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Abstract— Model-based optimal control strategies typically
rely on accurate parametric representations of the underlying
systems, which can be challenging to obtain, especially for
nonlinear and complex systems. Therefore, data-driven opti-
mal controllers have become increasingly attractive to both
academics and industry practitioners. As a data-driven optimal
control approach that can explicitly handle constraints, data-
enabled predictive control (DeePC) makes a transition from the
model-based optimal control strategies (e.g. model predictive
control (MPC)) to a data-driven one such that it seeks an
optimal control policy from raw input/output (I/O) data without
requiring system identification prior to control deployment,
achieving remarkable successes in various applications. How-
ever, this approach involves high computational cost due to the
dimension of the decision variable, which is generally signif-
icantly higher than its MPC counterpart. Several approaches
have been proposed to reduce the computational cost of the
DeePC for linear time-invariant (LTI) systems. However, finding
a computationally efficient method to implement the DeePC for
the nonlinear systems is still an open challenge. In this paper,
we propose a data-enabled neighboring extremal (DeeNE) to
approximate the DeePC policy and reduce its computational
cost for the constrained nonlinear systems. The DeeNE adapts
a pre-computed nominal DeePC solution to the perturbations
of the initial I/O trajectory and the reference trajectory from
the nominal ones. We also develop a scheme to handle nominal
non-optimal solutions so that we can use the DeeNE solution
as the nominal solution during the control process. Promising
simulation results on the cart inverted pendulum problem
demonstrate the efficacy of the DeeNE framework.

I. Introduction

As systems become increasingly complex and the data
gets more accessible, scientists and practitioners are turning
to data-driven methods instead of classical model-based
techniques for system controls [1]. While model-based con-
trollers rely on accurate plant modeling, data-driven control
approaches synthesize a controller from input/output (I/O)
data collected on the real system [2]–[5]. There are two
paradigms of data-driven control: i) indirect data-driven
control that first identifies a model using the I/O data and
then conducts control design based on the identified model
[6], [7], and ii) direct data-driven control that circumvents
the step of system identification and obtains control policy
directly from the I/O data [8]. A central promise is that
the direct data-driven control may have higher flexibility

This work was partially supported by the U.S. National Science Founda-
tion Award CMMI-2320698.

Amin Vahidi-Moghaddam, Kaixiang Zhang, and Zhaojian Li are with
the Department of Mechanical Engineering, Michigan State University, East
Lansing, MI 48824 USA (e-mail: vahidimo@msu.edu, zhangk64@msu.edu,
lizhaoj1@egr.msu.edu).

Yan Wang was with the Research and Advanced Engineering, Ford Motor
Company, Dearborn, MI 48121 USA (e-mail: ucsb1997@gmail.com).

and better performance than the indirect data-driven control
thanks to the data-centric representation that avoids using a
specific model from identification [9].

Recently, a result in the context of behavioral system the-
ory [10], known as Fundamental Lemma [11], has received
renewed attention in the direct data-driven control. Rather
than attempting to learn a parametric system model, this
result enables one to learn the system’s behaviour such that
the subspace of the I/O trajectories of a linear time invariant
(LTI) system can be obtained from column span of a data
Hankel matrix. A direct data-driven optimal control, called
data-enabled predictive control (DeePC) [12], has recently
been proposed in the spirit of the Fundamental Lemma.
The DeePC algorithm relies only on the I/O data to learn
the behavior of the unknown system and perform safe and
optimal control to drive the system along a desired trajectory
using real-time feedback. In comparison with the machine
learning-based controllers, the DeePC is more computation-
ally efficient, less data hungry, and more suitable to rigorous
stability and robustness analysis [13]. The DeePC algorithm
has been successfully applied in many scenarios, including
quadcopters [14] and power systems [15].

Despite the promise, the DeePC generally suffers from
high computation complexity because of the high dimension
of the decision variables. To address this challenge, several
approaches have been proposed to optimize a lower dimen-
sion decision variable and reduce the computational cost
of the DeePC for the LTI systems. For example, subspace
predictive control (SPC) [15], [16] identifies a reduced-
order model for the linear DeePC using the singular value
decomposition of the raw data; however, it is not a pure data-
driven controller due to the identification part. Null-space
predictive control (NPC) [13] introduces a lower dimension
decision variable to reduce the computational cost of the
DeePC, but it only works for the unconstrained linear DeePC.
Minimum-dimension DeePC [17] uses the singular value
decomposition to make more efficient numerical computation
for the constrained linear DeePC. However, for the nonlinear
systems, the computational cost of the DeePC is still a
challenging problem and needs to be solved. It is worth
noting that for the SPC and the minimum-dimension DeePC,
the choice of the number of the singular values to retain/cut
is very critical and nontrivial.

