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Abstract— This paper proposes a new control method called
event-triggered parameterized control (ETPC). We showcase
this method by focusing on the specific problem of stabiliza-
tion of linear systems. In this control method, between two
consecutive events, each control input to the plant is a linear
combination of a set of linearly independent scalar functions. At
each event, the coefficients of the parameterized control input
are chosen to minimize the error in approximating a model
based control signal and then they are communicated to the
actuator. We design two event-triggering rules that guarantee
global asymptotic stability of the origin of the closed loop
system under some conditions on the model uncertainty. We
also show the existence of a uniform positive lower bound on the
inter-event times. We illustrate our results through numerical
examples. We compare the proposed control method with
event-triggered zero-order-hold control and show a significant
improvement in terms of the average inter-event times.

I. INTRODUCTION

Event-triggered control is a popular method in the field
of networked control systems owing to its advantage of
efficient utilization of resources for a large variety of systems
and control objectives. Most of the existing event-triggered
controllers are designed using sampled-data zero-order-hold
(ZOH) control input. However, many of the communica-
tion protocols used in networked control systems, such as
TCP and UDP, have a minimum packet size [1]. So, ZOH
control may lead to under utilization of each packet while
also increasing the number of communication instances and
hence packets. On the other hand, use of non-ZOH control
leads to better utilization of the minimum payload of each
packet while also reducing the overall number of events
or communication instances. With these motivations, in this
paper, we propose an event-triggered parameterized control
method for stabilization of linear systems. While model
based event-triggered control or deadbeat control or first-
order hold control share our motivations, our approach differs
significantly from them and also has several advantages over
them. We discuss more about this in Section I-B.

A. Literature Review

Event-triggered control literature is very broad, and a
quick introduction to the topic can be found in [2]–[5]. Mod-
ified event-triggered control methods, such as self-triggered
control [6] and periodic event-triggered control [7], are also
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equally popular as they provide some practical advantages
over plain event-triggered control. In all these methods,
typically the control input to the plant is held constant
between two events.

A major exception to this rule is model-based event-
triggered control [8]–[12], where the control input applied
to the plant is time-varying even between two consecutive
events and is generated by a model of the system. Essentially,
both the controller and the actuator have identical copies of
the model and synchronously update the state of the model
in an event-triggered manner.

In event/self-triggered model predictive control, see for ex-
ample [13]–[15], a control trajectory is generated by solving
a finite horizon optimal control problem at each triggering
instant. The actuator applies this optimal control trajectory to
the plant until it receives a new control trajectory at the next
triggering instant. A few recent papers [16], [17] show that
usage of communication resources can be further reduced by
communicating only some of the samples of the computed
control trajectory to the actuator. Then the actuator applies
the control input to the plant based on first-order-hold (FOH)
between the samples. [18] takes this idea further and designs
adaptive selection of samples under this control method.

The literature on event-triggered control based on non-
ZOH also includes the paper [19] which deals with event-
triggered dead-beat control. This paper considers a stochastic
system where the controller transmits a sequence of control
inputs to the actuator over an unreliable communication
channel in an event-triggered manner. This control sequence
is stored in a buffer and applied sequentially until the next
control packet arrives.

Another control method, in the distributed event-triggered
control setting that shares similar motivation as in our paper
is the team triggered control method [20], [21]. In this control
method, agents make promises to their neighbors about their
future time-varying states or controls and inform them if
these promises are violated later.

B. Contributions

The major contribution of this paper is a new control
method called event-triggered parameterized control (ETPC).
We showcase the method for the task of stabilization of
linear systems. In this method, between two consecutive
events, each control input to the plant is a linear combination
of a fixed set of linearly independent scalar functions. At
each event the coefficients of the parameterized control input
are chosen so as to minimize the error in approximating a
model based control signal. The parameters of the control
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input so computed are communicated to the actuator in an
event-triggered manner. In this paper, we design two event-
triggering rules that guarantee global asymptotic stability of
the origin of the closed loop system under some bounds on
the modeling error. We also guarantee a positive lower bound
on the inter-event times generated by both the rules.

Our approach generalizes both ZOH and FOH control. In
addition, our approach also allows the applied control input
to differ from the ideal emulated control input even at the
event times. Compared to ZOH or even FOH control, our
method can be fine tuned to utilize the full payload per each
packet of communication and as a result also requires fewer
communication instances or packets.

Model-based event-triggered control requires the actuator
to have enough computational resources to simulate the
model online. This can be particularly difficult if the system
is nonlinear or the control task is complicated. In addition,
the updation of the state of the model has to happen syn-
chronously at both the controller and the actuator. If there
are unknown time delays in communication, then this can
be a challenge. If one also carries out dynamic quantization
along with model based event-triggered control, such as
in [22]–[24], then unknown time delays can also cause
desynchronization of the dynamic quantization frame, which
is a very severe issue. Finally, sharing a copy of the model
(and inherently the control goal) of the system at the actuator
or at multiple nodes in a distributed control application is
very undesirable from a privacy and security point of view.

