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Abstract— Minimax problems have attracted much attention
due to various applications in constrained optimization prob-
lems and zero-sum games. Identifying saddle points within
these problems is crucial, and saddle flow dynamics offer a
straightforward yet useful approach. This study focuses on a
class of bilinearly coupled minimax problems with strongly
convex-linear objective functions. We design an accelerated
algorithm based on saddle flow dynamics, achieving a conver-
gence rate beyond the stereotype limit (the strong convexity
constant). The algorithm is derived from a sequential two-step
transformation of a given objective function. First, a change
of variables is applied to render the objective function better-
conditioned, introducing strong concavity (from linearity) while
preserving strong convexity. Second, proximal regularization,
when staggered with the first step, further enhances the strong
convexity of the objective function by shifting some of the
obtained strong concavity. After these transformations, saddle
flow dynamics based on the new objective function can be
tuned for accelerated exponential convergence. Besides, such
an approach can be extended to weakly convex-weakly concave
functions and still guarantees exponential convergence to one
stationary point. The theory is verified by a numerical test on
an affine equality-constrained convex optimization problem.

I. INTRODUCTION

The study of saddle flow dynamics traces back to the
seminal work [1] and contributes to the fundamentals of
mathematical optimization from a dynamical system perspec-
tive. Saddle flow dynamics aim to search for minimax saddle
points by combining gradient descent with gradient ascent on
two respective subsets of variables (that form a partition).
This approach is the basis of primal-dual methods used
for solving constrained optimization problems [2] and best-
response dynamics used for locating Nash equilibria in zero-
sum games [3], [4]. As a result, saddle flow dynamics have
been widely used for resources allocation and stabilizing
controller design in a variety of areas, including power
systems [5], [6], communication networks [7], [8], and cloud
computing [9].

To fully understand the dynamic behavior of saddle flows
(and its variants), the convergence properties have been ex-
tensively studied. Preliminary results [10]–[13] are centered
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on asymptotic stability, primarily using advanced analytical
tools to provide insights into the important special case of
primal-dual dynamics. More recent efforts [14]–[16] have
been made to study the exponential convergence of saddle
flow dynamics for not only theory development but also
practical uses. For example, [14], [15] have shown particular
exponential convergence in the absence of strong convexity.
[2] has further extended the study to discrete-time problems,
showing linear convergence – the counterpart of exponential
convergence in continuous time.

A fundamental challenge in studying these exponentially
convergent dynamics is to estimate their decay rates us-
ing several algorithmic variants [17]–[23]. A vast amount
of literature resorts to proximal regularization, especially
when handling non-smooth functions. In particular, [17]
only shows the existence of exponential convergence rates
related to strong convexity but fails to provide an estimate.
Lower bounds on the convergence rate have been developed
in [18], [19] and [20], respectively, using saddle flow variants
and frequency-domain Integral Quadratic Constraint (IQC)
approaches. [21] further establishes a best-case upper-bound
rate with a Lyapunov method in the time domain. Another
set of results [22], [23] develop a novel projection on the
standard Lagrangian and derive lower bounds on the decay
rates when proving (semi-)global exponential stability for
the augmented primal-dual dynamics. By and large, the rate
estimates provided in the literature depend on strong con-
vexity, regularization coefficients, and singular values of any
coupling matrices. Notably, the constant of strong convexity
seems to be a bottleneck inherent in the convergence rate of
saddle flow dynamics.

In this paper, we focus particularly on a class of bi-
linearly coupled minimax problems with strongly convex-
linear objective functions and design an algorithm based on
carefully designed saddle flow dynamics that exploits the
problem structure and achieves an exponential convergence
rate beyond the strong convexity constant. The algorithm
involves two sequential steps - change-of-variable condi-
tioning and proximal regularization - that jointly enhance
the strong convexity-strong concavity of a given objective
function. Building upon our recent results [24], this property
immediately results in a lower-bound estimate for the conver-
gence rate that breaks the stereotype limit. In addition, such a
performance guarantee makes the algorithm suited for a class
of weakly convex-weakly concave functions with exponential
convergence to a stationary point. Extensive simulations are
run to compare our algorithm with existing methods and the
actual rate with its lower-bound rate estimate.
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Our contributions are summarized as follows.
(i) For bilinearly coupled minimax problems with strongly

convex-linear objective functions, we design a saddle
flow-based algorithm with an exponential convergence
rate beyond the given strong convexity constant.

