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Abstract— Mean Field Game equilibria are based on the
assumption of instantaneous interactions within a population of
interchangeable agents, where each agent’s impact diminishes
as the population size increases. However, in practical scenarios,
agents may not continuously observe the overall population
state. Instead, in some situations, agents observe the empirical
mean state only at discrete time intervals. This observation
structure likely influences the nature of Nash equilibria that
agents can attain. This paper characterizes the best responses
of agents under such discrete observation conditions. Suffi-
cient conditions for the existence of a so-called Markov Nash
equilibrium within a finite population of agents are presented.
Additionally, the difference in cost due to discrete versus
continuous mean observations is evaluated.

I. INTRODUCTION

Information shapes in critical ways the decision-making
process in multi-agent systems. In contexts such as Mean
Field Games (MFGs) and aggregative games, based on
access to aggregate information established to be sufficient,
agents anticipate the statistical characteristics of the popula-
tion to shape their control policies and navigate effectively.
The assumption of sufficient aggregate information access
underlies much of the existing MFG literature (See e.g. [1]–
[5]). Several works do address situations of partial informa-
tion within this framework. Thus [6] analyzes the impact
on equilibrium of partial own state observability by agents,
while [7]–[9] tackle various situations of partial observability
within the so-called major-minor agent MFG framework.
The papers address linear and nonlinear state models, partial
observability by minor agents of their own state and that
of the major agent state, as well as partial observability
of the major agent state by itself. In addition, [8], [10]
establish ε-Nash equilibria for a partially observed major
agent. Paper [11] explores MFG with nonlinear dynamics
cost functions and addresses a problem with partial state
observations, leveraging nonlinear filtering theory and the
separation principle. [12], [13] study major-minor agents
MFGs with partial observability for all populations. Finally,
[14] tackles the partial observability situation for MFGs in
discrete time for a risk-sensitive cost structure.

The studies mentioned above generally assume that agents
can observe a subset of the population, such as their neigh-
bors, while those farther away remain unobservable. They
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Canada. Emails: farid.rajabali@polymtl.ca,
roland.malhame@polymtl.ca and
sadegh.bolouki@polymtl.ca

then attempt to infer information about the unobservable
portion based on the data from the visible subset.

In contrast, the objective of the current work is to in-
vestigate scenarios where agents only have access to the
empirical mean state of the population at discrete time
intervals. This setting is motivated by practical situations
such as the movement of individuals within a crowd or the
dynamics of vehicles in traffic, where continuous observation
of the global state is not feasible. Under these conditions,
the agents’ control policies are determined by a dynamic
programming analysis that accounts for the discrete obser-
vation structure. This paper characterizes the best response
policies and identifies the conditions under which a Nash
equilibrium (NE) may arise in a finite population setting.
The analysis, conducted within a linear quadratic stochastic
mean field framework over a finite time horizon, involves
coupled dynamic programs that incorporate both continuous
time dynamics and discrete time observations. The results
provide insights into the impact of discrete observations on
the expected cost incurred by agents due to the inability to
continuously observe the empirical mean state.

The research contributions can be outlined as follows:
1) Establishing best response policies for agents under

discrete, periodic information sharing, amidst continu-
ous agent dynamics.

2) Quantifying performance degradation, termed as ”re-
gret,” for periodic observation of empirical mean every
∆t seconds and demonstrating a linear growth rate of
regret.

3) Establishing the convergence of the specified game
with partial observability to their counterparts with
complete observation, when the population tends to
infinity.

The rest of the paper is organized as follows: In Section
2, we discuss the formulation of the game. In Section 3, we
use stochastic DP to find the best response policy for the
problem. In Section 4, we calculate the loss of performance
due to partial observability, referred to as regret, and show
that the regret has a linear growth rate.

