have PA = AA⊺.

For any two subspaces A,B ∈ Gr(r, d), we can find r
pairs of principal vectors (ai, bi) ∈ A × B for i ∈ [r],
and principal angles (θ1, . . . , θr) ∈ [0, π/2]r such that
⟨ai, bi⟩ = cos(θi), ⟨ai, aj⟩ = 0, and ⟨bi, bj⟩ = 0, for
i, j ∈ [r], i ̸= j. θ1 is the smallest angle between any vector
in A and any vector in B, which is achieved by a1 and
b1. The remaining principal vectors and angles are defined
inductively, by restricting at each step to the orthogonal
complement of the span of the previous vectors [14], [15].
We write Θ(A,B) for the diagonal matrix whose diagonal
entries are the principal angles. It is possible to show that
the nonzero eigenvalues of PA − PB are the sines of the
nonzero principal angles between A and B, each counted
twice. This implies that ∥PA −PB∥2 = ∥sinΘ(A,B)∥2 and
∥PA − PB∥F =

√
2∥sinΘ(A,B)∥F.

C. Random variables

Unless otherwise specified, all random variables are de-
fined on the same probability space. We write X

d
= Y for

identically distributed variables X and Y . We say that a
random vector X ∈ Rd is sub-Gaussian with variance proxy
σ2, and write X ∈ subGd(σ

2), if for all α ∈ Rd

E[exp⟨α,X⟩] ≤ exp

(
σ2∥α∥22

2

)
.

III. MODEL

We consider N linear systems of dimension d, from each
of which we have T observations, with T < d. Specifically,
each system i ∈ [N ] has observations (Xi, Yi) ∈ RT×d×RT

generated according to

Yi = Xiβ
(0)
i + wi (III.1)
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where β
(0)
i ∈ Rd is the parameter of system i ∈ [N ]. The

central assumption of our model is that the system parameters
(β

(0)
i )i∈[N ] lie in an r-dimensional subspace B0 of Rd. An

orthonormal basis B0 ∈ St(r, d) of B0 constitutes a common
dictionary of r atoms shared by all systems and we can write
for each i ∈ [N ]

β
(0)
i = B0ϕi

for some ϕi ∈ Rr. We are primarily interested in estimating
the r-dimensional subspace B0, from which we can easily
recover ϕi, and then β

(0)
i for i ∈ [N ], from the data.

We now describe our distributional assumptions. All the
random variables (Xi)i∈[N ], (ϕi)i∈[N ] and (wi)i∈[N ] are
mutually independent. The matrices (Xi)i∈[N are identi-
cally distributed, each having i.i.d. standard normal entries.
Coefficients ϕi ∈ Rr and noise wi ∈ RT are centered
isotropic sub-Gaussian random vectors in subG(σ2

ϕ) and
subG(σ2

w), respectively, with covariance matrices σ2
ϕIr and

σ2
wIT , respectively.

IV. METHOD

We propose an estimation method that follows a general
three step approach. First, compute initial estimates of each
system i’s parameter. Next, find the r-dimensional subspace
that best explains the initial estimates. In the last step, the
individual system estimates are refined by leveraging the
subspace learned in the second step.

Due to the linear structure of our observation model,
instantiating the above approach naturally results in formu-
lating and solving a linear least squares problem at each
of the three steps. The following subsections describe these
least squares problems in more details and Algorithm 1
summarizes the computation of their solution.

Algorithm 1 Three-step parameter and subspace estimator
Input: Samples (Xi, Yi) ∈ RT×d ×RT , for i ∈ [N ]; model

rank r.
Output: Estimated subspace frame B̂ ∈ St(r, d), coeffi-

cients {β(2) ∈ Rd : i ∈ [N ]}.
1: for i ∈ [N ] do
2: β

(1)
i ← X†

i Yi ▷ First-step estimate
3: β̄(1) ← β

(1)
i /∥β(1)

i ∥2 ▷ Normalization
4: end for
5: USV ⊺ ← SVD([β̄

(1)
1 · · · β̄

(1)
N ])

6: B̂ ← U [:, 1 : r] ▷ Subspace estimation
7: for i ∈ [N ] do
8: β

(2)
i ← B̂(XiB̂)

†
Yi ▷ Coefficient estimation

9: end for

A. Initial Individual Estimates

We first obtain a least squares estimate β
(1)
i of β(0)

i up to
the null space of Xi, which is nontrivial as we focus on the
regime T < d. Let X†

i be the pseudoinverse of Xi. Then our
initial estimates are

β
(1)
i = X†

i Yi, i ∈ [N ].

