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Abstract— We introduce an observation-matrix-based frame-
work for fully asynchronous online Federated Learning (FL)
with adversaries. In this work, we demonstrate its effectiveness
in estimating the mean of a random vector. Our main result
is that the proposed algorithm almost surely converges to the
desired mean µ. This makes ours the first asynchronous FL
method to have an a.s. convergence guarantee in the presence
of adversaries. We derive this convergence using a novel
differential-inclusion-based two-timescale analysis. Two other
highlights of our proof include (a) the use of a novel Lyapunov
function to show that µ is the unique global attractor for our
algorithm’s limiting dynamics, and (b) the use of martingale
and stopping-time theory to show that our algorithm’s iterates
are almost surely bounded.

I. INTRODUCTION

Federated Learning (FL) [10] is a paradigm for multiple
edge/client nodes to collaborate and iteratively solve some
global problem with the help of a central server. It has
therefore garnered significant interest in machine [19] and
reinforcement learning [12]. However, most existing FL
methods do not account for failures or adversarial clients,
making them ineffective in practice. Also, among those that
do, a majority are synchronous [2], [5], [8], [9], [14], [18]:
the server waits for inputs from a large number of clients
before updating the global estimate. These approaches again
are impractical because many edge devices are frequently
offline and, when that is not the case, the (inevitable)
slow devices decide the overall performance. These issues
have put the focus on asynchronous FL, wherein the server
updates as soon as one node provides its input. Our work
introduces a radically new family of such FL methods.

To our knowledge, there exist only four asynchronous FL
methods in the literature: (i.) Kardam [4], (ii.) Zeno++ [15],
(iii.) AFLGuard [6], and (iv.) BASGD [17]. The first three
use a sophisticated scoring rule for filtering out malicious
estimates. However, Kardam’s issue is that it drops many
correct estimates during attacks. On the other hand, Zeno++
and AFLGuard require a separate validation dataset at the
parameter server, which is undesirable from the privacy
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viewpoint. Finally, BASGD is asynchronous only at the client
side: the time between successive server updates is dictated
by the stragglers, like in synchronous FL methods. Our
proposed approach has none of the above issues.

We only consider the mean estimation FL problem here
and discuss our proposed approach only in that context. This
problem involves p ≥ 1 clients (a small but unknown subset
of which are malicious), whose joint goal is to estimate the
mean µ of a random vector X ∈ Rd, where d ≤ p. At
its core, our approach considers a tall observation matrix
A ∈ Rp×d and provides each node i access to the IID
samples of the random variable Y (i) := aTi X, where T
denotes transpose and aTi is the i-th row of A. We task node
i to locally estimate the mean of Y (i). Separately, at every
instance n ≥ 0, the server is tasked to pick a client at random
and request for its current local estimate. A honest client is
expected to provide its actual estimate; the malicious agent
can act arbitrarily (it can even collude with other attackers).
The server then is to immediately update its µ-estimate using
the gradient of |aTi x−yn(i)|, i.e., using one update step of the
SGD algorithm that solves minx ‖Ax−E[Y ]‖1, where ‖ · ‖1
is the `1 norm. Clearly, the above algorithm is asynchronous
since the server updates the µ-estimate immediately upon
receiving an input from a client.

The basis for our above approach is as follows. Suppose
a matrix A and the vector b = Ax∗ are known, but not
the vector x∗. Then a natural way to recover x∗ is to solve
the linear system Ax = b. In [7], a variant of this problem
is discussed. There, the goal is again to recover x∗ but
assuming knowledge of only the vector b′ = b + e instead
of b. The vector e is presumed sparse and represents a one-
time malicious attack. Due to e’s sparsity, solving for x that
minimizes the `1-norm of Ax − b′ is now the natural way
to recover x∗. A key result in [7] is that the observation
matrix A being robust (see (3) in our work), i.e., has suitable
redundancy depending on e’s sparsity, is the necessary and
sufficient condition for x∗ to be the unique solution to this
`1-minimization problem. The vector corresponding to b in
our setup is E[Y ]. While b′ provides the value of b in
the non-attacked (but unknown) coordinates, E[Y ] is fully
unknown in our case. Thus, our proposed approach above
can be seen as a modification of the one in [7] that obtains
online estimates of both E[Y ] and µ simultaneously. Note
that the malicious agents in [7] attack only once. In contrast,
in our case, since the server (unknowingly) will query every
malicious node infinitely many times during the algorithm’s
run, each such node will have infinitely many opportunities
to poison the µ-estimation update rule.