(ii) We provide an explicit lower-bound estimate for the
exponential convergence rate of the algorithm, which
offers a guideline for choosing parameters to further
optimize the rate.

(iii) The accelerated rate guarantee accommodates weakly
convex-weakly concave functions, thus showing expo-
nential convergence in nonconvex-nonconcave scenar-
ios.

(iv) Numerical results validate the proposed algorithm’s
superiority to many existing methods and further show
that the lower-bound rate estimate is almost tight.

Notation: Let R be the set of real numbers. In ∈ Rn×n

denotes the identity matrix of size n. Given a twice differ-
entiable function L(x, y) ∈ C2 with L : Rn × Rm 7→ R, we
use ∂

∂xL(x, y) ∈ R1×n and ∂
∂yL(x, y) ∈ R1×m to denote

the partial derivatives with respect to x and y, respectively.
We further define ∇xL(x, y) :=

[
∂
∂xL(x, y)

]T
. Meanwhile,

∂2

∂x2L(x, y) ∈ Rn×n and ∂2

∂y2L(x, y) ∈ Rm×m represent the
second-order partial derivatives of L(x, y) with respect to x
and y, respectively.

II. PROBLEM AND RESULT

A. Problem Statement

In this paper, we aim to solve bilinearly coupled minimax
problems of the form:

min
x∈Rn

max
y∈Rm

L(x, y) := f(x) + ηyTAx− ηyT b (1)

where η > 0 denotes a constant, b ∈ Rm is a constant vector,
and A ∈ Rm×n is the coupling matrix. f(x) : Rn 7→ R is
assumed to be twice differentiable. We assume a saddle point
(x⋆, y⋆) exists. The minimax problem (1) is equivalent to an
affine equality-constrained optimization problem:

min
x∈Rn

f(x)

s.t. Ax− b = 0 : y ∈ Rm
(2)

where y ∈ Rm represents the dual variable. Note that
L(x, y) is the (weighted) Lagrangian of the problem (2) and
(x⋆, ηy⋆) is an optimal primal-dual solution.

The primary goal is to locate a saddle (min-max) point
of L(x, y), as indicated in (1). We will particularly focus on
saddle flow dynamics that run a continuous-time version of
gradient descent ascent on L(x, y):

Definition 1 (Saddle Flow Dynamics). The saddle flow
dynamics on L(x, y) are defined as the following dynamic
law:

ẋ = −∇xL(x, y) , (3a)
ẏ = +∇yL(x, y) . (3b)

In the following subsections, we will develop an algorithm
based on saddle flow dynamics that exponentially converges
to a saddle point of L(x, y).

B. Algorithm

Our algorithm is defined on a set of new auxiliary vari-
ables. Three auxiliary variables u ∈ Rn, p, v ∈ Rm are
introduced, and their connection with the original variables
x and y is briefly illustrated in Figure 1.

(x,y) 
Change-of-Variable 

(u,p) 
Proximal 

(u,v) -

-

Conditioning Regularization 

-
-, 

, . Saddle Flow Dynamics ' 

(x*' y*) - (u*, v*) -

Inverse Change of Variables 

Fig. 1: Algorithm development.