In methods as in event-triggered MPC or deadbeat control
or the sampling approach in [16]–[18] essentially require a
large number of samples to be communicated, at each event,
to achieve the same level of approximation of an ideal control
signal as achieved by our proposed parametrized control
approach. This is because, our proposed method requires
only a limited number of parameters to be sent irrespective
of the time duration of the signal. Moreover, event-triggered
MPC or deadbeat control frameworks have primarily been
explored in a discrete-time setting. Our approach is not
restricted to discrete-time settings.

In summary, our proposed approach has the following
advantages: a time-varying control input between events, the
complexity of which can be tuned; better utilizes the commu-
nication resources; requires lesser computational resources
at the actuators; does not suffer from synchronization issues;
and can be easily generalized to a variety of problem settings;
and provides greater privacy and security than model based
control methods.

C. Organization

Section II formally presents the system dynamics and the
objective of this paper. In Section III, we design a control
law and two event-triggering rules to achieve our objective.
Then, we analyze the proposed controllers and show global
asymptotic stability of the origin of the closed loop system as
well as non-Zeno behavior of inter-event times. Section IV
illustrates the results using numerical examples. Finally, we
provide some concluding remarks in Section V.

D. Notation

Let R denote the set of all real numbers. Let N and
N0 denote the set of all positive and non-negative integers,
respectively. For any x∈Rn, ∥x∥ denotes the euclidean norm.
For an n× n square symmetric matrix A, let λmin(A) and
λmax(A) denote the smallest and the largest eigenvalues of
A, respectively. For an n×m matrix B, let Bi denote the ith

row of B. For any two functions v,w : [0,T ]→ R, let

⟨v,w⟩ :=
∫ T

0
v(τ)w(τ)dτ.

II. PROBLEM SETUP

In this section, we present the system dynamics and set
up the problem that we are interested in.

System Dynamics and Control Input

Consider a linear time-invariant system,

ẋ = Ax+Bu, ∀t ≥ t0, (1)

where x ∈ Rn and u ∈ Rm, respectively, denote the system
state and the control input. A ∈ Rn×n and B ∈ Rn×m are the
system matrices. Let Â and B̂ denote the available model of A
and B, respectively. We assume that there exists a K ∈Rm×n

such that Âc := Â+ B̂K is Hurwitz.
Suppose we wish to control the given system with event-

triggered communication of actuation signals. However,
compared to most of the literature on event-triggered con-
trol, we seek to apply a time-varying input between two
consecutive events. In order to still be able to transmit
limited information over the network, we consider time-
varying control inputs in a space of functions with finitely
many parameters. In particular, we let the ith control input,
for i ∈ {1,2, . . . ,m}, during an inter-event time be

ui(tk +τ) = f (ai(k),τ) :=
p

∑
j=0

ai j(k)φ j(τ), ∀τ ∈ [0, tk+1 − tk).

(2)
Here (tk)k∈N0 is the sequence of communication time instants
from the controller to the actuator. At tk, the controller
communicates the coefficients of the parameterized control
input, a(k) := [ai j(k)] ∈ Rm×(p+1), to the actuator. We also
let ai(k) denote the ith row of a(k). Finally,

Φ := {φ j : [0,T ]→ R}p
j=0

is a set of fixed functions on the time interval [0,T ]⊂ R≥0
for some fixed finite T > 0. We make the following standing
assumption about Φ through out this paper.

(A1) Each function φ j ∈Φ is continuously differentiable.
φ0 is a non-zero constant function and φ j(0) = 0, ∀ j ∈
{1,2, . . . , p}. Φ is a set of linearly independent func-
tions.

By linearly independent functions, we mean that
p

∑
j=0

c jφ j(t) = 0, ∀t ∈ [0,T ] iff c j = 0, ∀ j ∈ {0,1, . . . , p}.
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Figure 1 represents the general configuration of the event-
triggered parameterized control system that we consider in
this paper. Note that, here, the communication time instants
from the controller to the actuator are determined by an
event-triggering rule depending on the system state and the
control input that are available to the triggering mechanism
continuously.

Fig. 1: Event-triggered parameterized control configuration

Objective

Our objective is to design a parameterized control law (2)
and a triggering rule for implicitly determining the com-
munication times (tk)k∈N0 , at which the parameters of the
controller are updated so that the origin of the closed loop
system is globally asymptotically stable. We also wish to
ensure that the inter-event times in the closed loop system
have a uniform positive lower bound.

III. DESIGN AND ANALYSIS OF
EVENT-TRIGGERED CONTROLLER

In this section, we first design a control law and two
event-triggering rules to achieve our objective. Later, we
analyze the performance of the designed event-triggered
control system.

