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Abstract— Security issues are of significant importance for
cyber-physical systems (CPS), where the attack design is a
major concern. Most related studies on attack design implicitly
consider that the control period and detection period are the
same. However, the two periods could be different in practical
systems with remote detection such as supervisory control and
data acquisition (SCADA) systems, which could lead to new
vulnerabilities for attackers. In this paper, we consider the
design of innovation-based linear attack strategies for CPS
when the control period and detection period are inconsistent.
Specifically, we propose an attack framework that consists
of attack strategies for detection and non-detection instants
under the period discrepancy. On this basis, we design the
optimal stealthy innovation-based linear attack strategies for
state estimation and LQG control to maximize the estimation
error or control cost, respectively. Simulations are given to
demonstrate the effectiveness of the proposed attack strategies.

I. INTRODUCTION

Cyber-physical systems (CPS) refer to systems that tightly
integrate physical and software components. It enables seam-
less computation, communication, control, and physical pro-
cesses, resulting in the development of smarter, more effi-
cient, and safer automated processes. It has attracted much
attention in the past decades due to its wide applications
such as intelligent power grids [1], transportation system [2],
health care [3] and military [4]. However, CPS is vulnerable
to malicious attacks, which can result in significant financial
losses, utility disruptions, environmental damage, and even
harm to human safety. In the past years, lots of malicious
attacks on CPS happened such as the BlackEnergy attack on
the power grid in Ukraine in 2015 and a ransomware attack
on a US fuel pipeline in 2021.

Recently, CPS security issues have attracted great atten-
tion from the industry and academia, especially the system
vulnerability analysis. Stealthy attack is a kind of malicious
attack that can achieve a destructive impact on the control
system while remaining stealthy to false data detectors.
Lots of work on the stealthy attack has been done in the
past few years. For instance, optimal stealthy attack for
remote estimation in the sense of generating maximal error
covariance has been investigated [5]–[7]. Specifically, Guo et
al. [5] proposed an innovation-based linear attack to achieve
the worst performance degradation while keeping stealthy
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to χ2 detector for remote estimation. Li et al. [6] consider
a group of reliable and unreliable sensors existing in the
scenario of remote estimation, and by using the disclosure
resources of reliable sensors and disruption resources of
unreliable ones, a stealthy attack strategy is proposed. Some
works study stealthy attacks for closed-loop systems [8]–
[10]. For instance, Shang et al. [10] analyzed the impact on
closed-loop LQG systems caused by a generic attack model
for two different stealthiness constraints.

Despite the tremendously advanced results of the above
works, almost all of them consider that the detection period
is equal to the control period. However, in practical systems
e.g., the supervisory control and data acquisition (SCADA)
system, the discrepancy between the detection period and
control period could exist due to practical limitations such
as the discrepancy of communication rate or bandwidth
constraints. A sketch of SCADA is shown in Fig. 1. The
remote control center in the SCADA system periodically
communicates with the local programmable logic controller
(PLC). Usually, the false data detector is placed in the
remote control center. The communication period between
the control center and PLC is usually longer than that
between the PLC and controlled plant [11]. This leads to the
possible situation where attacks are out of the monitoring
of false data detectors. The period discrepancy incurs new
vulnerabilities that malicious attackers can utilize to achieve
a more destructive impact while remaining undetected. For
designing defense strategies against such attacks, it needs
to investigate the system vulnerability under such period
discrepancy.

Fig. 1. A sketch of SCADA

To address the problem, we propose optimal innovation-
based linear attack strategies for state estimation and LQG
control. The main contributions of this paper are summarized
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as follows.
1) We propose an attack framework that consists of two

attack modes for detection and non-detection time
while considering the discrepancy between the control
period and the remote detection period.

2) We present an optimal stealthy innovation-based lin-
ear attack strategy for state estimation under periodic
detection, which maximizes the state estimation error
while remaining stealthy.