First, we propose a change of variables to transform (x, y)
into (u, p) dictated by:[

u

p

]
=

[
In αAT

0 B

][
x

y

]
, (4)

where α > 0 is a positive constant, and B ∈ Rm×m is a
given full-rank transformation matrix, with σ̄BI ⪰ BBT ⪰
σBI for some σ̄B > 0 and σB > 0. We obtain L̄(u, p) as the
counterpart of the Lagrangian L(x, y) in the (u, p) space:

L̄(u, p) := f(u− αATB−1p) + ηpTB−T (Au− b)

− ηα∥ATB−1p∥2 .
(5)

This conditioning step exploits the linearity in y. Second, we
introduce a proximal regularizer on the variable p to obtain a
Moreau envelope function defined on (u, v) in the following
form:

L̃(u, v) := max
p∈Rm

{
L̄(u, p)− ρ

2
∥p− v∥2

}
, (6)

where ρ > 0 denotes a constant regularization coefficient.
The saddle flow dynamics on the Moreau envelope are
expected to reach an equilibrium point (u⋆, v⋆), which
immediately implies a saddle point (x⋆, y⋆) of the original
Lagrangian L(x, y) via the inverse change of variables.

More specifically, we define our algorithm as the following
dynamic law on (u, v):

u̇ = −∇uL̃(u, v) = −∇f(u− αATB−1p̃)− ηATB−1p̃ , (7a)

v̇ = +∇vL̃(u, v) = ρ(p̃− v) , (7b)

where p̃ is a shorthand for the mapping p̃(u, v) : Rn×Rm 7→
Rm that represents the unique maximizer in (6) (uniqueness
to be shown later) subject to

−αB−TA∇f(u− αATB−1p̃(u, v)) + ηB−T (Au− b)

−2ηαB−TAATB−1p̃(u, v)− ρ(p̃(u, v)− v) = 0 .
(8)

We will provide the conditions under which the algorithm (7)
is guaranteed to achieve the goal and analyze its performance
in the next subsection.
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C. Main Result

Before stating the main result, we outline the assumptions
required for the algorithm (7) that basically characterize
the objective function f(x) and the matrix A of the affine
equality constraint in (2).

Assumption 1. f(x) ∈ C2 is mf -strongly convex and lf -
smooth, i.e., lfI ⪰ ∇2f(x) ⪰ mfI with lf > 0 and mf > 0.

Given Assumption 1, L(x, y) is a strongly convex-linear
function.

Assumption 2. The coupling matrix A is full row rank with
σ̄AI ⪰ AAT ⪰ σAI for some σ̄A > 0 and σA > 0.

Given Assumptions 1 and 2, the saddle point (x⋆, y⋆) of
L(x, y) is unique since the problem (2) meets the linear
independence constraint qualification and admits a unique
primal-dual solution [25], [26]. Note that the saddle point
(x⋆, y⋆) of L(x, y) is also the equilibrium point of the
corresponding saddle flow dynamics (3).

Our first argument is that an equilibrium point (u⋆, v⋆) of
the algorithm (7) is immediately related to the target saddle
point (x⋆, y⋆), as the following theorem suggests.

Theorem 1 (Characterization of Saddle Point). Let Assump-
tions 1 and 2 hold. Given an equilibrium point (u⋆, v⋆) of the
dynamic law (7), the unique saddle point (x⋆, y⋆) of L(x, y)
can be attained by

x⋆ = u⋆ − αATB−1v⋆ , (9a)

y⋆ = B−1v⋆ . (9b)

The proof of Theorem 1 is provided in Appendix A, which
is an immediate consequence of the algorithm design in
Section III.

Given Theorem 1, it remains to show the convergence of
the algorithm (7) to an equilibrium point, which we establish
along with a lower-bound rate estimate in the following
theorem.

Theorem 2 (Convergence). Let Assumptions 1 and 2 hold.
Given any positive constants η and α that satisfy 2η > αlf ,
the dynamic law (7) globally exponentially converges to
a unique equilibrium point (u⋆, v⋆). More precisely, given
w := (u, v),

∥w(t)− w⋆∥ ≤ ∥w(0)− w⋆∥e−ct

holds with the lower-bound rate

c := min

{
mf +

σB

σ̄B

σAγ1
(2ηα− α2mf )σ̄A + ρσB

,

ρσA(2ηα− α2lf )

σA(2ηα− α2lf ) + σ̄Bρ

}
,

where γ1 is a constant with

0 ≤ γ1 ≤ min{(η − αmf )
2, (η − αlf )

2} .