II. AN AGGREGATIVE GAME WITH SAMPLED EMPIRICAL
MEAN OBSERVATIONS

Consider a non-cooperative game in a population of N
agents that are uniform and have scalar dynamics. The
dynamics equation for agent i is written in the following
as a linear and stochastic differential equation.

dxi(t) =
(
axi(t) + bui(t)

)
dt+ σdwi(t), t ≥ 0 (1)
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In (1), xi(t) is the state of agent i and ui(t) is the control
input or action of agent i. Coefficients a, b are in R and σ is
a non-negative finite value. Noises wi(t), i = 1, 2, . . . , N are
mutually-independent zero-mean Wiener processes that are
also independent from initial agent states. The agents’ initial
conditions are assumed to be random with finite variance.
The agents are assumed to have access to the global empirical
mean state x̄N = 1

N

∑N
i=1 xi(t) only at discrete-time instants

tj = t0 + j∆t, j = 0, . . . , (T/∆t) = n, where T is the time
horizon and ∆t is the inter-observation time interval, whereas
they observe continuously their own state xi(t).

Agents wish to follow a target ϕ(x̄N (t)) = Γx̄N (t) + η,
with Γ ∈ R+, η ∈ R, while minimizing their control effort.
This is captured by the following cost function, with q, r > 0,
h ≥ 0, i = 1, . . . , N :

Ji = E

[∫ T

t0

[
q(xi(t)− ϕ(x̄N (t)))2 + ru2i (t)

]
dt+

h
(
xi(T )− ϕ(x̄N (T ))

)2]
(2)

Cost function (2) can represent an energy function agents
consume while attempting to follow the population mean.
Note that an analysis of the game in equations (1), (2)
is carried out in [1] under the assumption that x̄N (t) is
continuously observed, while sufficient Riccati equations-
related conditions for existence of a NE are derived. Here
we wish to identify a set of agent ”Markov” control strate-
gies (i.e. relying on the latest agent observations), leading
to a potential NE under the described partial information
structure. We denote as Xi(t) the pair (xi(t), x̄N (t)).

III. PREDICTOR-BASED DYNAMIC PROGRAMMING
EQUATIONS

A. Problem Formulation

Definition 1. We define the Markov control strategies u∗i for
i = 1, . . . , N as a Nash equilibrium of the game, if given
u∗−i, the vector of Markov strategies of agents other than i,
agent i has no incentive to unilaterally change its strategy
since doing so, cannot lead to a lower cost.

Recall that a Markov strategy for an agent has been defined
as a feedback strategy that depends on time, the current state
of the agent and the most recent empirical mean observation,
i.e.:

ui = fi
(
xi(t), x̄

N (tj), t
)
, t ∈ [tj , tj+1] (3)

In order to determine this ui, we first define the following
value function for i = 1, . . . , N , j = 0, . . . , n and t ∈ [tj , T ]:

Vj,i(t,Xi) = inf
ui∈Mi

E
[ ∫ T

t

(
q(xi(τ)− Γx̄N (τ)− η)2+

ru2i (τ)
)
dτ + h(xi(T )− Γx̄N (T )− η)2|x̄N (tj)

]
(4)

And the predictor:

ˆ̄xNj,i(t) = E[x̄N (t)|x̄N (tj), xi(t)] t ∈ [tj , T ] (5)

where in (4), Mi is the admissible set of Markov control
policies of agent i.

Assumption 1. To keep the analysis simple, we assume that
N is large enough to neglect the impact of ui(t) on x̄N (t).
Thus when computing the best response in the context of the
game, agent i treats x̄N (t) as a known value and its predictor,
ˆ̄xNj,i(t), based on the most recent observations of empirical
mean as deterministic although a priori unknown.

Remark 1. Note that since agent i is the only one observing
its own state xi(t), its predictor of x̄N (t) in (5) will be
slightly different from that of other agents k ̸= i. But based
on Assumption 1, we neglect the local effects. Thus, herein,
we shall assume that ˆ̄xNj,i(t) ≡ ˆ̄xNj (t), ∀i = 1, . . . , N where:

ˆ̄xNj (t) = E[x̄N (t)|x̄N (tj)], t ∈ [tj , T ] (6)

Also, for simplicity, and without loss of generality, we
shall assume η = 0. We define the prediction error for t ∈
[tj , tj+1) as follows:

errj(t) = x̄N (t)− ˆ̄xNj (t) (7)

Since x̄N (t) is not observable to agents continuously, we
introduce a modified cost function Ṽj,i(t,Xi) for t ∈ [tj , T )
that will be shown to result in the same control policy. This
is stated in the lemma following definition (8) below.