A. Control Law

The idea behind the proposed control law is to emulate
an ideal open loop control signal using a parametrized time-
varying signal as in (2). Since the goal here is asymptotic
stabilization of the origin of the closed loop system, consider
the “ideal” model based control signal Kx̂(tk + τ), where

˙̂x = Âcx̂, ∀τ ∈ [0,T ], x̂(tk) = x(tk), k ∈ N0. (3)

However, sending the complete control signal Kx̂(tk +τ) for
τ ∈ [0,T ) in a communication packet at tk is not possible
without approximation. We thus find the best fit for the func-
tion Kx̂(t) in the linear span of Φ. In particular, we choose
the coefficients of the parameterized control signal starting
at tk by solving the following finite horizon optimization
problems, for i ∈ {1,2, . . . ,m},

ai(k) = argmin
a∈R1×(p+1)

∫ T

0
| f (a,τ)−Kix̂(tk + τ)|2dτ,

s.t. | f (a,0)−Kix̂(tk)| ≤ ε ∥x̂(tk)∥
(4)

for some ε ≥ 0 and a finite time horizon T > 0 which are to
be designed. Ki denotes the ith row of K for i ∈ {1,2, . . . ,m}.

Note that, in order to solve the optimization problem (4),
we require the signal Kx̂(tk + τ) for τ ∈ [0,T ]. This signal
may be obtained directly as KeÂcτ x̂(tk) or through numerical
simulation of the x̂ dynamics (3). The latter method is
generalizable to nonlinear systems or to tasks other than
asymptotic stabilization in linear systems.

Remark 1. (Control signal for τ > T ). Given the parameters
a(k) that are obtained by solving (4), the control signal that
is applied by the actuator is as given in (2). However, since
tk’s are implicitly determined by an event-triggering rule
online, it may happen that tk+1 − tk > T . In that case, we
simply extend the control input u(tk + τ) for τ beyond T by
suitably extending the domain of the functions φ j ∈ Φ. •

Remark 2. (Feasibility of (4) and comparison with zero-
order hold control). Under Assumption (A1), there is a non-
zero constant function φ0 ∈ Φ. Hence, there exists some a
such that f (a,τ) is the zero-order hold signal Kix̂(tk) for all
τ ∈ [0,T ], which is feasible. Note that if ε > 0 then zero-
order hold or constant controls other than Kix̂(tk) for all
τ ∈ [0,T ] are also feasible. Indeed in general, for the control
signal ui(.), as in (2), that we obtain through solving (4) need
not have ui(tk) = Kix̂(tk), which is typically not the case in
emulation based event-triggered controllers. •

Proposition 3. The optimization problem (4) is a convex
optimization problem.

Proof. Let us first show that the objective function of (4) is
convex. Note that, as the integral of a convex function is also
convex, it is sufficient to show that f̄ := | f (a,τ)−Kix̂(tk +
τ)|2 is convex in the optimization variables a. The Hessian
matrix of the above function, H f̄ , is

H f̄ = 2


φ 2

0 (τ) φ0(τ)φ1(τ) . . . φ0(τ)φp(τ)
φ1(τ)φ0(τ) φ 2

1 (τ) . . . φ1(τ)φp(τ)
. . . . . . . . . . . .

φp(τ)φ0(τ) φp(τ)φ1(τ) . . . φ 2
p(τ)

 .

Observe that this matrix has eigenvalues at 2
p

∑
j=0

φ
2
j (τ) and

at 0, with algebraic multiplicity p. Thus, H f̄ is positive
semi-definite. Hence, the cost function in (4) is convex.
Note that under Assumption (A1), the only constraint in
the optimization problem (4) can be written as two linear
constraints in a0, the coefficient of the constant function in
Φ. Thus, (4) is a convex optimization problem.

B. Event-Triggering Rule

Consider the candidate Lyapunov function V (x) = xT Px,
where P > 0 and satisfies ÂT

c P+PÂc =−Q for some Q > 0.
Such a P exists as Âc is Hurwitz. We consider two event-
triggering rules. The first one is

tk+1 = min{t > tk : ∥q∥ ≥ σ ∥x∥}, q(t) := u(t)−Kx(t),
(5)
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where σ > 0 is a design parameter. The second event-
triggering rule is

tk+1 = min{t > tk : V (x(t))≥V (x(tk))e−rhτ}, (6)

where τ = t − tk, h =
λmin(Q)

λmax(P)
and r ∈ (0,1) is a design

parameter.

C. Analysis of the event-triggered control system

Next, we show that the origin of the closed loop sys-
tem (1) under the control law (2)-(4) and either of the event-
triggering rules (5), or (6), is globally asymptotically stable
and show the existence of a uniform positive lower bound
on the inter-event times. Let us first analyze the closed loop
system under the event-triggering rule (5).