Considering the above challenges on the dimension-
reduction techniques [17]–[19], neighboring extremal (NE)
[20] is a promising paradigm to attain (sub-)optimal per-
formance with efficient computations, which is suitable for
the systems with fast dynamics and limited onboard compu-
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tations. Specifically, given a pre-computed nominal solution
based on its nominal initial state, the NE provides an optimal
correction law (to the first order) to the deviations from the
computed nominal values [21], [22]. The nominal control law
can be obtained from a remote powerful controller or can be
computed ahead of time based on an approximated initial
state. The resulting NE control law is a time-varying feed-
back gain on the state deviations that can be pre-computed
along with the original optimal control problem. Therefore,
this adaptation requires negligible online computation and
can thus be used towards nonlinear optimal control problems
that are computationally too expensive to solve at each time
step. The NE has been employed in several engineering
systems, including ship maneuvering control [23], power
management [24], full bridge DC/DC converter [25], and
spacecraft relative motion maneuvers [26]. However, existing
NE frameworks only deal with model-based controllers while
the data-driven controllers have extensively been employed
in modern applications.

In this paper, we develop a data-enabled NE (DeeNE)
framework for the nonlinear DeePC problem with initial I/O
and reference perturbations to address the challenge of high
computational cost in the DeePC.

II. Preliminaries and Problem Formulation

Consider the following discrete-time nonlinear system:

x(k + 1) = f (x(k), u(k)),
y(k) = h(x(k), u(k)),

(1)

where k ∈ N+ denotes the time step, x ∈ Rn represents the
state vector of the system, u ∈ Rm is the control input, and
y ∈ Rp denotes the outputs of the system. Moreover, f :
Rn ×Rm → Rn is the system dynamics with f (0, 0) = 0, and
h : Rn × Rm → Rp represents the output dynamics.

We consider the following safety constraint:

C(y(k), u(k)) ≤ 0, (2)

where C : Rp × Rm → Rl. We consider the nonlinear system
(1) and a tracking control problem with the desired trajectory
r(k). Starting from an initial state x0, the closed-loop system
performance over N steps is characterized by the following
cost term:

JN(y,u; r) =
N−1∑
k=0

ϕ(y(k),u(k); r(k)), (3)

where u = [u(0), u(1), · · · , u(N − 1)], y =

[y(0), y(1), · · · , y(N − 1)], r = [r(0), r(1), · · · , r(N − 1)],
and ϕ(y, u; r) is the stage cost.

The optimal control problem aims at optimizing the system
performance over N future steps for (1), which is reduced to
the following constrained optimization problem:

(y∗,u∗) = arg min
y,u

JN(y,u; r)

s.t. x(k + 1) = f (x(k), u(k))
y(k) = h(x(k), u(k))
C(y(k), u(k)) ≤ 0.

(4)

The model-based optimal control (4) is one of the most
celebrated and widely used control techniques for trajectory
tracking, due to its capability to enforce safety constraints
during the control design. The key ingredient for this con-
troller is an accurate parametric model of the system, but
obtaining such a model, using plant modeling or identifica-
tion procedures, is often the most time-consuming and cost
part of control design.

Fundamental Lemma [11] inspires an alternative, non-
parametric way to represent the system model (1). More
specifically, Hankel matrices H(ud) and H(yd) are first con-
structed from the offline collected I/O samples ud and yd as

H(ud) =


u1 u2 · · · uT−Tini−N+1
u2 u3 · · · uT−Tini−N+2
...

...
. . .