Ṽj,i(t,Xi) = inf
ui∈Mi

E

[∫ T

t

(
q(xi(τ)− Γˆ̄xNj (τ))2+

ru2i (τ)
)
dτ + h(xi(T )− Γx̄N (T ))2|x̄N (tj)

]
(8)

Lemma 1. The control policy that achieves the minimum
cost to go Ṽj,i(t,Xi) given x̄N (tj) is identical to the one
that achieves the minimum cost to go Vj,i(t,Xi).

Proof: By centering x̄N (τ) around ˆ̄xNj (τ), the optimal
cost to go in (4) can be expressed as follows:

Vj,i(t,Xi) = inf
ui∈Mi

E
[ ∫ T

t

(
q(xi(τ)− Γx̄N (τ) + Γˆ̄xN

j (t)−

Γˆ̄xN
j (t)

)2
+ ru2

i (τ)
)
dτ + h

(
xi(T )− Γx̄N (T )

)2∣∣x̄N (tj)
]
=

inf
ui∈Mi

E
[ ∫ T

t

(
q(xi(τ)− Γˆ̄xN

j (τ))2 + qΓ2(ˆ̄xN
j (τ)− x̄N (τ))2

+ru2
i (τ)

)
dτ + h

(
xi(T )− Γx̄N (T )

)2∣∣x̄N (tj)
]

(9)

In (9), we have used the orthogonality of the predic-
tion error, errj(τ), and x̄N (τ). Furthermore, having ne-
glected the influence of xi(τ) on x̄N (τ) and thus ˆ̄xNj (τ),
E[xi(τ)errj(τ)|xN (tj)] = 0. Note that normally the predic-
tor ˆ̄xNj (τ) would have factored in all information available
to agent i at time τ including xi(τ) and orthogonality would
hold anyway (See Ch. 3 of [15]). Now the optimization in
(9) requires some interpretation. Indeed, if one considers
(as in MFG types of arguments) that agents other than i
have frozen their control policy, then, in accordance with
Assumption 1, they would be responsible for producing the
trajectory of the estimator ˆ̄xNj (τ), while the estimation error
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variance, E[err2j (τ)|xN (tj)], would be only a function of
time, independent of the specific control exerted by agent
i. In other words, the trajectory of x̄N (t) produced by the
population and its predictor ˆ̄xNj (t) based on the the latest
empirical mean observation, are independent from agent i’s
control policy. In that respect, the best response policy, u∗i ,
for agent i would be the same if one were to use the modified
optimal cost to go function Ṽj,i(t,Xi). ■

Given the hybrid nature of observations, the construction
of the best response policy for agent i requires two steps:

1. Discrete Component of the DP Equation: We shall
write DP equation for Ṽj,i only at sampling times tj for
t ∈ [tj , tj+1], with appropriate boundary conditions.

Ṽj,i(t,Xi) = inf
ui∈Mi

E

[∫ tj+1

t

(
q
(
xi(τ)− Γˆ̄xNj (τ)

)2
+

ru2i (τ)
)
dτ + Ṽj+1,i (tj+1, Xi)

∣∣x̄N (tj)

]
(10)

Boundary conditions at t = T for Ṽn,i, and at tj+1 for
Ṽj,i, j = 0, .., n− 1 can be written as follows:

Ṽn,i(T,Xi) = h
(
xi(T )− Γx̄N (T )

)2
(11)

Ṽj,i (tj+1, Xi) = E
[
Ṽj+1,i (tj+1, Xi)

∣∣∣x̄N (tj)
]

(12)

2. Interval-Wise Continuous Component Analysis: We
shall write the Hamilton-Jacobi-Bellman (HJB) equation be-
tween sampling intervals as a tracking problem since ˆ̄xNj (t)
is treated as a deterministic, albeit unknown trajectory. As
written in (12) the values of Ṽj,i at the right-hand side of
the intervals act as boundary conditions for the continuous
interval-wise solution. By solving these equations, we derive
the structure of the predictor-dependent best response policy
for agent i. This analysis eventually leads to the dynamic
equation for the predictor and the expression of the best
response policy in terms of xi and the empirical mean
observation.