The proof will become clear as we develop the algorithm
(7) in detail in Section III.

Theorem 2 not only guarantees the exponential conver-
gence of the algorithm (7), but also implies the following
corollary that suggests an accelerated rate beyond the con-
stant of the strong convexity of f(x).

Corollary 3. Given any positive constants ρ, η, σ̄B and σB

that satisfy
1) σ̄Bmf < σA(2ηα− α2lf ),
2) ρ >

σA(2ηα−α2lf )
σA(2ηα−α2lf )−σ̄Bmf

mf ,
the dynamical law (7) achieves a convergence rate lower
bounded by

c > mf .

In Corollary 3, the first condition ensures that the right-
hand side of the inequality in the second condition is positive.
Technically, the second condition can be derived from the
expression for the rate c. The intuition will be provided later
in Section III.

Remark 1. The parameters that satisfy all the conditions
always exist. A straightforward way is to pick a sufficiently
small σ̄B and a sufficiently large ρ. For example, the follow-
ing set of parameters

η = 8, α =
1

lf
, σ̄B =

σA

mf lf
, ρ =

3

2
mf (10)

satisfy all the conditions.

III. ALGORITHM DEVELOPMENT AND ANALYSIS

In this section, we explain the development of the al-
gorithm, which naturally provides insights into the acceler-
ated convergence performance of the algorithm (7). Inspired
by [27] and [28], we aim to enhance the convexity-concavity
of the original Lagrangian in (1) by exploiting the bilinear
couplings.

A. Change-of-Variable Conditioning

Recall the change of variables (4) in the first step. We
obtain the expression for the Lagrangian L(x, y) in the (u, p)
space as L̄(u, p) in (5). The role of the change-of-variable
conditioning (4) is captured below.

Lemma 4. Let Assumptions 1 and 2 hold. Given any positive
constants η and α that satisfy 2η > αlf , L̄(u, p) is mf -
strongly convex in u and σA(2ηα−α2lf )

σ̄B
-strongly concave in

p.

Proof. Lemma 4 follows immediately from the calculation
of the respective second-order partial derivatives:

∂2

∂u2
L̄(u, p) = ∇2f(u− αATB−1p) ⪰ mfIn ,

∂2

∂p2
L̄(u, p) = α2B−TA∇2f(u− αATB−1p)ATB−1

− 2ηαB−TAATB−1

= −B−TA
(
2ηαIn − α2∇2f(u− αATB−1p)

)
ATB−1

⪯ −B−TA(2ηα− α2lf )InA
TB−1 ⪯ −σA

σ̄B
(2ηα− α2lf )Im .

■
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Lemma 4 suggests that the change-of-variable condition-
ing enhances the concavity (from linearity) while maintain-
ing the strong convexity for the objective function. In fact,
the constant of strong concavity of L̄(u, p) in p could be
further optimized with proper choices of parameters. See an
example below.

Remark 2. When first fixing η and σ̄B , setting α = η/lf
gives the largest possible constant of strong concavity η2

σ̄B

σA

lf
.

In this case, η2

σ̄B
≥ mf lf

σA
suffices to guarantee

∂2

∂u2
L̄(u, p) ⪰ mfIn ,

∂2

∂p2
L̄(u, p) ⪯ −mfIm .

Furthermore, L̄(u, p) is relevant since its unique saddle
point (u⋆, p⋆) is directly connected with the saddle point
(x⋆, y⋆) of the original Lagrangian L(x, y), as the corollary
states.