Our main contributions can be summarized as follows.
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1) Algorithm: We propose a novel fully asynchronous FL
algorithm and demonstrate its effectiveness for mean
estimation. Unlike the sophisticated filtering scheme or
the non-corrupt private dataset of Kardam, Zeno++, and
AFLGuard, our approach uses a observation matrix to
handle adversaries. This matrix choice is not unique;
thus, we have a family of algorithms for solving the
same problem. Separately, since the gradient of the ‖·‖1-
error involves a sign function, our algorithm ensures
that the impact of an adversarial node in each iteration
is limited to a sign change.

2) Result: Our main result is that A being robust (as in
[7]) is again a necessary and sufficient condition for our
algorithm’s iterates to converge to µ almost surely. This
makes our proposed approach the first asynchronous FL
algorithm to have an a.s. convergence guarantee in the
presence of adversaries.

3) Analysis: Our analysis is novel compared to the existing
FL literature. It builds on the Differential Inclusion (DI)
and the two-timescale stochastic-approximation theory.
The two-timescale part arises because our approach
estimates E[Y ] and µ using two stepsize sequences that
decay to 0 at different rates. In contrast, we use a DI—
a set-valued generalization of an Ordinary Differential
Equation (ODE)—to mainly account for the multitude
of choices available to an adversarial client in each
iteration. DI theory is being used for the first time for
analyzing an algorithm in adversarial settings. There are
two additional highlights of our proof.

a) Lyapunov Function: Our algorithm is based on the
gradient-descent idea for minimizing ‖Ax− E[Y ]‖1.
Typically, for analyzing such a method, the natural
Lyapunov function would have been the objective
function. However, in our adversarial setting, we have
been unable to verify this claim. We instead prove
that ‖x− µ‖22 behaves as a Lyapunov function.

b) Boundedness of Iterates: A key step in any ODE/DI
based analysis [3] of stochastic algorithms is to show
that the algorithm’s iterates are stable. In this work,
we use a novel martingale and stopping time based
approach to show that the algorithm’s iterates are
almost surely bounded.

II. SETUP, ALGORITHM, AND MAIN RESULT

We describe here the statistical problem we study, our
proposed algorithm to solve it, and our main result that
describes the limiting behavior of this algorithm.

Setup: X ∈ Rd is a random variable with finite mean and
finite covariance matrix entries. There are p agents to collect
statistics about X, but an unknown subset M, with |M | ≤ m,
are malicious or adversarial. Specifically, the i-th agent has
access to samples of the random variable Y (i) := aTi X,
where ai ∈ Rd is a known deterministic vector. At time n ≥
1, a central server picks index in uniformly at random from
{1, . . . , p} and queries agent in for an independent sample
of Y (in). Agent in returns an actual sample if it is non-
adversarial, and an arbitrary real number otherwise (the value

can change on each query and can depend on the history1).
In either case, Yn(in) denotes the obtained sample.

Goal: Develop an online algorithm to estimate µ := E[X]
using the sequence (Yn(in)).

Algorithm: Our approach is based on the gradient descent
idea for minimizing ‖Ax−E[Y ]‖1. Starting from an arbitrary
x0 ∈ Rd and y0 ∈ Rp, our proposed algorithm to learn µ at
the central server is, for n ≥ 0,

xn+1 = xn + αnain+1
[sign(yn(in+1)− aTin+1

xn)]

yn+1 = yn + βn[Yn+1(in+1)− yn(in+1)]uin+1 ,
(1)

where ui is i-th column of the p×p-identity matrix and, for
any r ∈ R,

sign(r) =


−1 if r < 0,

0 if r = 0,

1 if r > 0.

(2)

In (1), the variables indexed by n are known at time n, while
the ones by n + 1 are not. Note that the coordinates of yn
corresponding to malicious nodes are directly fed into xn’s
update rule.

Assumptions: Apart from the conditions on X, (in), and
Yn(in) stated in the setup, we presume that the matrix A
and stepsize sequences (αn) and (βn) satisfy the following.
1) Observation matrix: The matrix A is tall (p > d), has

full column rank, and satisfies∑
i∈Kc

|aTi x| >
∑
i∈K
|aTi x| (3)

for all x ∈ Rd \ {0} and K ⊆ {1, . . . , p} with |K| = m.
2) Stepsize: (αn) and (βn) are monotonically decreasing

positive reals such that max{α0, β0} ≤ 1,
∑
n≥0 αn =∑

n≥0 βn =∞, limn→∞ αn/βn = limn→∞ βn = 0, and
max{

∑
n≥0 α

2
n,
∑
n≥0 β

2
n,
∑
n≥0 αnγn} < ∞, where

γn =
√
βn ln(

∑n
k=0 βk). An example is αn = n−α,

α ∈ (2/3, 1], and βn = n−β , β ∈ (1/2, 1]∩(2(1−α), α).