B. Interval-Wise Application of Dynamic Programming
Equations

1) Finding Control Policy for [tn−1, T ): The solution of
the DP equation will proceed backwards, starting from the
time interval [tn−1, T ). A deterministic tracking trajectory
ˆ̄xNj (t), t ∈ [tn−1, T ) is hypothesized, and by Lemma 1, to
compute the best response policy, one needs to solve problem
(10). At this point, one writes the following HJB equation

for Ṽn−1,i(t,Xi) to find the optimal policy for t ∈ [tn−1, T ).

0 =
∂Ṽn−1,i

∂t
+min

ui

[
∂Ṽn−1,i

∂xi
(axi + bui)+

[
q
(
xi − Γˆ̄xNn−1

)2
+ ru2i

]
+
1

2
σ2 ∂

2Ṽn−1,i

∂x2i

]
(13)

We use (11) to develop the boundary condition at time T for
the HJB equation on [tn−1, T ).

Ṽn−1,i (T,Xi) = E
[
Ṽn,i (T,Xi)

∣∣∣x̄N (tn−1)
]

= E
[
h
(
xi(T )− Γx̄N (T )

)2∣∣∣x̄N (tn−1)
]

= E
[
h
(
xi(T )− Γ(x̄N (T ) + ˆ̄xNn−1(T )− ˆ̄xNn−1(T ))

)2]
= h

(
xi(T )− Γˆ̄xNn−1(T )

)2
+ hΓ2E

[
err2n−1(T )

]
(14)

Variables pn−1, sn−1, and rn−1 are introduced to rep-
resent the solution of the HJB equation for Ṽn−1,i(t,Xi),
where we assume the following quadratic form for it.

Ṽn−1,i(t,Xi) = pn−1(t)x
2
i (t) + 2sn−1(t)xi(t) + rn−1(t)

(15)
The minimizer value of Ṽn−1,i(t,Xi) is u∗i which can be
found as follows:

u∗i (t) = −1

2

b

r

(
∂Ṽn−1,i(t,Xi)

∂xi

)
=

− b
r
(pn−1(t)xi(t) + sn−1(t)) (16)

Substitution in (13) and identification of resulting polynomial
coefficients yield a set of differential equations and boundary
conditions for pn−1, sn−1 and rn−1.

dpn−1

dt
= −2pn−1a+

b2

r
p2n−1 − q, pn−1(T ) = h (17)

dsn−1

dt
= −

(
a− b2

r
pn−1

)
sn−1 + qΓˆ̄xNn−1(t)

sn−1(T ) = −hΓˆ̄xNn−1(T ) (18)

drn−1

dt
=
b2

r
s2n−1 − q

(
Γˆ̄xNn−1(t)

)2 − σ2pn−1

rn−1(T ) = hΓ2
(
ˆ̄xNn−1(T )

)2
+ hΓ2E

[
err2n−1(T )

]
(19)

In the following, we state the NE of the game for
[tn−1, T ), however, the proof is similar for [tj , T ).

Proposition 1. Suppose Assumption 1 holds and a unique
solution exists for the following Riccati differential equation:

dαn−1(t)

dt
= −2

(
a− b2

r
pn−1(t)

)
αn−1(t)+

b2

r
α2
n−1(t) + qΓ, αn−1(T ) = −hΓ (20)
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Then for t ∈ [tn−1, T ), u∗i (t) = − b
r (pn−1(t)xi(t) +

αn−1(t)ˆ̄x
N
n−1(t)), i = 1, . . . , N is a set of Markov Nash

equilibrium strategies of the game, where:

dˆ̄xNn−1

dt
=

(
a− b2

r
pn−1(t)−

b2

r
αn−1(t)

)
ˆ̄xNn−1 (21)

Proof: The policy derived from DP is the NE of the
game as stipulated in Definition 1. Under the assumptions
of the proposition, we develop fixed-point calculations that
characterize the Markov NE strategies on [tn−1, T ). Indeed,
the trajectory ˆ̄xNn−1(t) must be a predictor of x̄N (t) based
on the solution of the problem of optimally tracking that
predictor. As a result, ˆ̄xNn−1(t) must be the solution of a
fixed-point problem. To help compute that fixed-point, we
assume, following [16], the following form for sn−1(t):

sn−1(t) = αn−1(t)ˆ̄x
N
n−1(t) (22)