Corollary 5. (u⋆, p⋆) is the unique saddle point of L̄(u, p)
if and only if (x⋆, y⋆) is the unique saddle point of L(x, y)
with

x⋆ = u⋆ − αATB−1p⋆ , (11a)

y⋆ = B−1p⋆ . (11b)

B. Proximal Regularization

This subsection builds on L̄(u, p) and aims to further
improve its strong convexity-strong concavity. As the second
step, we apply proximal regularization on p to obtain the
Moreau envelope of L̄(u, p):

L̃(u, v) = max
p∈Rm

{
L̄(u, p)− ρ

2
∥p− v∥2

}
= f(u− αATB−1p̃) + ηp̃TB−T (Au− b)

− ηα∥ATB−1p̃∥2 − ρ

2
∥p̃− v∥2 ,

(12)

where p̃ is the solution to the optimality condition (8). Note
that p̃ is unique due to the strong concavity of L̄(u, p) in p.
It can be efficiently computed, either using its closed form
when it is available, i.e., the inverse function of ∇f(·) has an
explicit expression, or using numerical methods since ∇f(·)
is strictly monotone.

The following lemma characterizes the impact of proximal
regularization on the convexity-concavity property.

Lemma 6. Let Assumptions 1 and 2 hold. Given any positive
constants η and α that satisfy 2η > αlf , L̃(u, v) is c1-
strongly convex in u and c2-strongly concave in v with

c1 := mf +
σB

σ̄B

σAγ1
(2ηα− α2mf )σ̄A + ρσB

,

c2 := ρ
σA(2ηα− α2lf )

σA(2ηα− α2lf ) + σ̄Bρ
.

Proof. Since L(x, y) is twice differentiable, we are allowed
to derive the partial derivatives of L̃(u, v) as

∂

∂u
L̃(u, v) =

∂

∂u
f(u− αATB−1p̃) + ηp̃TB−TA ,

∂

∂v
L̃(u, v) = ρ (p̃− v) .

Using Danskin’s Theorem, we can further compute the
second-order partial derivatives. Define

H := ∇2f(u− αATB−1p̃) ,

which is a symmetric matrix. Then we obtain

∂2

∂u2
L̃(u, v) = H + (ηIn − αH)ATB−1Ju

p̃ ,

∂2

∂v2
L̃(u, v) = ρ

(
Jv
p̃ − Im

)
,

where Ju
p̃ and Jv

p̃ are the partial derivatives of p̃(u, v) with
respect to u and v, respectively. By taking partial derivatives
of both sides of the optimality condition (8), we have

Ju
p̃ = J−1

c BTA (ηIn − αH) ,

Jv
p̃ = ρJ−1

c ,

with Jc := B−TA
(
2ηαIn − α2H

)
ATB−1 + ρIm.

The explicit second-order partial derivatives from above
allow us to characterize the strong convexity-strong concav-
ity of L̃(u, v):

∂2

∂u2
L̃(u, v) = H + (ηIn − αH)ATB−1J−1

c BTA (ηIn − αH)

⪰ mfI + γ1A
TB−1J−1

c BTA

⪰
(
mf +

σB

σ̄B

σAγ1
(2ηα− α2mf )σ̄A + ρσB

)
In ≻ 0 ,

∂2

∂v2
L̃(u, v) = ρ

(
Jv
p⋆ − Im

)
= ρ(ρJ−1

c − Im)

⪯ −ρ
σA(2ηα− α2lf )

σA(2ηα− α2lf ) + σ̄Bρ
Im ≺ 0 .

■

Compared with the strong convexity-strong concavity of
L̄(u, p) identified in Lemma 4, Lemma 6 reveals an impor-
tant role of proximal regularization here: it increases the
constant of strong convexity while decreasing the constant
of strong concavity.

Similarly, we can establish the immediate connection
between the saddle points of L̄(u, p) and L̃(u, v) as follows.

Corollary 7. (u⋆, v⋆) is the unique saddle point of L̃(u, p)
if and only if (u⋆, p⋆) is the unique saddle point of L̄(u, p)
with p⋆ = v⋆.