...
uTini+N uTini+N+1 · · · uT

 , (5)

and H(yd) ∈ Rp(Tini+N)×L is built in an analogous way from the
collected samples yd. H(ud) ∈ Rm(Tini+N)×L needs to have full
row rank to satisfy the persistency of excitation requirement,
and the number of its columns is denoted as L = T − Tini −

N + 1. Then, the Hankel matrices are partitioned in Past and
Future subblocks:[

UP

UF

]
=: H(ud),

[
YP

YF

]
=: H(yd), (6)

where UP ∈ R
mTini×L, UF ∈ R

mN×L, YP ∈ R
pTini×L, and YF ∈

RpN×L.
The data-enabled predictive control (DeePC) is then for-

mulated as a data-driven alternative of (4) as [12], [27]:

(y∗,u∗, σy
∗, σu

∗, g∗) = arg min
y,u,σy,σu,g

JN(y,u, σy, σu, g)

s.t.


UP

YP

UF

YF

 g =

uini

yini

u
y

 +

σu

σy

0
0

 , C(y, u) ≤ 0,
(7)

where the equality constraint is a result of the fundamental
lemma with σu ∈ R

mTini and σy ∈ R
pTini being auxiliary slack

variables to model measurement noises and nonlinearities,
and JN(y,u, σy, σu, g) is the modified cost function for data-
driven controllers with noisy data and nonlinearities [27].
Note that one can rewrite (7) as

g∗ = arg min
g

JN(YFg,UFg,YPg − yini,UPg − uini, g)

s.t. C(YFg,UFg) ≤ 0,
(8)

using the identities y = YFg, u = UFg, σy = YPg − yini, and
σu = UPg − uini from (7).

If the constraint C(y, u) is absent in (7), the problem is
referred to the unconstrained DeePC, and the solution is
available in closed form with reduced computational burden.
For this case, one has u = UFg = Kr

dr + Kini
d wini as the

DeePC policy, where Kr
d ∈ R

mN×pN and Kini
d ∈ R

mN×(m+p)Tini

are control gains, r is the desired reference trajectory, and
wini =

[
uT

ini, y
T
ini

]T
is the given initial trajectory. However, the

constrained DeePC (7) suffers from high computational cost.
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III. Main Result

In this section, given a nominal solution (go, uo, yo) (e.g.,
solved from (8)), we propose a data-enabled neighboring
extremal (DeeNE) to efficiently adapt to small initial (I/O)
and reference trajectories perturbations without the need of
recomputing the optimal solution.

A. Nominal Lagrange Multipliers

Considering (8), the augmented cost function is con-
structed:

J̄N(wini, g, r, µ) = JN(wini, g, r) + µT Ca(wini, g), (9)

where Ca(wini, g) represents the active constraints, and µ
is the Lagrange multiplier associated with the active con-
straints. Let (wo

ini, g
o, ro) represent the nominal solution to the

DeePC (7), which must satisfy the following KKT necessary
optimality conditions:

J̄g(wini, g, r, µ) = 0, µ ≥ 0, (10)

where J̄g indicates ∂J̄N/∂g.

Assumption 1. Ca
g(wini, g) is full row rank.

Substituting the nominal solution (wo
ini, g

o, ro) into the
above KKT conditions and from (10), it follows that

Jg(wo
ini, g

o, ro) + µT Ca
g(wo

ini, g
o) = 0. (11)

The Lagrange multiplier can thus be obtained online as:

µ = −(Ca
gCa

g
T )
−1

Ca
g JT

g . (12)

Note that Assumption 1 guarantees that Ca
gCa

g
T is invert-

ible. Moreover, it is worth noting that µ = 0 if the constraint
C(wo

ini, g
o) is not active. The Lagrange multiplier (12) is

considered as the nominal optimal Lagrange multiplier µo.

B. Data-Enabled Neighboring Extremal (DeeNE)

Consider a nominal solution (go, uo, yo) obtained by solv-
ing the DeePC (7) for an initial I/O trajectory (uo

ini, y
o
ini)

and reference trajectory ro. For a new initial I/O trajectory
(uini, yini) and reference trajectory r, the optimal solution is
approximated by u∗ = uo + δu using the DeeNE adaptation.
The objective is now to develop a DeeNE framework for the
data-driven optimal trajectory tracking problem. To that end,
the DeeNE seeks to minimize the second-order variation of
(9) subject to linearized constraints. More specifically, the
DeeNE algorithm solves the following optimization problem
with the given information δwini and δr as