If such a structure holds, it will allow a decoupling of the
forward and backward propagating parts of the complete
solution. Equation (22) yields after taking time derivatives:

dsn−1(t)

dt
=
dαn−1(t)

dt
ˆ̄xNn−1(t) + αn−1(t)

dˆ̄xNn−1

dt
(23)

Recalling the definition of ˆ̄xNj (t) in (6), we substitute the
closed loop control (16) in (1) for i = 1, . . . , N , after
recognizing that best response strategies must be identical
for all agents, due to their assumed homogeneity. Taking
expectations of the resulting empirical mean of the xi(t)’s
under closed loop dynamics, and using (22), one obtains the
forward propagating dynamics of the fixed-point predictor
trajectory ˆ̄xNn−1(t) as in (21). One then uses (17), (21) and
(23) to obtain the Riccati equation and boundary condition
in (20) for αn−1(t) . ■

Remark 2. Equation (21) leads to the following solution for
the predictor:

ˆ̄xNn−1(t) = φx̄(t, tn−1)x̄
N (tn−1) t ∈ [tn−1, T ) (24)

φx̄(t, tn−1) denotes the state transition function for ˆ̄xNn−1.

Using (19), (22), and (24) to determine rn−1(t), one can
write the solution of (19) as a function of x̄N (tn−1)

2 as
follows.

rn−1(tn−1) = ψn−1(tn−1)x̄
N (tn−1)

2 + γn−1(tn−1) (25)

where ψn−1(tn−1) and γn−1(tn−1) are found as:

ψn−1(tn−1) = −
∫ T

tn−1

φx̄(τ, tn−1)
2

(
b2

r
α2
n−1(τ)− qΓ2

)
dτ

+h (Γφx̄(T, tn−1))
2 (26)

γn−1(tn−1) = σ2

∫ T

tn−1

pn−1(τ)dτ + hΓ2E[err2n−1(T )]

2) Finding Best Response Policy for [tj , tj+1): We now
move to determining agent best responses for the interval
[tj , tj+1). A key distinction relative to the analysis on
[tn−1, T ) lies in the fact that we anticipate agents receiving
new information about mean agent state at tj+1 which will
impact subsequent policies. For t ∈ [tj , tj+1), we again
test a quadratic ansatz, assuming the quadratic form of
Ṽj+1,i(t,Xi) has already been validated:

Ṽj,i(t,Xi) = pj(t)xi(t)
2 + 2sj(t)xi(t) + rj(t) (27)

The procedure for finding optimal control policy over [tj , T )
mirrors the steps taken for [tn−1, T ), and hence, we do not
repeat the detailed process here. The key difference lies
in determining the boundary condition for Ṽj,i which is
obtained from (12) and computed as follows:

Ṽj,i(tj+1, Xi) = E[Ṽj+1,i(tj+1, Xi)
∣∣x̄N (tj)] =

pj+1(tj+1)x
2
i (tj+1) + 2αj+1(tj+1)xi(tj+1)ˆ̄x

N
j (tj+1)+

ψj+1(tj+1)E[x̄N (tj+1)
2
∣∣x̄N (tj)] + E[γj+1(tj+1)] (28)

In (28), the computation of E[x̄N (tj+1)
2|x̄N (tj)] involves

adding and subtracting ˆ̄xNj (tj+1) as in (14). Furthermore,
the definitions of ψj+1(tj+1) and γj+1(tj+1) are analogous
to those of ψn−1(tn−1) and γn−1(tn−1) above.

E[x̄N (tj+1)
2
∣∣x̄N (tj)] = E[err2j (tj+1)] + ˆ̄xNj (tj+1)

2 (29)

Solving the HJB equation yields differential equations for
pj , sj , and rj , analogous to (17), (18), and (19), respectively.
However, the boundary conditions for these functions differ
and are derived directly from (28) as follows:

pj(tj+1) = pj+1(tj+1), sj(tj+1) = sj+1(tj+1) (30)

Similar to (22), sj can be expressed in terms of αj .