Theorem 4. (Global asymptotic stability and absence of
Zeno behavior under the event-triggering rule (5)). Consider
the system (1) under the parametrized control law (2)-(4)
and the event-triggering rule (5). Suppose that the modeling

error Ãc := Âc − (A+BK) satisfies
∥∥Ãc

∥∥ ≤ ρλmin(Q)

4∥P∥
, that

in (4), ε <
σ

2
√

m

√
λmin(P)
λmax(P)

and that σ ≤ ρλmin(Q)
4∥PB∥ for some

ρ ∈ (0,1). Then, the origin of the closed loop system is
globally asymptotically stable and there exists a uniform
positive lower bound on the inter-event times generated by
the closed loop system.

Proof. Let us first calculate the time derivative of the candi-
date Lyapunov function along the trajectories of the closed
loop system.

V̇ (x) =−xT Qx+2xT P(Bq− Ãcx)

≤−λmin(Q)∥x∥2 +2∥x∥∥PB∥∥q∥+2∥x∥2 ∥P∥
∥∥Ãc

∥∥
≤−(1−ρ)λmin(Q)∥x∥2 −

(
ρ

2
λmin(Q)−2σ ∥PB∥

)
∥x∥2

−
(

ρ

2
λmin(Q)−2∥P∥

∥∥Ãc
∥∥)∥x∥2

≤−(1−ρ)λmin(Q)∥x∥2 .

In the second inequality, we have used the fact that the event-
triggering rule (5) ensures ∥q∥ ≤ σ ∥x∥. The last inequality
follows from the conditions on

∥∥Ãc
∥∥ and σ in the statement

of the result. Thus, the origin of the closed loop system is
globally asymptotically stable.

Next, let us show that the inter-event times do not exhibit
Zeno behavior and that in fact they have a uniform positive
lower bound by using the following claims.

Claim (a): There exist β1,β2 > 0 such that ∥u(t)∥ ≤
β1 ∥x(tk)∥ and ∥u̇(t)∥ ≤ β2 ∥x(tk)∥, ∀t ∈ [tk,min{tk+1, tk +
T}), ∀k ∈ N0.

Claim (b): There exists a monotonically decreasing func-
tion g : R→ R such that ∥x(t)∥2 ≥ g(t − tk)∥x(tk)∥2 for all
t ∈ [tk, tk+1) with g(0) = γ > 0 for all k ∈ N0.

Let us first prove claim (a). Note that, ∀i ∈ {1,2, . . . ,m}
and for any k ∈ N0, ui(t) for t ∈ [tk, tk+1) is chosen by

solving the optimization problem (4). That is, ui(tk+τ) is the
continuous least squares approximation of ûi(τ) := Kix̂(tk +
τ) with linear constraints. We can rewrite the optimization
problem (4) as follows

min
a∈R1×(p+1)

Ei(a), s.t. Fi(a)≤ 0,

where,

Ei(a) = ⟨ûi, ûi⟩−2
p

∑
j=0

a j⟨ûi,φ j⟩+
p

∑
j=0

p

∑
l=0

a jal⟨φ j,φl⟩,

Fi(a) =
[

a0φ0(0)− ûi(0)− ε ∥x̂(tk)∥
−a0φ0(0)+ ûi(0)− ε ∥x̂(tk)∥

]
.

Now, we can write the corresponding Lagrangian as
Li(a,µ) = Ei(a)+ µT Fi(a), where µ ∈ R2 is the Lagrange
multiplier vector. Recall from Proposition 3 that the opti-
mization problem (4) is convex and the constraints Fi(a) ≤
0 are linear in a. So, strong duality holds for the prob-
lem (4). So, an optimal primal-dual solution (ai(k),µi(k))
must satisfy the Karush-Kuhn-Tucker (KKT) conditions. The
stationarity conditions can be represented in matrix form as
follows,

GaT
i (k) = Di(k)

where

G = 2


⟨φ0,φ0⟩ ⟨φ0,φ1⟩ . . . ⟨φ0,φp⟩
⟨φ1,φ0⟩ ⟨φ1,φ1⟩ . . . ⟨φ1,φp⟩
. . . . . . . . . . . .

⟨φp,φ0⟩ ⟨φp,φ1⟩ . . . ⟨φp,φp⟩

 ,

Di(k) = 2


⟨ûi,φ0⟩
⟨ûi,φ1⟩
. . .

⟨ûi,φp⟩

−


φ0(0) −φ0(0)

0 0
. . . . . .
0 0

µi(k).

Further, the complementary slackness conditions are

µi1(k)(ai0(k)φ0(0)− ûi(0)− ε ∥x̂(tk)∥) = 0
µi2(k)(−ai0(k)φ0(0)+ ûi(0)− ε ∥x̂(tk)∥) = 0.