To gain a better understanding of our initial estimates β
(1)
i ,

under our observation model (III.1), we can write

β
(1)
i = X†

iXiβ
(0)
i +Xi

†wi = PXi
β
(0)
i +Xi

†wi

where PXi
:= X†

iXi is the d × d projection matrix onto
the T -dimensional row space of Xi. Since the distribution
of the rows of Xi is rotationally invariant, one can check
that E[PXi

] = T
d Id. Hence, up to a rescaling by d

T , β
(1)
i

is an unbiased estimate of β
(0)
i . However, the noise of this

estimate

ηi := β
(1)
i − β

(0)
i = −(Id − PXi)β

(0)
i +X†

iwi (IV.1)

is not independent of the true parameter β(0)
i as it includes its

projection onto the null space of Xi that was left unobserved.
a) Comparison with dictionary learning: Using (IV.1)

wen can write β
(1)
i = β

(0)
i + ηi. Hence, our setting is

reminiscent of the dictionary learning, or sparse coding,
problem, in which we have N noisy observations where
β
(0)
i = B0ϕi, for some fixed d × r matrix B0, and some

vector ϕi ∈ Rr. Both B0 and ϕi are unknown and the
goal is to learn B0, which in our setting then allows for
a straightforward estimation of ϕi and β

(0)
i .

However, we cannot apply dictionary learning methods
straight off the shelf. First, dictionary learning models as-
sume sparsity of the unknown coefficients ϕi, and for most
sample complexity results, a degree of sparsity is necessary
(i.e., the size of the support of ϕi is upper bounded) [6], [16],
[17]. Meanwhile, we make no restrictive assumptions on the
factor loadings ϕi. Second, the additive noise ηi in dictionary
learning is assumed to be independent of other randomness
in the problem, either with standard subgaussian or bounded
distributional assumptions [6], [16], [7]. However, as already
mentioned, ηi in our method is visibly not independent of the
parameters β(0)

i to be estimated, as it contains the component
of β(0)

i in the null space of Xi.
b) Normalization: The normalization step on line (3)

ensures that the first-step estimates are all weighted equally
in the subspace estimation step. As will become clear in the
simulations (Section V-B) this mitigates issues arising due to
the pseudo-inverse X†

i being ill-conditioned when T is close
to d. For tractability reasons, our theoretical analysis studies
a variant of Algorithm 1 in which the normalization step is
replaced with a truncation β̄(1) ← β

(1)
i 1{∥X†

i ∥2 ≤ s}, for
some predefined threshold s. We also compare this variant
to our main estimator in Section V-B.

B. Subspace recovery

The goal of the second step is to compute an estimate
of the r-dimensional subspace of Rd containing the ground
truth parameters (β

(0)
i )i∈[N ]. We do so by finding the r-

dimensional subspace that best approximates the (normal-
ized) first step estimates (β̄

(1)
i )i∈[N ], in the least squares

sense. If P denotes the orthogonal projection onto this
optimal subspace, the residual error associated with β

(1)
i
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is its distance to the subspace, that is
∥∥β̄(1)

i − P β̄
(1)
i

∥∥
2
.

Consequently, the least squares problem at this step is

min
P∈Gr(r,d)

1

N

∑
i∈[N ]

∥∥β̄(1)
i − P β̄

(1)
i

∥∥2
2
. (IV.2)

Note that (IV.2) is exactly the problem of finding the space
spanned by the first r principal components of the first step
estimates (β̄

(1)
i )i∈[N ]. Those are given by the top r left-

singular vectors of the matrix Θ(1) ∈ Rd×N whose columns
are (β̄

(1)
i )i∈[N ].

Another interpretation of this subspace estimate can be
obtained by observing that:∑

i∈[N ]

∥∥β̄(1)
i − P β̄

(1)
i

∥∥2
2
= ∥Θ(1) − PΘ(1)∥2F
=

〈
(Id − P )Θ(1), (Id − P )Θ(1)

〉
=

〈
Id − P,Θ(1)Θ(1)⊺

〉
,

where the last equality uses that Id−P is also an orthogonal
projection. This allows us to rewrite (IV.2)

argmin
P∈Gr(r,d)

1

N

∑
i∈[N ]

∥∥β̄(1)
i − P β̄

(1)
i

∥∥2
2

= argmax
P∈Gr(r,d)

〈
P,

Θ(1)Θ(1)⊺

N

〉
.