3) We characterize the estimation error covariance under
stealthy linear attack considering the periodic detec-
tion. On this basis, an optimal stealthy innovation-
based linear attack strategy that maximizes the LQG
controller cost with periodic detection is proposed.

The rest of the paper is organized as follows. Section II
formulates the problem. The adversary model is given in
section III. Section IV and V present the optimal attack strat-
egy for estimation and LQG control, respectively. Simulation
results are given in Section VI. Finally, we conclude our work
in Section VII.

Notations: Denote the sets of natural numbers and real
numbers as N and R, respectively. N+ represents set of
positive integers. Rn represents n-dimensional Euclidean
space. {uk}k∈N denotes the sequence {u0, u1, u2, . . .}. Sn+
and Sn++ denote the sets of n×n positive semi-definite and
positive definite matrices, respectively. Symmetrical matrices
X ≥ 0 (X > 0) represent X ∈ Sn+ (X ∈ Sn++). X ≥ Y
if X − Y ∈ Sn+. N (µ,Σ) denotes Gaussian distribution
with mean µ and covariance matrix Σ. For matrix X , XT

and tr(X) represent transposition and trace, respectively.
For functions f1 and f2 with appropriate domain, f1 ◦ f2(·)
represents function composition f1(f2(·)).

II. PROBLEM FORMULATION

The system architecture is shown in Fig. 2, which contains
classic components of a closed-loop LQG control system and
a remote periodic detector.

Fig. 2. System Architecture

A. System Model

Consider a discrete-time LTI system

xk+1 = Axk +Buk + wk, (1)
yk = Cxk + vk. (2)

where xk ∈ Rn is the system state, yk ∈ Rm is the system
output, uk ∈ Rq is the control input. The terms wk ∈ Rn

and vk ∈ Rm represent process and measurement noise
which are independent and identically distributed Gaussian
with zero mean and covariance Q ∈ Sn+ and R ∈ Sm++,
respectively. The initial state x0 is Gaussian with zero mean
and covariance Π0 ∈ Sn+. Note that wk, vk, and x0 are
independent of each other. A is asymptotically stable. The
pair (A,C) is detectable and (A,

√
Q) is stabilizable.

B. Estimator

The Kalman filter is employed as the estimator to estimate
the state of the process. It recurs as follows.

x̂−
k = Ax̂k−1 +Buk−1 (3)

x̂k = x̂−
k +Kkzk (4)

P−
k = APk−1A

T +Q (5)

Kk = P−
k CT (CP−

k CT +R)−1 (6)

Pk = (I −KkC)P−
k (7)

where x̂−
k and x̂k denote the a priori and a posteriori

minimum mean squared error (MMSE) estimates of xk,
respectively. P−

k and Pk denote the corresponding error
covariance, respectively. zk = yk−Cx̂−

k is called innovation.
The recursion starts from x̂−

0 = 0 and P−
0 = Π0. It is well

known that the Kalman filter converges exponentially fast
from any initial condition [12]. The steady value of P−

k ,
denoted as P , can be represented by P ≜ limk→∞ P−

k ,
where P is the unique semi-definite solution of A[X −
XCT (CXCT + R)−1CX]AT + Q = X . To simplify our
subsequent analysis, we assume the estimator starts from
steady state Π0 = P , and adopts the fixed gain K =
PCT (CPCT +R)−1.

C. LQG Controller

The controller aims to obtain sequence {uk}k∈N to mini-
mize the following control cost.

J = lim
N→∞

1

N
E

[
N−1∑
i=0

(xT
i Wxi + uT

i Uui)

]
, (8)

where W ∈ Sn+ and U ∈ Sq++ are the weight matrices.
With dynamic programming [13], the optimal control input
is uk = −Lx̂k where L is determined by

L = (BTSB + U)−1BTSA (9)

S = ATSA+W −ATSB(BTSB + U)−1BTSA. (10)

D. Remote Periodic False Data Detector

This paper considers the periodic detector which period-
ically monitors the process. Denote detection and control
period as Td and Tc, respectively. Assume Td = hTc, where
h ∈ N+ is predetermined. W.l.o.g., assume detection instants
are at k = lTd for all l ∈ N.