αj(tj+1)ˆ̄x
N
j (tj+1) = αj+1(tj+1)E[x̄N (tj+1)|x̄N (tj)]

(31)
This leads to the boundary condition for αj :

αj(tj+1) = αj+1(tj+1) (32)

Remark 3. The boundary conditions in (30) and (32), along
with quadratic forms of Ṽn−1,i and Ṽj,i in (15) and (27) im-
ply that the differential equations for pj and sj , mirror those
of pn−1 and sn−1. Consequently, pj and αj can be treated
as part of a continuous trajectory over j = 0, 1, 2, . . . , n− 1
with the same boundary conditions governing each segment:

dp(t)

dt
= −2pa+

b2

r
p2 − q, p(T ) = h (33)

dα(t)

dt
= −2(a−b

2

r
p(t))α(t)+

b2

r
α2(t)+qΓ, α(T ) = −hΓ

(34)
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Using (33), (34) and (28), we derive the differential
equation and boundary condition for rj :

drj
dt

=
b2

r
(αˆ̄xNj )2 − q(Γˆ̄xNj )2 − σ2p

rj(tj+1) = ψj+1(tj+1)(E[err2j (tj+1)] + ˆ̄xNj (tj+1)
2)

+γj+1(tj+1) (35)

To solve rj , we express it as a linear function of of x̄N (tj)
2

using ψj and γj similar to (25):

ψj(t) = −
∫ tj+1

t

(
b2

r
α(τ)2 − qΓ2)φx̄(τ, tj)

2dτ

+ψj+1(tj+1)φx̄(tj+1, t)
2 (36)

γj(t) = γj+1(tj+1) +

∫ tj+1

t

σ2p(τ)dτ

+ψj+1(tj+1)E[err2j (tj+1)] (37)

Given (26) and (36), we can also derive the differential
equation for ψ(t). For clarity, we omit the index j from
ψ from this point forward:

dψ

dt
= −2

(
a− b2

r
(p(t) + α(t))

)
ψ(t) +

(
b2

r
α(t)2 − qΓ2

)
ψ(T ) = hΓ2 (38)

The above analysis and remarks lead us to the main result
of the paper which is an interval-wise generalization of
Proposition 1 and characterizes Markov Nash strategies.

Theorem 1. Suppose Assumption 1 holds and a unique
solution α(t) exists for (34) where p(t) is the solution
of (33), then for t ∈ [tj , tj+1), j = 0, . . . , n − 1 and
i = 1, . . . , N , u∗i (t) = − b

r (p(t)xi(t) + α(t)ˆ̄xNj (t)), is a set
of Markov Nash equilibrium strategies of the game, where:

dˆ̄xNj
dt

=

(
a− b2

r
p(t)− b2

r
α(t)

)
ˆ̄xNj , ˆ̄xNj (tj) = x̄N (tj)

C. Error Calculation
In this section, we compute the error, errj , based on

observations of x̄N (tj) at time tj . To do so, we first express
x̄N (t) over the interval [tj , tj+1) by solving the differential
equation in (1). Using the results from [17], x̄N (t) is the
average of xi(t) under the closed-loop best response control
law. The error is then derived from this expression. Here,
φ(t, t0) = exp

(∫ t

t0

(
a− b2

r p(τ)
)
dτ
)

represents the state
transition function for xi(t).

x̄N (t) = φx̄(t, tj)x̄
N (tj) + σ

∫ t

tj

φ(t, s)dw̄N (s) = ˆ̄xNj (t)+

σ

∫ t

tj

φ(t, s)dw̄N (s), w̄N (s) =
1

N

n∑
i=1

dwi(s)

errj(t) = σ

∫ t

tj

φ(t, s)dw̄N (s) t ∈ [tj , tj+1) (39)

Remark 4. Equation (39) further is consistent with Lemma
1 since it indicates that errj(t) is only a function of noises.

IV. PERFORMANCE EVALUATION

We now aim at calculating Vj,i(t,Xi) based on the knowl-
edge of Ṽj,i(t,Xi) that we have developed in the earlier
sections. A DP equation for Vj,i(t,Xi), analogous to that
for Ṽj,i(t,Xi) in (10), is first written. We then compute
the discrepancy between these two value functions using the
knowledge from Lemma 1 that the associated best response
policies are identical. Thus, we have:

Vj,i(t,Xi) = inf
ui∈Mi

E

[∫ tj+1

t

(
q(xi(τ)− Γx̄Nj (τ))2

+ru2i (τ)
)
dτ + Vj+1,i(tj+1, Xi)