Note that given Lemmas 4 and 6 as well as Corollaries 5
and 7, Theorem 1 becomes straightforward. We summarize
the brief proof in Appendix A.

C. Convergence Analysis

Now it becomes clear that the algorithm (7) is essentially
the saddle flow dynamics on L̃(u, v). The exponential con-
vergence of the algorithm established in Theorem 2 could be
built upon our recent result [24], which we briefly present
here for completeness.
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Lemma 8. Given a twice differentiable function S(x, y) with
m-strong convexity in x and q-strong concavity in y, the
saddle flow dynamics on S(x, y):

ż = F (z) =

[
−∇xS(x, y)

∇yS(x, y)

]
, (16)

with z := (x, y), are globally exponentially stable. More
precisely,

∥z(t)− z⋆∥ ≤ ∥z(0)− z⋆∥e−rt

holds with the lower-bound rate

r := min{m, q}.
The proof of Lemma 8 is available in [24].
In virtue of Lemma 8, the strong convexity-strong concav-

ity of L̃(u, v) in Lemma 6 immediately implies Theorem 2.
Rate Optimization: According to the parameter conditions

in Corollary 3, there exist two constants 0 < ζ < β < 1
subject to

σ̄B = βσA

(2ηα− α2lf )

mf
, σB = ζσA

(2ηα− α2lf )

mf
.

Then the strong convexity and strong concavity constants of
L̃(u, v) can be rewritten as

c1 =

(
1 +

ζ

β

γ1
(2ηα− α2mf )κAmf + (2ηα− α2lf )ρζ

)
mf ,

(17)

c2 =
ρmf

ρβ +mf
=

(
1 +

(1− β)ρ−mf

ρβ +mf

)
mf , (18)

where κA := σ̄A/σA is the condition number of AAT . Since
c1 decreases while c2 increases, both monotonically in ρ, and
there is bound to be one crossing point (given the respective
ranges), we can obtain the fastest convergence rate in terms
of ρ by setting c1 = c2. It will be achieved at ρ⋆ that satisfies

(β − 1)βζLρ2⋆ +mf (ζγ1 +MβmfκA)

+ ρ⋆β (ζγ1 +mf (Lζ +M(β − 1)κA)) = 0 ,

with L =: 2ηα − α2lf and M := 2ηα − α2mf . Further
optimization over the other parameters is intricate and will
be left for future studies.

IV. EXTENSION TO NONCONVEX-NONCONCAVE
MINIMAX PROBLEM

In this section, we study a broader class of bilinearly
coupled minimax problems:

min
x∈Rn

max
y∈Rm

L(x, y) := f(x) + yTAx− g(y) (19)

where A ∈ Rm×n is the coupling matrix while f(x) :
Rn 7→ R and g(y) : Rm 7→ R are assumed to be twice
differentiable, but not necessarily convex. We assume a
stationary point exists.

Searching for saddle/stationary points of nonconvex-
nonconcave functions is a popular goal in the machine
learning community where such objective functions are com-
mon [29], [30]. While in general locating or even approx-
imating stationary points is hard, certain special structures

of objective functions, e.g., bilinear couplings, make this
problem still tractable [28], [31], [32].

In this section, we extend the results of this paper to
solve the problem (19), in the case where L(x, y) is weakly
convex-weakly concave and smooth.

Assumption 3. f(x) ∈ C2 is mf -weakly convex and lf -
smooth, i.e., lfI ⪰ ∇2f(x) ⪰ −mfI with lf > 0 and mf >
0. Similarly, g(y) ∈ C2 is mg-weakly convex and lg-smooth,
i.e., lgI ⪰ ∇2g(y) ⪰ −mgI with lg > 0 and mg > 0.