The matrix 1
NΘ(1)Θ(1)⊺ = 1

N

∑
i∈[N ] β̄

(1)
i β̄

(1)
i

⊺
appearing

on the last line is the sample covariance matrix of the
first step estimates. Because this matrix is positive semi-
definite, it admits a spectral decomposition with non-negative
eigenvalues and orthogonal eigenspaces. The top r left-
singular vectors of Θ(1) are equivalently given by an or-
thonormal collection of eigenvectors associated with the top
r eigenvalues of Θ(1)Θ(1)⊺ (counted with multiplicity).

C. Parameter Recovery

In the third stage of our algorithm we obtain revised
estimates of β(2)

i for each i ∈ [N ] given the estimate B̂:

β
(2)
i ∈ argmin

β∈B̂

∥yi −Xiβ∥22

= B̂(XiB̂)
†
yi = PB̂(XiPB̂)

†
yi.

One can obtain this result by solving for β(2)
i = B̂ϕ̂i where

ϕ̂i ∈ argmin
ϕ∈Rr

∥yi −XiB̂ϕ∥22.

V. RESULTS

A. Sample complexity

Our main theoretical result is an upper-bound on the sam-
ple complexity of the estimator described in Algorithm 1. As
already mentioned, it is easier to analyze a variant in which
line (3) performs a truncation instead of a normalization.
Thus, for the remainder of this section β̄

(1)
i is defined as

β̄
(1)
i = β

(1)
i 1{∥X†

i ∥2 ≤ s}, for some predefined threshold
s. Equivalently, Algorithm 1 simply drops the first step

estimates β(1)
i for which ∥X†

i ∥2 > s, and uses the remaining
ones in the subspace estimation step.

Theorem V.1. Let B̂ be the subspace spanned by the columns
of the output B̂ in Algorithm 1 with threshold level s =
Ω
(
1/(
√
d−
√
T )

)
. Then for each 0 < δ < 1, with probability

at least 1− δ

∥sinΘ(B̂,B0)∥2 ≲

(
1 +

σ2
w/σ

2
ϕ

(
√
d−
√
T − 1)2

)
d2

T 2

√
d

N
log

2

δ

The proof of Theorem V.1 is provided in the full version
of the paper. We first show that the rth principal subspace
of the covariance matrix Σβ = E[β̄(1)

i β̄
(1)
i

⊺
] is the ground

truth subspace B0 and quantify its spectral gap. By the
Davis–Kahan theorem, upper-bounding the principal sub-
space angle reduces to upper-bounding the spectral norm of
1
N

∑N
i=1 β̄

(1)
i β̄

(1)
i

⊺
−Σβ . This follows from a standard result

on the concentration of covariance matrices of sub-Gaussian
random variables.

The bound in Theorem V.1 scales as 1/
√
N as expected

when learning from independent observations. While the
dimension r of B0 does not explicitly appear in the bound,
it would be conventional to take σ2

ϕ = 1/r, so that the norm
of the ground truth parameters β

(0)
i concentrate around 1, as

is usually assumed in sample complexity bounds. For this
choice of σ2

ϕ, our error bound scales linearly in r. Finally
recall that by our modeling assumption, we require T ≤ d,
so this bound does not allow us to study the asymptotic
regime where T grows to infinity. The first term in the bound
degrades as T increases and becomes Ω(d) when T = d.
This is due to the design matrix Xi becoming ill-conditioned
for T close to d, a phenomenon we inspect more closely in
Section V-B below.

B. Simulation

We investigate by simulation the performance of the three-
step estimator of Algorithm 1 that uses normalized first-step
estimates, as well as the thresholding variant of Algorithm 1
analyzed in Theorem V.1, and which uses a truncated first-
step estimate for subspace estimation.

According to (I.1), i.i.d. samples (Xi, Yi), i ∈ [N ] were
generated with wi ∼ N (0, σ2

wIT ), β(0) drawn uniformly
from a common r-dimensional subspace of Rd and nor-
malized to unit norm, and Xi with i.i.d. standard normal
entries. Each plot shows the average of 30 trials and error
bars indicate one standard deviation.

Figure 1 shows the subspace estimation error of the
estimate B̂ from (1) thresh, Algorithm 1 with truncated
first-step estimates, (2) norm, Algorithm 1 with normalized
first step estimates. Results are shown for d = 50, r = 5, in
regimes d > T = 10, T = d = 50, and d < T = 80, as the
number of systems N is varied.
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Fig. 1. Subspace estimation error vs N for estimates B̂ from (1) thresh
and (2) norm. Results are shown for d = 50, r = 5, in regimes d > T =
10, T = d = 50, and d < T = 80.