The innovation sequence zk is a white Gaussian process
with covariance P = CPCT + R. The paper employs
χ2 detector, which uses the Chi-Squared test to determine
whether the covariance of a variable exceeds a normal value
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or not. The detection criteria is given by

glTd
= zTjTd

P−1zjTd

H0

≶
H1

δ (11)

where δ is the threshold predetermined by a normal false
alarm rate. Note that the term P−1 in (11) normalizes the
square of the steady innovation. The null hypothesis H0 and
alternative hypothesis H1 represent that the process operates
in a normal state and is compromised by attacks, respectively.
glTd

follows a χ2 distribution with m degrees of freedom,
and an alarm is triggered if glTd

is greater than δ.

E. Motivating Example

Next, we show attackers can utilize the discrepancy be-
tween the control period and the detection period to achieve
a more destructive impact while remaining undetected.

Consider the system architecture in Fig. 2. Let n = 1, m =
1, A = 0.8, C = 1.2, Q = 1 and R = 1, detection period
Td = 10, and control period Tc = 1. Simulation time interval
is [0, 120], and attacks happen during time inteval [10, 100].
Consider attack strategy 1: z̃k = −zk, which is proved to be
the optimal stealthy linear attack for state estimation case [5].
Attack strategy 2: z̃k = −zk when k = lTd for all integer
l ∈ {i ∈ N : 1 ≤ i ≤ 10}, and z̃k = −2zk when k ̸= lTd for
any k in the interval [10, 100]. Note that attack strategy 2 is
also stealthy. The initial condition is x̂−

0 = 0 and P−
0 = 0.

The simulation result is shown in Fig 3. Pk and P̃k represents
the estimation error variance under attack strategies 1 and 2,
respectively. Fig 3 shows that the attack strategy 2 achieves
a more destructive impact than attack strategy 1.
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Fig. 3. Estimation error covariance under attack strategy 1 and 2

F. Problem of Interest

Considering the system model, the estimator, the LQG
controller, and the periodic detector given in Section II, the
main problems we are interested in are as follows.

1) What is the most destructive impact that the attacker
can achieve on the system with periodic detection?

2) What are the optimal attack strategies for state estima-
tion and LQG control with periodic detection?

III. ADVERSARY MODEL

Knowledge: the attacker knows A,B,C,Q,R,K,W,U
and the detection instants, and has access to the output signal
of the sensor and input signal received by the process.

Capabilities: the attacker can modify the output signal
transmitted between the sensor and the estimator.

Assume the system is compromised by the attacks from
instant ka ≥ 0, and the attacks are continuously added to the
system. The attacker makes the following malicious change:

ỹk 7→ ỹEk (12)

where ỹk denotes the sensor measurement of the compro-
mised system, and ỹEk is the manipulated output of the
attacker. At k = 0, (12) becomes y0 7→ ỹE0, where y0 is
the output of the nominal system. With attack (12), the state
estimation equations in the estimator become

x̃−
k = Ax̃k−1 +Bũk−1 (13)

x̃k = x̃−
k +Kz̃k, (14)

where x̃−
k and x̃k denote the a priori and a posteriori state

estimates of the compromised system, respectively. Because
x̃−
0 is not corrupted, we have x̃−

0 = x̂−
0 . z̃k is the affected

innovation given by

z̃k = ỹEk − Cx̃−
k . (15)

ũk is the control input of the compromised system given by
ũk = −Lx̃k. Denote the state of the compromised system at
instant k as x∗

k. It recurs as follows.

x∗
k+1 = Ax∗

k +Bũk + wk, (16)

which starts from x∗
0 = x0.

Define the following a priori and a posteriori estimates:

x̆−
k = E[x∗

k|ỹ0:k−1, ũ0:k−1],

x̆k = E[x∗
k|ỹ0:k, ũ0:k−1].