∣∣x̄Nj (tj)

]
(40)

Subtracting (40) from (10) yields interval wise:

∆Vj(t) := Vj,i(t,Xi)− Ṽj,i(t,Xi) (41)

= E

[∫ tj+1

t

(
q(xi(τ)− Γx̄Nj (τ))2 − q(xi(τ)−

Γˆ̄xNj (τ))2
)
dτ +∆Vj+1(tj+1)|x̄Nj (tj)

]
=

qΓ2E

[∫ tj+1

t

err2j (τ)dτ

]
+ E[∆Vj+1(tj+1)|x̄Nj (tj ] (42)

Note that ∆Vj(t) is 0 at T , and is independent of agent i.
For calculation of V0,i from t0 to T , we sum all ∆V0 for
j = 0, 1, . . . , n− 1:

V0,i(t0, Xi) = Ṽ0,i(t0, Xi) + ∆V0(t0) = Ṽ0,i(t0, Xi)+

qΓ2
n−1∑
j=0

E

[∫ tj+1

tj

err2j (τ)dτ

]
= p(t0)x

2
i (t0)+

2α(t0)x̄
N (t0)xi(t0) + ψ(t0)x̄

N (t0)
2 + γ0(t0)+

qΓ2σ
2

N

n−1∑
j=0

∫ tj+1

tj

∫ τ

tj

φ2(τ, s)dsdτ (43)

A. Comparing Costs with Full Observation Game

In this section, we quantify the performance loss due to
partial observability, referred to as regret. Since agents have
limited discrete observations, their costs differ from the fully
observable case. Therefore, we also consider the scenario
where agents have continuous observations of the empirical
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mean, leading to the control policy uFull
i (t) = − b

r (p(t)xi(t)+
α(t)x̄N (t)) derived through similar fixed-point calculations
as presented in this paper. In the following, we calculate the
cost for the continuous observation scenario:

V Full(t0) = V0,i(t0, Xi) +

n−1∑
j=0

E
[ ∫ tj+1

tj

r(uFull
i (τ)2−

u2i (τ))dτ
∣∣x̄N (t0)

]
= V0,i(t0, Xi)+

b2

r

n−1∑
j=0

E
[ ∫ tj+1

tj

err2j (τ)dτ
]

(44)

The formula for regret is defined in the following:

Regret = E
[
V Full(t0)− Ṽ0,i(t0, Xi)

∣∣x̄N (t0)
]
=(

qΓ2 +
b2

r

)
σ2

N

n−1∑
j=0

∫ tj+1

tj

∫ τ

tj

φ2(τ, s)dsdτ+

n−1∑
j=0

ψ(tj)E
[
err2j (tj)

]
(45)

Theorem 2. The Regret exhibits linear growth rate.

Proof: Our goal is to demonstrate that Regret ex-
hibits linear growth. In analyzing the long-term behavior of
Regret, we focus on the steady state solution of Riccati
differential p(t), and we know this steady state solution is

p∞ := r
b2

(
a±

√
a2 + b2

r q

)
[18]. To ensure a physically

meaningful solution, we take the positive root, so c :=

a− b2

r p∞ = −
√
a2 + b2

r q < 0. This leads to the following
expression in steady state:∫ tj+1

tj

∫ τ

tj

φ2(τ, s) ds dτ ≈
∫ tj+1

tj

∫ τ

tj

exp(2c(τ − s)) ds dτ

= − 1

2c
∆t+

1

4c2
exp(2c∆t)− 1

4c2
(46)

lim
T→∞

1

T
Regret = − 1

2c

(
qΓ2 +

b2

r

)
σ2

N
(47)

This shows that the first term of the Regret grows linearly,
while the second term decays exponentially [1]. Therefore,
the overall Regret exhibits a linear growth rate. ■

V. CONCLUSION

This paper introduces a multi-agent aggregative game
characterized by continuous agent dynamics and discrete
empirical mean observations over time. Leveraging dynamic
programming principles, we identify the Markov Nash strate-
gies of this game. In the subsequent section, we outline

the cost function formula for the scenario of complete
observability. By quantifying the disparity between the costs,
termed as regret, we demonstrate that this regret exhibits a
linear growth rate.
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