Both versions of the three-step estimator do well in both
the T > d and T < d regime, though we note suboptimal
performance when T = d. This arises from the fact that the
pseudoinverse of Xi can be ill-conditioned when T = d. As
described before, we address this issue by normalizing our
first step estimates to mitigate the effect of a single sample
misdirecting the subspace estimator with an amplified noise
term X†

iwi. For the truncating estimator, we chose an optimal
threshold level for each d and T that trades off controlling
the effect of possibly ill-conditioned pseudo-inverse-based
least squares estimates with losses in effective sample size.

In Figure 2, we show the performance of the refined βi

estimates from thresh in comparison with two bench-
marks: (1) the oracle least squares estimate over B0 as if
it were known, and (2) the naive least squares estimate run
separately for each system i ∈ [N ], and which does not share
information across systems. The thresh estimator is able
to leverage information across systems to eventually match
the performance of the oracle.

Fig. 2. Comparison of βi estimation error of thresh as compared to
oracle and naive estimators. Here, d = 5, r = 1, T = 3.

C. Comparison with related work

In [9], the authors present a method of moments estimator,
which we refer to as MoM, for subspace estimation in the
present setting. This estimator can be interpreted under our
three-step method as first obtaining a first-step estimate
β
(1)
i = X⊺

i Yi and then estimating the subspace shared
by these first-step estimators. Figure 3 and 4 compare the
performance of norm and of MoM in terms of subspace
estimation error. Results are shown for the regimes T < d,
T = d, and T > d. We see that both estimators perform
comparably in the first and third regimes, while norm suffers
in the T = d regime where X† may be ill-conditioned.
However, the next section on time series data suggests
that norm may generalize better to settings with non-i.i.d.
regressors such as time-series data.

Fig. 3. Subspace estimation error vs. N for estimates B̂ from (1) norm
and (2) MoM, for i.i.d. data. Results are shown for d = 50, r = 5, in regimes
d > T = 10, T = d = 50, and d < T = 80..

Fig. 4. Subspace estimation error vs T for estimates B̂ from (1) thresh,
(2) norm, and (3) MoM, for i.i.d. data. Results are shown for d = 50, r = 5,
for various values of N .
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D. Time series regression

We next evaluate our algorithm and the method of mo-
ments estimator, MoM of [9], on time series data. Specifically,
consider T observations (xit, yit)t∈[T ] generated as:

xi,t+1 = Aixit + wit, t ∈ [T − 1], xi0 ∼ N (0, σ2
x)

for each i ∈ [N ], with xit ∈ Rd, Ai ∈ Rd×d and wit ∈ Rd a
sub-Gaussian random vector in subG(σ2

w). We assume each
dynamics matrix Ai is rank r ≤ d and can be written in the
form

Ai = FiB
⊺

where the rows of Fi ∈ Rd×r are independently distributed
and rotationally invariant, and B ∈ St(r, d) is an orthonormal
r-frame for a subspace in Gr(r, d). Ai is normalized by its
operator norm to ensure stability.

Unlike the setting of i.i.d. regression, the covariates
(xit)t∈[T ] are no longer independent of each other and of
the collection of noise vectors (wit)t∈[T ].

We find in our simulations that norm is able to generalize
to this setting quite well when T is not close to d, as opposed
to the MoM, which fails to learn even as N increases. Intu-
itively, MoM is not robust to the non-isotropy of the regressors
X , while our least-squares-based first-step estimate is still
able to extract useful information in this setting.

Fig. 5. Subspace estimation error vs. N for estimates B̂ from (1) norm
and (2) MoM, for time-series data. Results are shown for d = 20, r = 5, in
regimes d > T = 8, T = d = 20, and d < T = 36.

VI. CONCLUSION

We have shown that when there is shared low-rank
structure among systems, we can leverage data from other
systems to help estimate individual parameters, even in the
regime r ≤ T < d, in which systems would otherwise
be non-identifiable from their own data alone. We have
presented a method to estimate the common low dimensional
subspace as well as the system parameters, by a series of
three least squares optimization problems, one of which
can be solved simply by singular value decomposition. We
then provided finite sample estimation error guarantees of

a truncating variant our proposed method. These sample
complexity results are not necessarily optimal, and we seek
to better understand the trade-offs in the number of systems
N , and the number of observations per system T in the best
achievable estimation error. However, experiments suggest
that the three-step estimation procedure may be applied
successfully to more general settings such as time-series
estimation.
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