δg∗ = arg min
δg

Jne
N

s.t. Ca
gδg = 0,

(13)

where

Jne
N = δ

2 J̄N =

1
2

δwini

δg
δr


T J̄winiwini J̄winig J̄winir

J̄gwini J̄gg J̄gr

J̄rwini J̄rg J̄rr


δwini

δg
δr

 . (14)

For (13), the augmented cost function are obtained as

J̄ne
N =

1
2

δwini

δg
δr


T J̄winiwini J̄winig J̄winir

J̄gwini J̄gg J̄gr

J̄rwini J̄rg J̄rr


δwini

δg
δr


+ δµT Ca

gδg,

(15)

where δµ is the Lagrange multiplier.
By applying the KKT conditions to (15), one has

J̄ne
δg = 0, δµ ≥ 0. (16)

where J̄ne
δg indicates ∂J̄ne

N /∂δg.

Theorem 1 (Data-Enabled Neighboring Extremal). Consider
the optimization problem (13), the augmented cost function
(15), and the KKT conditions (16). If J̄gg > 0, then the DeeNE
policy

δg = K∗1δwini + K∗2δr,

K∗1 = −
[
I 0
]

Ko
[
J̄gwini

0

]
,

K∗2 = −
[
I 0
]

Ko
[
J̄gr

0

]
,

Ko =

[
J̄gg Ca

g
T

Ca
g 0

]−1

(17)

approximates the perturbed solution for the DeePC (7) in
the presence of initial I/O perturbation δwini and reference
perturbation δr.

Proof. Using (15) and the KKT conditions (16), one has

J̄gwiniδwini + J̄ggδg + J̄grδr +Ca
g

Tδµ = 0. (18)

Now, using (18) and the linearized safety constraints (13),
one has[

J̄gg Ca
g

T

Ca
g 0

] [
δg
δµ

]
= −

[
J̄gwini

0

]
δwini −

[
J̄gr

0

]
δr, (19)

which yields[
δg
δµ

]
= −Ko

[
J̄gwini

0

]
δwini − Ko

[
J̄gr

0

]
δr. (20)

Thus, the DeeNE policy (17) is obtained, and the proof is
completed. □

Remark 1 (Singularity). J̄gg > 0 is essential for the
DeeNE since it guarantees the convexity of (13), and adding
Assumption 1 makes a well defined Ko in (17). If Ca

g is not
full row rank, the matrix Ko will be singular, which leads
to the failure of the proposed algorithm. This is addressed
using the constraint back-propagation algorithm [28].

Remark 2. Using the control policy (17), one can obtain
g∗ = go + δg, then u∗ = uo + δu is obtained using u = UFg.
Therefore, one can conclude that δu = Kr

neδr + Kini
ne δwini.

C. Nominal Non-Optimal Solution

The DeeNE is derived under the assumption that a nominal
DeePC solution is available. In this subsection, we modify
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the DeeNE policy for a nominal non-optimal solution so that
we can use the DeeNE solution as the nominal solution
during the control process. For the nominal non-optimal
sequences (wo

ini, g
o, ro), we assume that they satisfy the

constraints described in (7) but may not satisfy the optimality
condition J̄g(wo

ini, g
o, ro, µo) = 0. Under this circumstance, the

cost function (14) is modified as

Jne
N = δ

2 J̄N + J̄T
g δg =

1
2

δwini

δg
δr


T J̄winiwini J̄winig J̄winir

J̄gwini J̄gg J̄gr

J̄rwini J̄rg J̄rr


δwini

δg
δr

 + J̄T
g δg.

(21)

Considering the optimal control problem (13) and the cost
function (21), the augmented cost function is modified as

J̄ne
N =

1
2

δwini

δg
δr


T J̄winiwini J̄winig J̄winir

J̄gwini J̄gg J̄gr

J̄rwini J̄rg J̄rr


δwini

δg
δr

 + J̄T
g δg

+ δµT Ca
gδg.

(22)

Now, the following theorem is presented to modify the
DeeNE policy for the nominal non-optimal solutions to the
data-driven nonlinear optimal control problem.

Theorem 2 (Modified Data-Enabled Neighboring Extremal).
Consider the optimization problem (13), the KKT conditions
(16), and the augmented cost function (22). If J̄gg > 0, then
the DeeNE policy is modified for a nominal non-optimal
solution as

δg = K∗1δwini + K∗2δr + K∗3

[
J̄g

0

]
,

K∗3 = −
[
I 0
]

Ko,

(23)

where the gain matrices K∗1 , K∗2 , and Ko are defined in (17).