They recur as follows

x̆−
k = Ax̆k−1 +Bũk−1 (17)

x̆k = x̆−
k +K(ỹk − Cx̆−

k ) (18)

with x̆−
0 = x̂−

0 . z̆k = ỹk − Cx̆−
k is the innovation.

Note that modifying ỹk is equivalent to modifying z̆k
from [14], and thus we design attack strategy based on the
innovation sequance z̆k in the subsequent discusstion. The
paper considers in this initial study the linear attack strategies
where the attacker makes an affine transformation of z̆k:

z̃k = Tkz̆k + bk (19)

where Tk ∈ Rm×m, and bk ∼ N (0,Lk) is a Gaussian
random variable independent of z̆k.

We consider different attack parameters in detection and
non-detection instants:

Tk = T ,Lk = L for k ∈ {lTd : l ∈ N}, (20)
Tk = T,Lk = L for k ∈ N \ {lTd : l ∈ N}, (21)

where T , T ∈ Rm×m, and L,L are positive definite matrices.
Reasonably, we consider that the attacker needs to satisfy

the following energy constraint because its energy is limited.

E[z̃Tk z̃k] ≤ η, (22)

where η is a predetermined constant representing the upper
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bound of the energy of the attacker.

IV. OPTIMAL LINEAR ATTACK ON STATE ESTIMATION

This section designs the optimal linear attack for state
estimation in the sense of generating the maximal trace of
estimation error covariance. We first provide the estimation
error covariance evolution in the compromised estimator for
non-detection instants.

A. Error Covariance Evolution for Non-detection Instants
Denote estimation error covariance of the estimator with

attack (19) as P̃k. The error covariance evolution for non-
detection instants is shown in the following lemma.

Lemma 1: Consider the system modeled by (1)–(2), the
estimator (3)–(7) and the attack (19)–(21), for non-detection
instants k ∈ N \ {lTd : l ∈ N}, P̃k follows the recursion

P̃k =AP̃k−1A
T +Q+KΣ̃KT

−KTCP − PCTTTKT (23)

where Σ̃ = TΣ−1TT + L and Σ = (CPCT +R)−1.
The proof of the lemma is similar to [14, Lemma 1], and

omitted due to space constraints.

B. Optimal Attack Design
We first give the attack feasibility constraint. Since x∗

0 =
x0 and x̆−

0 = x̂−
0 , we have E[(x∗

0 − x̆−
0 )(x

∗
0 − x̆−

0 )
T ] = P .

Thus, E[(x∗
k − x̆−

k )(x
∗
k − x̆−

k )
T ] = P for all k > 0. For

k ∈ {lTd : l ∈ N}, the covariance of z̃k is TPT
T
+L. Thus,

for the linear attack to be undetected, the constraint

P = TPT
T
+ L (24)

need to be satisfied from (11). For non-detection instants
k ∈ N \ {lTd : l ∈ N}, the linear attack is not necessary to
meet the stealth requirement. On this basis, we present the
optimal attack strategy in the following theorem.

Theorem 1: Consider the system modeled by (1)–(2), the
estimator (3)–(7) and the attack strategy (19)–(21) with
energy constraint (22), the optimal attack parameters at
detection instants are T = −I , L = 0. At non-detection
instants, the optimal attack parameters are given by the
following optimization problem.

min
T,Σ̃∈Rm×m

− tr(KΣ̃KT ) + 2 tr(KTCP )

s.t. tr(Σ̃) ≤ η

Σ̃ ≥ 0[
Σ TT

T Σ̃

]
≥ 0

Proof: Because the detector only uses the innovation
sequence to detect anomalies, the attack parameters for de-
tection and non-detection instants can be designed separately.
From the existing work [5], the optimal linear attack at
detection instants is T = −I and L = 0.

Next, we analyze the optimal attack parameters for those
instants of non-detection, i.e., k ∈ N \ {lTd : l ∈ N}. From
the covariance evolution (23), the trace of P̃k is

tr(P̃k) = tr(AP̃k−1A
T +Q) + tr(KΣ̃KT )− 2 tr(KTCP ).