Our main result is stated below and is derived using a
DI-based set-valued analysis. As we discuss in Section II-A,
such an analysis is natural for (1) due to its sub-gradient
nature and, importantly, the presence of adversaries. Let h :
Rd → 2Rd

(the power set of Rd) be given by

h(x) =

{
1

p

p∑
i=1

aiλi : (λ1, . . . , λp) ∈ Λ(x)

}
, (4)

where Λ(x) includes all (λ1, . . . , λp) for which

λi ∈

{
{sign(E[Y (i)]− aTi x)}, i ∈M c and aTi x 6=E[Y (i)],

[−1,+1], otherwise.

Theorem 1. The following statements hold.
1) µ is the unique Globally Asymptotically Stable Equilib-

rium (GASE) for the DI

ẋ(t) ∈ h(x(t)). (5)

1Such adversaries are commonly referred to as omniscient.
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Fig. 1. Error incurred by Algorithm 1 (‖xn − µ‖) against the number of
iterations (n). Within each subplot, the same measurement model is used
with the only difference being the number of adversaries. The first subplot
concerns the geometric median problem with p = 5, while the second
considers a generic matrix A (see Section II-A).

2) There exists some constant Λ > 0 such that

lim sup
n→∞

‖yn − E[Y ]‖Mc

γn
≤ Λ a.s.,

where ‖y‖Mc =
√∑

i∈Mc y2(i).
3) xn → µ a.s.

The DI in (5) corresponds to the update rule of xn in (1)
with yn(i) ≡ E[Y (i)] for i ∈ M c, and the sign expression
replaced with an arbitrary value in [−1,+1], otherwise. Our
first result states that every solution of this DI will converge
to µ, irrespective of the sign choices made at the adversarial
nodes (in a continuous time sense). The second statement
provides the asymptotic rate at which |yn(i)−E[Y (i)]| → 0,
i ∈ M c, on every sample path. While this result assumes
that the stepsizes are square-summable, it can be extended
to cover the case of even non-square summable stepsizes;
see [13] for details. Our third and final result states that
the actual (xn) iterates in (1) also behave like the solutions
of (5) and almost surely converge to µ. However, because
the sign function is not continuous, this is not a simple
consequence of the first two statements. Instead, we have
to rely on a more complex two-timescale DI analysis, and a
separate boundedness result for (xn) based on the theory of
martingales and stopping times.

A. Motivation for a DI-based Analysis

In this subsection, we give a simple example on why
our algorithm will converge to µ even in the presence of
adversarial measurements. We use a simplified set-up to
illustrate the necessity of the DI analysis.

Let A be a vector of all ones. This implies that EY (i) =
µ ∈ R, for all i. Our problem setup then reduces to
computing x ∈ R that minimises

∑p
i=1 |x − EY (i)|. The

solution to this minimisation problem is called the geometric
median [14]. Consider Algorithm (1) in the deterministic
setting, where all agents i are given EY (i), instead of having

to estimate it. Then, yn(i) will be µ, for i ∈ M c, and any
arbitrary value otherwise. It can be seen that the synchronous
version of update (1) can be written as

xn+1 = xn + αn

[ ∑
i∈Mc

λn(i)︸ ︷︷ ︸
Unperturbed subgradient

+
∑
i∈M

λn(i)︸ ︷︷ ︸
Adversarial noise

]
,

where λn(i) = sign(µ − xn), if i ∈ M c and xn 6= µ, and
an arbitrary value in [−1, 1], otherwise. Clearly, λn(i) is the
subgradient of −|x−EY (i)| when i ∈M c and the perturbed
subgradient given by the adversary, otherwise. The above
update rule cannot be analysed using traditional ODE based
approaches. Firstly, the update can now take a set of values
at each xn. This is because λn(i), i ∈ M, can take any
value in [−1, 1], regardless of xn. Moreover, sign(µ− x) is
discontinuous at x = µ, while ODE approaches require that
this function be Lipschitz continuous. Thus, the differential
inclusion approach is preferred since it is capable of handling
discontinuities and capturing the evolution of a set-valued
map. The associated DI for the above update is given by:

ẋ(t) ∈

{
|M c|sign(µ− x) +

∑
i∈M

vi : vi ∈ [−1, 1]

}
,

when x 6= µ and

ẋ(t) ∈

{
p∑
i=1

vi : vi ∈ [−1, 1]

}
,

when x = µ. The DI is modified at x = µ to make it
continuous in a set-valued sense.