Proof. Using the KKT conditions (16) and the modified
augmented cost function (22), one has

J̄gwiniδwini + J̄ggδg + J̄grδr +Ca
g

Tδµ + J̄g = 0. (24)

Now, using (24) and the linearized safety constraints (13),
one has[

J̄gg Ca
g

T

Ca
g 0

] [
δg
δµ

]
= −

[
J̄gwini

0

]
δwini −

[
J̄gr

0

]
δr −
[
J̄g

0

]
, (25)

which yields[
δg
δµ

]
= −Ko

[
J̄gwini

0

]
δwini − Ko

[
J̄gr

0

]
δr − Ko

[
J̄g

0

]
. (26)

Thus, the modified DeeNE policy (23) is obtained, and the
proof is completed. □

Remark 3 (Quadratic Cost). One can consider a quadratic
cost function JN(y,u, σy, σu, g) as

JN(y,u, σy, σu, g) = ∥y − r∥2Q + ∥u∥
2
R

+ λy∥σy∥
2
2 + λu∥σu∥

2
2 + λg∥g∥22,

(27)

where the positive semi-definite matrix Q ∈ RpN×pN and the

positive definite matrix R ∈ RmN×mN are weighting matrices,
and the positive parameters λy, λu, λg ∈ R are regularization
weights. For the quadratic cost function (27), the DeePC is
a quadratic program (QP) problem on the decision variable
g, which requires an iterative solver, i.e. an online QP
solver such as qpOASES [29]. To use the DeeNE, we have

J̄g = 2((YFg − r)T QYF + (UFg)T RUF

+ λy(YPg − yini)T YP + λu(UPg − uini)T UP + λggT ),

J̄gg = 2(YT
F QYF + UT

F RUF + λyYT
P YP + λuUT

P UP + λg),

J̄gwini = −2(λyYT
P + λuUT

P ),

J̄gr = −2YT
F Q,

(28)

where one can see that J̄gg > 0.

Algorithm 1 summarizes the DeeNE procedure for adapt-
ing a pre-computed nominal control solution to the small ini-
tial I/O and reference perturbations such that it achieves the
optimal control using Theorem 2. When the nominal solution
comes from the DeePC, Theorem 1 and Theorem 2 represent
same control policy since we have J̄g(wo

ini, g
o, ro, µo) = 0 for

a nominal optimal solution. We use Theorem 2 for all time
steps to employ the DeeNE solution as the nominal solution
for the next time steps. It is worth noting that applying
u(k, k + 1, · · · , k + s) = u∗(0, 1, · · · , s), s ≤ N − 1 to the
plant reduces the computational cost, and in some cases
may improve the control performance [12], [30]; however,
Algorithm 1 represents s = 0 for the control framework.

Algorithm 1: Data-Enabled Neighboring Extremal
Parameter: UP, YP, UF , YF , C, Q, R, λy, λu, λg.
Input : wini, r(0 : N − 1).
Output : u(0 : T ), y(0 : T ).

1 for k = Tini + 1 to T do
2 if k == Tini + 1 then
3 Compute g∗(0 : N − 1) using (7) and (27) ;
4 u∗ = UFg∗ ;
5 end
6 else
7 Calculate µo using (12) ;
8 Calculate K∗1 , K∗2 , K∗3 using (17) and (23) ;
9 δwini = wini − wo

ini;
10 δr = r − ro ;
11 Calculate δg using (23) ;
12 g∗ = go + δg;
13 u∗ = UFg∗ ;
14 end
15 Apply u(k) = u∗(0) to the plant ;
16 Measure y(k) from the plant ;
17 go = g∗;
18 wo

ini = wini;
19 ro = r ;
20 wini = w(k − Tini + 1 : k) ;
21 Update r(0 : N − 1) ;
22 end
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IV. Simulation Results

In this part, we demonstrate the performance of the
proposed DeeNE framework via a simulation example on a
cart-inverted pendulum (see Fig. 1) whose system dynamics
is described by:.

z̈ =
F − Kd ż − m(Lθ̇2 sin(θ) − g sin(θ) cos(θ)) − 2dz

M + m sin2(θ)
,

θ̈ =
z̈ cos(θ) + g sin(θ)