Thus, maximizing tr(P̃k) is equivalent to minimizing the
term − tr(KΣ̃KT ) + 2 tr(KTCP ).

The energy constraint (22) can be transformed as follows.

E[(z̃k)T z̃k] = E[(T z̆k + bk)
T (T z̆k + bk)] = tr(Σ̃) ≤ η.

It is clear that Σ̃ = TΣ−1TT + L ≥ 0. Since L = Σ̃ −
TΣ−1TT ≥ 0, the constraint can be described by linear

matrix inequality using Schur complement
[
Σ TT

T Σ̃

]
≥ 0.

After the optimization problem has been solved, the L is
given by L = Σ̃− TΣ−1TT . This ends the proof.

Remark 1: The optimization problem in Theorem 1 is an
SDP problem, which can be solved by CVX toolbox [15].

V. OPTIMAL LINEAR ATTACK ON LQG CONTROLLER

This section analyzes the maximal impact of the linear
attack on the LQG controller. The objective of the attacker
is to maximize the infinite-horizon LQG controller cost:

J̃ = lim
N→∞

1

N
E

[
N−1∑
i=0

(
(x∗

i )
TWx∗

i + ũT
i Uũi

)]
A. Performance Index with Attack

Compared with the evolution of estimation error covari-
ance at non-detection instants, the stealthiness constraint (24)
needs to be satisfied at detection instants. From (23), (24) and
K = PCTΣ, the evolution of estimation error covariance at
detection instants is given as

P̃k = AP̃k−1A
T +Q+ PCT (Σ− T

T
Σ− ΣT )CP (25)

for k ∈ {lTd : l ∈ N}.
For notational brevity, denote the evolution of state esti-

mation error covariance (25) and (23) as

P̃k = f(P̃k−1, T ,L) for k ∈ {lTd : l ∈ N}, (26)

P̃k = g(P̃k−1, T,L) for k ∈ N \ {lTd : l ∈ N}, (27)

respectively, where f and g are proper mapping functions.
Denote gk+1(·, T,L) = g[gk(·, T,L), T,L] for any integer
k ∈ N+. According to (26)–(27), P̃k is affected by P̃k−1

and attack parameters at both detection and non-detection
instants. Thus, P̃k for all k ∈ N can be obtained by the
combination of (26) and (27).

We next transform the LQG controller cost J̃ , by Lemmas
2–4, into a form that is convenient to be analyzed.

Lemma 2: The LQG controller cost under the linear attack
(19)–(21) is given as follows.

J̃ = tr(SQ) + lim
N→∞

1

N
tr

[
N−1∑
k=0

(
W +ATSA− S

)
P̃k

]
(28)

Proof: According to [10, Lemma 1], for the infinite-
horizon LQG controller cost, we have

J̃ = tr(SQ) + lim
N→∞

1

N
tr

[
N−1∑
k=0

ATSBLP̃k

]
,

and (28) holds due to (9)–(10).
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Lemma 3: Consider the system modeled by (1)–(2), the
estimator (3)–(7) and the attack (19)–(21), the estimation
error covariance evolves periodically as k goes to infinity:

lim
k→∞

P̃k = lim
k→∞

P̃k+Td
. (29)

Proof: In the proof, without loss of generality, we
consider ka = 0, and the other case that ka > 0 can be
analyzed similarly.

Since P̃i+nTd
= gi(P̃nTd

, T,L) for any integer i ∈ (0, Td)
and any n ∈ N, without loss of generality, we only analyze
the convergence of sequence {P̃ (n)}n∈N ≜ {P̃nTd

: n ∈ N}.
And we have

P̃ (0) = P̃0,

P̃ (n) = f ◦ gTd−1[P̃ (n− 1), T,L]

for n ∈ N+, where P̃0 = P + PCT (Σ − T
T
Σ − ΣT )CP

according to (25). From (23) and (25), we have

P̃ (n) = ATd P̃ (n− 1)(AT )Td +H,

where H =
∑Td−1

i=1 Ai(Q + KΣ̃KT − KTCP −
PCTTTKT )(AT )i + Q + PCT (Σ − TΣ − ΣT )CP . Note
that H and P̃0 are constant matrices for any predetermined
attack parameters.