Now, observe that G is twice the Gram matrix for the
functions in Φ. Since the set of functions Φ are linearly
independent, we can say that G is invertible. So, every
optimal primal-dual solution (ai(k),µi(k)) to the problem (4)
must satisfy aT

i (k) = G−1Di(k). Next, note that

ûi(τ) = Kix̂(tk + τ) = KieÂcτ x̂(tk),

where the second equality follows from (3). Thus, the first
term in Di(k) is a constant matrix times x̂(tk). If for the
optimal solution ai(k) to problem (4), the constraints are not
active then µi(k)= 0 and we can see that each |ai(k)| is upper
bounded by a constant factor times norm of x̂(tk). If on the
other hand, µi(k) ̸= 0, then ai0(k) can be solved for from
the complementary slackness conditions and its magnitude
is upper bounded by some constant times norm of x̂(tk). By
using the last p stationarity conditions, we can also show that
the magnitude of

[
ai1(k) . . . aip(k)

]
is upper bounded by

some constant times norm of x̂(tk). This implies that each
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|ai(k)| is upper bounded by a constant factor times norm of
x̂(tk) = x(tk). So, we can say that there exists β ′ > 0 such
that ∥a(k)∥ ≤ β ′ ∥x(tk)∥, ∀k ∈ N0. Since each φ j(.) ∈ Φ is
continuously differentiable on [0,T ], we can say that there
exist β1,β2 > 0 such that ∀t ∈ [tk,min{tk+1, tk+T}), ∀k ∈N0,

∥u(t)∥ ≤ ∥a(k)∥

∥∥∥∥∥∥∥
φ0(t − tk)

...
φp(t − tk)


∥∥∥∥∥∥∥≤ β1 ∥x(tk)∥ ,

∥u̇(t)∥ ≤ ∥a(k)∥

∥∥∥∥∥∥∥
d
dt

 φ0(t − tk)
...

φp(t − tk)


∥∥∥∥∥∥∥≤ β2 ∥x(tk)∥ .

This proves claim (a).

Next, let us prove claim (b). Note that, as V (x(t)) is a
monotonically decreasing function of t, ∥x(t)∥ ≤ c1 ∥x(tk)∥

where c1 :=

√
λmax(P)
λmin(P)

for all t ≥ tk. For all t ∈ [tk, tk+1),

V̇ (x)≥−xT Qx−
∥∥2xT P(Bq− Ãcx)

∥∥≥−c2V (x)− c3 ∥x(tk)∥2 ,

where c2 =
λmax(Q)+2∥P(BK+Ãc)∥

λmin(P)
and c3 = 2c1β1 ∥PB∥. Now,

by using comparison lemma, we can show that,

V (x(t))≥ e−c2(t−tk)V (x(tk))+
c3

c2
(e−c2(t−tk)−1)∥x(tk)∥2 .

This implies that claim (b) is true with,

g(τ) :=
1

λmax(P)

[
e−c2τ

(
λmin(P)+

c3

c2

)
− c3

c2

]
and g(0) = γ := λmin(P)

λmax(P)
> 0 for all k ∈ N0.

Next, note that the choice of ε <
σ

2
√

m

√
λmin(P)
λmax(P)

ensures

that ∥q(tk)∥2 <
σ2γ

4
∥x(tk)∥2. Now, let T1 denote the time

it takes g(.) to decrease from γ to (γ/2) and let T2 de-

note the time it takes ∥q∥2 to grow from
σ2γ

4
∥x(tk)∥2 to

σ2γ

2
∥x(tk)∥2. Then, the inter-event times are lower bounded

by the minimum of T1 and T2.
Now, to show that the lower bound on the inter-event times

is uniform, first note that T1 is independent of x(tk). Next,
let us analyze the time derivative of ∥q∥2.

d
dt

∥q∥2 = 2qT q̇ = 2qT (u̇−K(Ax+Bu))

≤ 2∥u−Kx∥
[
∥u̇∥+∥KA∥∥x∥+∥KB∥∥u∥

]
≤ β ∥x(tk)∥2 ,

for some β > 0. The last inequality follows from claim (a)
and the fact that ∥x(t)∥≤ c1 ∥x(tk)∥ for all t ≥ tk. This implies

that T2 ≥
σ2γ

4β
, which completes the proof of this result.

Note that the upper bound on σ given in Theorem 4
depends on the norm of the input matrix B which is unknown.

But, in practice, we can use some known upper bound on
∥B∥ to choose the value of σ . Such an upper bound can also
come from the known model B̂ and bounds on the modeling
error B− B̂.

Next, we analyze the performance of the closed loop
system under the event-triggering rule (6).

Theorem 5. (Global asymptotic stability and absence of
Zeno behavior under the event-triggering rule (6)). Consider
the system (1) under the parametrized control law (2)-(4)
and the event-triggering rule (6). Suppose that the modeling

error Ãc := Âc − (A+BK) satisfies
∥∥Ãc

∥∥ ≤ ρλmin(Q)

4∥P∥
, that

in (4), ε <
σ

2
√

m

√
λmin(P)
λmax(P)

and that σ ≤ ρλmin(Q)

4∥PB∥
for some

ρ ∈ (0,1). Also, suppose that in (6), r ∈ (0,(1−ρ)). Then,
the origin of the closed loop system is globally asymptotically
stable and there exists a uniform positive lower bound on the
inter-event times generated by the event-triggering rule (6).