L
−

dθ
mL2 ,

(29)

where z and θ denote the position of the cart and the
pendulum angle. m = 1kg, M = 5kg, and L = 2m represent
the mass of the pendulum, the mass of the cart, and the length
of the pendulum. g = 9.81m/s2 and Kd = 10Ns/m are the
gravity acceleration and the damping parameter. The variable
force F controls the system under a friction force dz and a
friction torque dθ. Ts = 0.02s is considered as the sampling
time for discretization of the model (29), and we assume
dz and dθ as the process noises. The states, the outputs, the
process noise, the measurement noise, and the control input
constraint are expressed as

x = [x1, x2, x3, x4]T = [z, ż, θ, θ̇]T
,

y = [x1, x3]T + v = [z, θ]T + v,

d = [d1, d2, d3, d4]T = [0, dz, 0, dθ]T ,

− 50 ≤ F ≤ 50.

where d and v represent the process noise and measurement
noise, respectively.

The following values are used for the simulation: Tini =

30, N = 45, the simulation time T = 200, x(0) =
[0, 0, π/270, 0]T , and dz, dθ = 0.002(2rand(1,T ) − 1). We
generate the first initial trajectory (uini, yini) using zero control
input, i.e. uini = u(0 : 29) = 0, which leads to the state
x(30) = [0.0151, 0.0783, 0.1225, 0.6200]T . Figs. 2 and 3
show the control performances of the DeeNE and the DeePC.
For the DeePC, we use the DeePC policy (7), apply the
length-s optimal control sequence to the plant, and update
the initial trajectory wini for the next step (see Algorithm 2
in [12]). As we discussed in Algorithm 1, we use DeeNE
policy (23) to avoid solving the DeePC problem at each
step and reduce the computational cost. As is obvious from
the Fig. 2, one can see that the DeeNE policy approximates
the DeePC policy very well and is capable of adjusting the
nominal DeePC by fully considering the initial I/O trajectory
perturbations. From Fig. 3, one can see that the DeeNE
achieves similar performance as compared to the DeePC;
however, the DeeNE significantly reduces the computational
cost of the DeePC as shown in Table II. Table I compares the
cost-based performance and the computational time for the
DeePC under various values of s, which demonstrates that
we have the best performance for the considered system with
s = 5. Table II illustrates the cost-based performance and the
computational time for both DeePC and DeeNE under two
cases s = 0 and s = 5, and one can see that the DeeNE with
s = 5 shows the best performance for the regulation of the
cart-inverted pendulum.

𝑭
𝒛

𝑳
𝜽

𝒎

𝑴

𝒅𝒛𝒅𝒛

𝒅𝜽

Fig. 1. Schematics of Cart-inverted pendulum.
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Fig. 2. Control input for cart-inverted pendulum.
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Fig. 3. System outputs for cart-inverted pendulum.

V. Conclusion

In this work, a computationally efficient data-driven opti-
mal controller was studied for the nonlinear systems. Specif-
ically, a DeeNE algorithm was developed to approximate the
DeePC policy in the presence of input/output and reference
trajectories perturbations. The developed DeeNE was based
on the second-order variation of the original DeePC problem
such that the computational load of the DeeNE grows linearly
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TABLE I
Comparison of Performance and Computational Cost for the DeePC with

various s.

DeePC Cost Time (per loop)
s = 0 22.3650 0.1419 ms
s = 5 22.1485 0.0284 ms
s = 10 22.7375 0.0159 ms

TABLE II
Comparison of Performance and Computational Cost for both DeePC and

DeeNE

Controller Cost Time (per loop)
DeePC (s = 0) 22.3650 0.1419 ms
DeePC (s = 5) 22.1485 0.0284 ms
DeeNE (s = 0) 24.0375 0.0551 ms
DeeNE (s = 5) 23.5335 0.0102 ms

for the optimization horizon. This control approach alleviates
the online computational burden and extends the applicability
of data-driven optimal controllers. Simulations of the cart
inverted pendulum system demonstrated the DeeNE’s tech-
nological advances over the DeePC. Future work will involve
the application of the DeeNE to complex, nonlinear, and
networked real-world systems such as robots and connected
vehicles.
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