Remark 3. Note that, the objective function L(x, y) is
convex-concave when mf = mg = 0 holds and strongly
convex-strongly concave when mf < 0 and mg < 0 hold.
This study specifically addresses the scenarios in which
mf > 0 and mg > 0 hold, thereby quantifying the degree of
nonconvexity-nonconcavity of L(x, y).

In what follows we use a pipeline similar to that in
Sections II and III, highlighting mostly the main changes
due to Assumption 3. As before, applying the change of
variables (4), we obtain the corresponding objective function
L̄(u, p) in the (u, p) space:

L̄(u, p) = f(u− αATB−1p) + pTB−TAu

− α∥ATB−1p∥2 − g(B−1p) .
(20)

Even though in general L̄(u, p) is not necessarily concave
in p, one can compute the second-order partial derivatives
(similar to the procedure to prove Lemma 4) and show that
L̄(u, p) is σA(2α−α2lf )−mg

σ̄B
-strongly concave in p whenever

σA(2α−α2lf )−mg > 0 holds. This guarantees the existence
and uniqueness of the following Moreau envelop:

L̃(u, v) = max
p∈Rm

{
L̄(u, p)− ρ

2
∥p− v∥2

}
= f(u− αATB−1p̃⋆) + (p̃⋆)TB−TAu

− α∥ATB−1p̃⋆∥2 − g(B−1p̃⋆)− ρ

2
∥p̃⋆ − v∥2 ,

(21)

where p̃⋆, a shorthand for p̃⋆(u, v), is the unique maximizer
in (21).

We will show shortly that under mild conditions, L̃(u, v)
in (21) is strongly convex-strongly concave, and thus the
corresponding saddle flow dynamics are guaranteed to con-
vergence to a unique stationary/saddle point (u⋆, v⋆). The
following theorem relates such a point with a stationary point
of L(x, y).

Theorem 9. If (u⋆, v⋆) is a stationary point of L̃(u, v), then
(u⋆, p⋆ = v⋆) is a stationary point of L̄(u, p). Moreover,
(x⋆, y⋆), as described by (9), is a stationary point of L(x, y).

The proof is provided in Appendix B.
Theorem 9 guarantees that if the saddle flow dynamics on

L̃(u, v), i.e.,

u̇ = −∇f(u− αATB−1p̃⋆)−ATB−1p̃⋆ , (22a)
v̇ = ρ(p̃⋆ − v) , (22b)

converge, then the corresponding (x⋆, y⋆) will be a stationary
point of L(x, y).
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Fig. 2: Results for a strongly convex-linear minimax problem.

We finalize this section by providing a convergence guar-
antee for (22).

Theorem 10. Let Assumptions 2 and 3 hold. Given any
positive constants α, ρ, σ̄B and σB that satisfy

1) σA(2α− α2lf )−mg > 0 and αlf ̸= 1,
2) κA := σ̄A

σA
< γ2

2α+α2mf
,

3) κB := σ̄B

σB
<

σAγ2

lg
− σ̄A(2α+α2mf )

lg ,

4) 0 < ρ <
σAγ2

σ̄Bmf
− σ̄A(2α+α2mf )

σ̄B
− lg

σB
,

where γ2 is a constant with

0 < γ2 ≤ min{(1 + αmf )
2, (1− αlf )

2} ,
then the dynamic law (22) exponentially converges to a
unique equilibrium point (u⋆, v⋆). More precisely, given
w := (u, v),

∥w(t)− w⋆∥ ≤ ∥w(0)− w⋆∥e−ct

holds with the lower-bound rate

c := min

{
−mf +

σB

σ̄B

σAγ2
σ̄A(2α+ α2mf ) + ρσB + lg

,

ρ
σA(2α− α2lf )−mg

σA(2α− α2lf ) + ρσ̄B −mg

}
> 0 .

The proof is similar to that of Theorem 2.

Remark 4. Since the original objective function L(x, y) is
nonconvex-nonconcave, there might be multiple stationary
points. However, L̃(u, v) becomes strongly convex-strongly
concave and has a unique saddle point. As a result, our
algorithm only obtains one particular stationary point of
L(x, y).