Proof. First note that, the triggering rule (6) guarantees that

V (x(t))≤V (x(tk))e−rh(t−tk), ∀t ∈ [tk, tk+1),

for all k ∈ N0. If the sequence of inter-event times does not
exhibit Zeno behavior, then we can say that

V (x(t))≤V (x(t0))e−rh(t−t0), ∀t ≥ t0.

Thus, the origin of the closed loop system is globally
asymptotically stable.

Next, let us show that there exists a uniform positive lower
bound on the inter-event times by using the following claim.

Claim (c): Let τ1(x) and τ2(x), respectively, denote
the inter-event time functions corresponding to the event-
triggering rules (5) and (6), respectively. In particular, tk+1 =
tk + τi(x(tk)), for each of the two rules. Under the given
conditions on r,ε and

∥∥Ãc
∥∥, τ1(x)≤ τ2(x), ∀x ∈ Rn.

Let us prove claim (c). Let x(tk) = xk for some xk ∈ Rn

and k ∈ N0. From the proof of Theorem 4, we see that the
event-triggering rule (5) ensures that

V̇ (x(t))≤−(1−ρ)hV (x(t)), ∀t ∈ [tk, tk + τ1(xk)),

where h :=
λmin(Q)

λmax(P)
. This implies that,

V (x(t))≤V (xk)e−(1−ρ)hτ , ∀t ∈ [tk, tk + τ1(xk)),

where τ = t − tk. Thus, for all t in the open interval (tk, tk +
τ1(xk)),

V (x(t))−V (xk)e−rhτ ≤V (xk)e−(1−ρ)hτ −V (xk)e−rhτ < 0,

where the last inequality follows from the fact that r < (1−
ρ). This implies that τ2(xk) ≥ τ1(xk) which completes the
proof of claim(c). Now, by using Theorem 4 and claim (c),
we can say that there exists a uniform positive lower bound
on the inter-event times generated by the event-triggering
rule (6) under the given conditions on the parameters r, ε

and the model uncertainty
∥∥Ãc

∥∥.
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Note that, in both Theorem 4 and Theorem 5, the condition
on the model uncertainty is expressed through some bound
on the modeling error Ãc that involves the error in both Â and
B̂. Instead, we can also provide some conservative bounds
on the individual errors in Â and B̂, respectively.

D. On Choosing the parameter T : Special Case of Polyno-
mial Control Input

One of the important parameters in the proposed event-
triggered parametrized control (ETPC) is the time horizon T
on which the control input is fitted to approximate an ideal
control input. Note that if the parameter ε , in the optimization
problem (4) is bounded as in Theorems 5 and 4, V̇ just after
each event is guaranteed to be sufficiently less than zero. This
property is independent of the value of T . Thus, T can take
any arbitrary positive value and still ensure strictly positive
inter-event times. Choosing very small value for T is likely
to give some thing close to a first-order hold control since
it would be akin to linearinzing the ideal control input at tk.
Choosing a very large T can lead to a greater fitting error in
the short-term just after tk and hence actually lead to smaller
inter-event times. Thus, there is clearly a tradeoff for tuning
the value of T . We cannot give insights into this problem for
a general set of functions Φ. However, in the special case
of Φ consisting of only polynomial functions, which is an
important class of functions, we can provide some insights
using Taylor’s remainder theorem.

Specifically, consider the special case where the control in-
put is a linear combination of the functions {1,τ,τ2, . . . ,τ p}.
In other words, the control input is a polynomial of degree p.
Under this special case, we can give more insights into the
effect of T , the length of the time horizon of the optimization
problem (4), on the norm of the fitting error u−Kx̂.

Proposition 6. (Effect of T on the performance of event-
triggered polynomial control). Consider the system (1) under
the parameterized control law (2), with Φ = {1,τ, . . . ,τ p},
whose coefficients are obtained by solving (4) for some ε ≥ 0.
Then, the norm of the polynomial fitting error u−Kx̂ has an
upper bound which is an increasing function of T .