We next prove the sequence {P̃ (n)}n∈N converges. De-
note P̃ (n) with n going to infinity as P̃ (∞).

P̃ (∞) = lim
n→∞

P̃ (n)

= lim
n→∞

AnTd P̃0(A
T )nTd +

∞∑
i=0

AiTdH(AT )iTd

=

∞∑
i=0

AiTdH(AT )iTd

where we use the fact that A is asymptotically stable in the
last equality. Then, according to [12, Lemma 2.1], P̃ (∞)
exists and is finite. Multiply ATd and (AT )Td on the left and
right side of P̃ (∞), we have

ATd P̃ (∞)(AT )Td = P̃ (∞)−H. (30)

Based on this we will prove the uniqueness of P̃ (∞).
Assume P̃ ′(∞) is another solution of equation (30).

P̃ ′(∞) = ATd P̃ ′(∞)(AT )Td +H.

Subtract P̃ ′(∞) from P̃ (∞), yields

P̃ (∞)− P̃ ′(∞) = ATd [P̃ (∞)− P̃ ′(∞)](AT )Td

from which for all k

A(k−1)Td [P̃ (∞)− P̃ ′(∞)](AT )(k−1)Td

= AkTd [P̃ (∞)− P̃ ′(∞)](AT )kTd .

Adding such relations,

P̃ (∞)− P̃ ′(∞) = AkTd [P̃ (∞)− P̃ ′(∞)](AT )kTd .

It follows that P̃ (∞) = P̃ ′(∞) as k goes to infinity. The
uniqueness of P̃ (∞) is proved. Thus the convergence of

{P̃ (n)}n∈N is proved, and this guarantees that (29) holds,
which ends the proof.

We next transform the LQG controller cost with the attack
in infinite-horizon into that in a detection period Td. From
Lemma 3 and the boundedness of the finite iterations of (23),{∑Td−1

j=0 P̃k+j

}
k∈N

is convergent. Furthermore, define S =

W +ATSA− S, and from (28), we have

J̃ = tr(SQ) + lim
v→∞

1

vTd
tr

 v∑
i=0

S

Td−1∑
j=0

P̃iTd+j


= tr(SQ) +

1

Td
lim
v→∞

tr

S

Td−1∑
j=0

P̃vTd+j


= tr(SQ) +

1

Td
tr

{
S

[
P̃ (∞) +

Td−1∑
i=1

gi
(
P̃ (∞), T,L

)]}
(31)

where we use Stolz–Cesàro theorem in the second equality.

B. Optimal Attack Design

Define G(k) = gk(P̃ (∞), T,L) and G′(k) =
gk(P̃ (∞), T ′,L′), where T ′ ∈ Rm×m and L′ ∈ Rm×m are
predetermined matrices. Besides, L′ is positive semi-definite.
Define ∆G(k) = G(k)−G′(k) for k ∈ N.

Lemma 4: If the initial condition ∆G(1) > 0, then
∆G(k) > 0 for all k ∈ N+.

Next, we provide the optimal linear attack strategy for
LQG control by the following theorem.

Theorem 2: Consider the system modeled by (1)–(2), the
estimator (3)–(7) and the attack strategy (19)–(21) with
energy constraint (22), the optimal attack parameters at
detection instants are T = −I , L = 0, At non-detection
instants, the optimal attack parameters are given by the
following optimization problem.

min
T,Σ̃∈Rm×m

tr[−S(KΣ̃KT −KTCP − PCTTTKT )]

s.t. tr(Σ̃) ≤ η

Σ̃ ≥ 0[
Σ TT

T Σ̃

]
≥ 0

Due to the space limitations, the proofs of Lemma 4 and
Theorem 2 are given in the technical report [16].