V. SIMULATION RESULTS

In this section, we numerically validate our algorithm (7)
to solve the strongly convex-linear minimax problem (1) and
compare it with some existing algorithms in the literature.
Precisely, we set n = 5 and m = 4, and adopt a quadratic
objective function f(x) = 1

2x
TQx. Here Q ∈ R5×5 is

given by Q = 5I5 + QT
0 Q0, and Q0 ∈ R5×5 is generated

from a Gaussian random matrix. Similarly, A ∈ R4×5 and
b ∈ R4 are also randomly generated. In this particular test
run, we have the strong convexity constant mf = 0.5 and the
smoothness constant lf = 0.693. The rest of the parameters
are set according to (10) and the initial point is chosen
arbitrarily.

The convergence results are shown in Fig. 2. It can be
observed that the trajectories of the saddle flow dynamics
converge rapidly to an equilibrium point in Fig. 2(a). The
distance to the equilibrium point exponentially decays, as
shown in Fig. 2(b). Our lower-bound estimate is close to
the actual rate and almost tight. Moreover, our method is
superior to many existing algorithms, including the proximal
method [20] and the primal-dual gradient dynamics (PDGD)
in [23], the convergence rates of which are limited by the
strong convexity constant mf .

VI. CONCLUSION

This paper studies bilinearly coupled minimax problems
and proposes an accelerated algorithm to locate saddle points
for strongly convex-linear objective functions. The algorithm
implements saddle flow dynamics on a transformed objective
function, obtained from two sequential steps: change-of-
variable conditioning and proximal regularization. The first
step exploits the bilinear couplings to enhance the concavity
while maintaining the strong convexity for the objective func-
tion. The second step then shifts some of the strong concavity
to enhance the strong convexity. We propose the conditions
under which our algorithm can achieve a convergence rate
beyond the stereotype limit (the strong convexity constant).
The same design strategy can also be applied to construct
a stationary point searching algorithm for a general class of
weakly convex-weakly concave functions.
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APPENDIX

A. Proof of Theorem 1

In Section III, we already have that L̃(u, v) is strongly
convex-strongly concave. As a result, the equilibrium point
of the dynamic law (7), i.e., the saddle point of L̃(u, v), is
unique and denoted as (u⋆, v⋆). According to Corollary 7,
(u⋆, v⋆) is related to (u⋆, p⋆) with v⋆ = p⋆. Meanwhile,
Corollary 5 implies that given (u⋆, p⋆), we can obtain the
unique saddle point (x⋆, y⋆) of L(x, y) by (11). Putting
everything together proves Theorem 1.

B. Proof of Theorem 9

We need to show

∇uL̃(u⋆, v⋆) = 0

∇vL̃(u⋆, v⋆) = 0
⇒ ∇xL(x⋆, y⋆) = 0

∇yL(x⋆, y⋆) = 0
(23)

with the stationary point (x⋆, y⋆) satisfying (9). Note that
any stationary point (u⋆, v⋆) of L̃(u, v) satisfies

∇uL̃(u⋆, v⋆) =∇f(u⋆ − αATB−1p̃⋆(u⋆, v⋆))

+ATB−1p̃⋆(u⋆, v⋆) = 0 , (24a)

∇vL̃(u⋆, v⋆) = ρ(p̃⋆ − v⋆) = 0 , (24b)

where p̃⋆ is the unique solution to

−αB−TA∇f(u− αATB−1p̃⋆)−B−T∇g(B−1p̃⋆)

−2αB−TAATB−1p̃⋆ +B−TAu− ρ(p̃⋆ − v) = 0 .
(25)

Combining (9), (24) and (25), we can readily show

∇xL(x⋆, y⋆) = ∇f(x⋆) +AT y⋆ = 0 ,

∇yL(x⋆, y⋆) = Ax⋆ − b = 0 .

This completes the proof.
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