Proof. For all t ∈ [tk, tk+1), ∃ j ∈ {1,2, . . . ,m} such that,

∥u(t)−Kx̂(t)∥ ≤
√

m∥u(t)−Kx̂(t)∥
∞
=
√

m|u j(t)−K j x̂(t)|

≤
√

m
∫ T

0
|u j(tk + τ)−K jeÂcτ x̂(tk)|dτ

≤
√

m
∫ T

0
|ū j(tk + τ)−K jeÂcτ x̂(tk)|dτ,

where ū j(tk + τ) := K j(I + Âcτ + Â2
cτ2

2! + . . . + Âp
c τ p

p! )x̂(tk).
The last inequality follows from the fact that ū j(tk + τ)
is a feasible solution of the optimization problem (4).
Note that, I + Âcτ + . . .+ Âp

c τ p

p! is the pth Taylor polyno-

mial of eÂcτ . By using Taylor’s remainder theorem, we
can say that

∥∥∥I + Âcτ + . . .+ Âp
c τ p

p! − eÂcτ

∥∥∥ ≤ M
(p+1)! |τ|

p+1 ≤

M
(p+1)! T p+1 for some M > 0. Thus,

∥u(t)−Kx̂(t)∥ ≤
√

m∥K∥∥x̂(tk)∥
M

(p+1)!
T p+2,

which completes the proof of this proposition.

IV. NUMERICAL EXAMPLES

In this section, we present two numerical examples to
illustrate our results.

Example 1: Consider the system

ẋ =
[

0 1
−2 3

]
x+

[
0
1

]
u =: Ax+Bu.

A has real eigenvalues at {1,2}. Let the available model
be Â = A + 0.05I and B̂ =

[
0 1.01

]T . The control gain
K = [−0.1510 −6.0396] ensures that Âc := Â+B̂K has real

eigenvalues at {−1,−2}. Let Q =

[
0.5 0.25

0.25 1.5

]
. We choose

the parameters ρ = 0.5, r = 0.45, σ = 0.1612 and ε = 0.031.
Here, all the parameters are chosen according to the bounds
given in our results. The norm of the model uncertainty,
Ãc := Âc − (A+BK), also satisfies the given bound in our
results. In this example, we consider the control input as a
linear combination of the set of functions {1,τ,τ2, . . . ,τ p}.
Figure 2 presents the simulation results of example 1 with

(a) Triggering instants (b) Convergence of V (x)

Fig. 2: Simulation results of Example 1.

p = 3, T = 1 and x(0) = [0.1 0.2]T . Figure 2a presents the
triggering time instants for both the event-triggering rules (5)
and (6). We can see that the number of triggering instants is
less for rule (6) compared to rule (5). Figure 2b shows the
convergence of V (x) for both the event-triggering rules. As
expected, V (x) converges faster with rule (5) compared to
that of rule (6).

Next, we consider 100 initial conditions uniformly sam-
pled from the unit sphere. Then, we calculate the aver-
age inter-event time (AIET) and minimum inter-event time
(MIET) over 100 events for each initial condition. The
average of the AIET and the minimum of the MIET over
the set of initial conditions for different event-triggering
rules with T = 2 and p = 3 are given in Table I. We
repeat the procedure for different values of T and p, and
the observations are tabulated in Table II and Table III,
respectively. Table I shows that both the event-triggering
rules (5) and (6) perform better in terms of the AIET
and MIET compared to the event-triggered ZOH control,
as commonly seen in the event-triggered control literature.
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TABLE I: Average of AIET and minimum of MIET, over
a set of initial conditions, for different event-triggered con-
trollers in Example 1.

Rule (5) Rule (5)
with
ZOH

Rule (6) Rule (6)
with
ZOH

Average of AIET 0.4853 0.0312 1.2212 0.3526
Minimum of MIET 0.0495 0.0070 1.1759 0.3046

Table II shows that as T , the length of the time horizon of
the optimization problems (4), increases both the average of
AIET and minimum of MIET decrease for both the event-
triggering rules (5) and (6). Table III shows that as p, the
degree of the polynomial control input, increases both the
average of AIET and minimum of MIET also increase for
both the event-triggering rules (5) and (6).

TABLE II: Average of AIET and minimum of MIET, over a
set of initial conditions, for different values of T with p = 3
in Example 1.

Average of AIET Minimum of MIET
T Rule (5) Rule (6) Rule (5) Rule (6)
1.5 0.5666 2.1745 0.0903 1.8110
2 0.4853 1.2212 0.0495 1.1759
2.5 0.3932 0.8981 0.0341 0.8174

TABLE III: Average of AIET and minimum of MIET, over a
set of initial conditions, for different values of p with T = 2
in Example 1.

Average of AIET Minimum of MIET
p Rule (5) Rule (6) Rule (5) Rule (6)
3 0.4853 1.2212 0.0495 1.1759
5 0.6187 1.7349 0.4263 1.6704
6 0.6935 1.7954 0.4846 1.6952

We also compare the performance of our control method
with the model-based event-triggered control method [8].
The average of AIET and minimum of MIET, respectively,
over a set of initial conditions for the model-based event-
triggered control method with the triggering rule (5) are
obtained as 0.6066 and 0.4585. For the same event-triggering
rule, our method has higher values for both the average of
AIET and minimum of MIET with T = 2 and p = 6.