Remark 2: The optimization problem in Theorem 2 is an
SDP problem, which can be solved by CVX toolbox [15].

VI. SIMULATION RESULTS

In this section, we present simulation examples to validate
the result of this paper. Consider a system with parameters

A =

[
0.7 0.2
0.05 0.64

]
, B =

[
1
1

]
, C =

[
0.5 −0.8
0 0.7

]
,

Q =

[
0.5 0
0 0.7

]
, R =

[
1 0
0 0.8

]
,W =

[
1 0
0 1

]
, U = 1.

Let detection period Td = 10, control period Tc = 1, and
energy threshold η = 4.
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A. Estimation under Attack

Consider the optimal linear attack to the estimation. The
optimal attack parameters given by Theorem 1 are

T =

[
−0.6115 0.4665
0.4665 −1.2552

]
,L = 0, T = −I,L = 0. (32)

The simulation results of the estimation error covariance
under different attacks are shown in Fig. 4(a). The simulation
iterates from P−

0 = 0 and x̂−
0 = 0. During time [20, 60] and

[80, 120], the system is attacked. We compare our results
with the optimal linear attack for remote estimation [5] where
attack parameters are Tk = −I and Lk = 0 for all k ∈ N,
and the normal estimation error covariance of the Kalman
filter. Despite the advanced result given by [5], it can not
achieve optimality with periodic detection.

We use Pk, P̃ 1
k and P̃ 2

k to represent the estimation error
covariance of the normal Kalman filter, under the linear
attack strategy given in [5] and under attack parameters
given in (32), respectively. The results for empirical error
covariance in Fig. 4(a) are averaged over 10000 Monte Carlo
simulations. When the attacker begins compromising the
system at instant 20 and 80, P̃ 1

k and P̃ 2
k increase, and P̃ 2

k is
larger than P̃ 1

k , which shows that the attack strategy proposed
in this paper achieves maximal error covariance.

B. LQG Control under Attack

Consider the optimal linear attack to LQG control. The
optimal attack parameters given by Theorem 2 are

T =

[
−0.0003 0.0212
0.0212 −1.7828

]
,L = 0, T = −I,L = 0. (33)

The simulation time interval is [0, 300]. The system is
compromised from the initial instant 0, and the simulation
result is shown in Fig. 4(b). The longitudinal coordinate
represents J(N) = 1

N

[∑N−1
i=0 (xT

i Wxi + uT
i Uui)

]
. As N

goes to infinity, J(N) converges to the infinite-horizon LQG
controller cost. The results in Fig. 4(b) are averaged over
10000 Monte Carlo simulations. The blue circle-mark line,
the pink square-mark line, and the red diamond-mark line
represent J(N) of the normal system, under linear attack
with Tk = −I , Lk = 0 for all k ∈ N, and under linear attack
with parameters in (33), respectively. We can see from Fig.
4(b) that the red diamond-mark line is larger than other lines,
which shows the optimal attack strategy to LQG control
given in this paper leads to maximal LQG controller cost.
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Fig. 4. Simulation results

VII. CONCLUSION

This paper considers the design of optimal stealthy
innovation-based linear attack to state estimation and LQG
control in CPS where a remote periodic detector is employed
to detect anomalies. For state estimation, we illustrate the
attack strategy under instants of detection and non-detection
which can be designed separately. Then, we give an op-
timal stealthy linear attack strategy by solving a convex
optimization problem. For LQG control, we first rigorously
prove that the LQG cost can be analyzed within a detection
period as time goes to infinity. Further, we prove that the
attack strategy at detection instants is the same as that for
state estimation. At non-detection instants, we formulate
an optimization problem to obtain the attack parameters.
Simulations are provided to show the effectiveness of the
proposed optimal attack strategies. Future directions include
designing defense strategies for the proposed attacks.
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