Example 2: Next, we consider a 5
th

order system,

ẋ =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
4 −16 25 −19 7

x+


0 0
0 0
0 0
1 0
0 1

u =: Ax+Bu.

A has real eigenvalues at {1,1,1,2,2}. Let the avail-
able model be Â = A + 0.01I and B̂ = B. The control
gain K is designed such that Âc has real eigenvalues at
{−1,−1.5,−2,−2.5,−3}. Let Q = I and we choose the
parameters ρ = 0.38, r = 0.6, σ = 0.17 and ε = 0.008. Here
also, all the parameters are chosen according to the bounds

given in our results. The norm of the model uncertainty
satisfies the given bound in our results. In this example also,
we consider the control input as a polynomial of degree p.

(a) Triggering instants (b) Convergence of V (x)

Fig. 3: Simulation results of Example 2.

Figure 3 presents the simulation results for example 2
with p = 3, T = 1 and x(0) = [0.1 0.2 0.1 0.4 0.3]T .
Figure 3a presents the triggering time instants for both
the event-triggering rules (5) and (6). As in the previous
example, the number of triggering instants is less for rule (6)
compared to rule (5). Figure 3b shows the convergence of
V (x) for both the event-triggering rules. V (x) converges
much faster with rule (5) compared to that of rule (6).

As we did for the previous example, we calculate the
average of AIET and minimum of MIET over a set of 100
initial conditions uniformly sampled from the unit sphere
for different event-triggering rules with T = 0.5, p = 3 and
are given in Table IV. We repeat the procedure for different
values of T and the observations are tabulated in Table V.
Table IV shows that both the event-triggering rules (5)
and (6) perform significantly better in terms of the AIET
and MIET compared to the event-triggered ZOH control.

TABLE IV: Average of AIET and minimum of MIET, over
a set of initial conditions, for different event-triggering rules
in Example 2.

Rule (5) Rule (5)
with
ZOH

Rule (6) Rule (6)
with
ZOH

Average of AIET 0.1467 0.0002 0.8823 0.0982
Minimum of MIET 0.0014 0.00015 0.0460 0.0029

Table V shows that as T , the length of the time horizon of
the optimization problems (4), increases both the average of
AIET and minimum of MIET decrease for both the event-
triggering rules (5) and (6).

TABLE V: Average of AIET and minimum of MIET, over a
set of initial conditions, for different values of T with p = 3
in Example 2.

Average of AIET Minimum of MIET
T Rule (5) Rule (6) Rule (5) Rule (6)
0.5 0.1467 0.8823 0.0014 0.0460
1 0.0034 0.4705 0.0004 0.0062
1.5 0.002 0.3072 0.0002 0.0037

The average of AIET and minimum of MIET, respectively,
over a set of initial conditions for the model-based event-
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triggered control method with the triggering rule (5) are
obtained as 0.2279 and 0.0733. For the same event-triggering
rule, our method has comparable values of 0.2052 and
0.0691, respectively, for the average of AIET and minimum
of MIET with T = 0.2 and p = 3. In general, we can expect
model based control to generate larger inter-event times
compared to our approach with the same event-triggering
rule as the control signal in our approach is an approximation
of the model based control signal.

V. CONCLUSION

In this paper, we proposed a new control method called
event-triggered parameterized control (ETPC) for stabiliza-
tion of linear systems. In this control method, the control
input to the plant is a linear combination of a set of linearly
independent scalar functions that are continuously differen-
tiable. At each event, the coefficients of the parameterized
control input are chosen by minimizing the error in fitting
to a model based control signal. The parameters of the
updated control are then communicated to the actuator in
an event-triggered manner. We designed two event-triggering
rules that guarantee global asymptotic stability of the origin
of the closed loop system. We also showed that both the
event-triggering rules do not exhibit Zeno behavior for the
generated inter-event times. We illustrated our results through
numerical examples. We also compared the proposed control
method with the existing event-triggered control based on
zero-order-hold and showed a significant improvement in
terms of the average inter-event time.

Some advantages of the proposed control method is better
utilization of communication resources, lesser requirements
on computational resources at the actuator compared to
model based control and overcomes the synchronization,
privacy and security issues present in model based control.

Future work includes the generalization of this control
method to nonlinear and distributed control settings, analyti-
cal method to determine an optimal time horizon for function
fitting, control under quantization of the parameters, time
delays, desynchronized controller and actuator clocks, and a
control Lyapunov function or MPC approach to ETPC.

REFERENCES

[1] D. Hercog, Communication protocols: principles, methods and speci-
fications. Springer, 2020.

[2] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1680–1685, 2007.

[3] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduc-
tion to event-triggered and self-triggered control,” in IEEE Conference
on Decision and Control (CDC), 2012, pp. 3270–3285.

[4] M. Lemmon, “Event-triggered feedback in control, estimation, and
optimization,” in Networked control systems. Springer, 2010, pp.
293–358.
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