Note that if |M c| > |M | (equivalent to (3)), it follows that
limt→+∞ x(t) = µ. The intuition is as follows: if µ 6= x,
the sign of |M c|sign(µ− x) +

∑
i∈M vi will be always the

same as the sign(µ− x) and therefore the drift of the DI is
controlled by the sign(µ−x) and not by the adversaries. The
performance of our algorithm for this problem with p = 5 is
shown in Figure 1. Here, condition (3) holds if |M | = 2, but
not when |M | = 3. Consequently, our algorithm converges in
the presence of two adversaries but diverges in the presence
of three adversaries.

More generally, condition (3) is necessary and sufficient
for our algorithm to converge. We emphasize that this
condition is necessary even in the absence of noise and thus
cannot be relaxed. A less obvious case where condition (3)
holds is given in the bottom subplot of Figure 1. For the
matrix A in this example, the condition holds for |M | = 1,
but not when |M | = 2.

III. PROOF OF THEOREM 1

We first discuss our proof strategy and then provide the
details. Since yn(i)’s estimate for i ∈ M c is not influenced
by the Y samples of other nodes, one would intuitively
expect ‖yn − E[Y ]‖Mc → 0. Hence, (5) is the natural
object for studying (xn)’s behaviors. However, because the
sign function is discontinuous, (xn)’s evolution cannot be
viewed as a simple perturbation of (5)’s solutions as in [3,
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pg. 17]. Instead, we rely on a two-timescale DI analysis [16].
Henceforth, ‖ · ‖ will denote the Euclidean norm.

A. Informal Outline of Two-timescale Analysis

Our algorithm (1) is of a two-timescale nature because
αn/βn → 0. Thus, the changes in the xn values eventually
appear negligible compared to that of yn, which, in turn,
implies (xn) and (yn)’s behaviors can be studied in a
decoupled fashion. Loosely, our analysis proceeds via the
following prescribed steps from [16].
1) (yn)’s analysis: We set xn ≡ x for some arbitrary x, and

look at yn(i)’s evolution for i ∈ M c; we ignore what
happens at the adversarial nodes. In our case, yn(i)’s
evolution is not influenced by the value of x in any
way. Further, its limiting ODE can be guessed to be
ż(t) = 1

p (E[Y (i)] − z(t)). Since this scalar ODE is
linear and has E[Y (i)] as its unique GASE, it follows
from a standard single-timescale stochastic approximation
analysis [3, Chapters 2 and 3] that |yn(i)−E[Y (i)]| → 0.

2) (xn)’s analysis: From (xn)’s perspective, (yn) would
appear to have converged to its limit point. Accordingly,
in xn’s update rule, we now set yn(i) = E[Y (i)], for
i ∈ M c, and allow for arbitrary values for adversarial
i’s. This leads to the set-valued DI dynamics (5). In the
rest of this section, we formally prove that µ is its only
attractor (Section III-B), the original (xn) sequence in (1)
is almost surely bounded (Section III-C), and it almost
surely converges to µ (Section III-D).

B. Analysis of the DI in (5)

We first check that (5) is a well-defined DI. Recall that,
for an (autonomous) ODE to be well-defined, one sufficient
condition is that its driving function be Lipschitz continuous.
In particular, this guarantees the existence and uniqueness of
a solution for any initial point. Similarly, a DI is well-defined
when its set-valued driving function h is Marchaud, i.e.,
Lipschitz continuous in a set-valued sense (defined below).
In general, solutions of a DI from a given starting point are
not unique, but the above condition ensures existence.

For x ∈ Rd, let Z(x) := M ∪ {i : aTi (x− µ) = 0}.

Lemma 1. The function h defined in (4) is Marchaud, i.e.,
1) h(x) is convex and compact for all x ∈ Rd;
2) ∃Kh > 0 such that, for all x ∈ Rd, supy∈h(x) ‖y‖ ≤

Kh(1 + ‖x‖); and
3) h is upper semicontinuous or, equivalently, {(x, θ) ∈

Rd × Rd : θ ∈ h(x)} is closed.
Hence, the DI in (5) is well-defined.

Proof: The first two conditions are easy. For h’s upper
semi-continuity, it suffices to check if (xn) and (θn) are such
that xn → x, θn ∈ h(xn) ∀n, and θn → θ, then θ ∈ h(x).

For i ∈ Z(x)c, aTi (x − µ) is either > 0 or < 0. This
fact along with xn → x then implies ∃n0 ≥ 0 such that, for
n ≥ n0, we have sign(aTi (xn − µ)) = sign(aTi (x − µ)) for
all i ∈ Z(x)c and, hence, Z(x)c ⊆ Z(xn)c. Thus, h(xn) ⊆
h(x) for all n ≥ n0, which implies (θn)n≥n0 ⊆ h(x). The
desired result now follows since h(x) is compact.

We now show that µ is (5)’s unique GASE.
Proof of Statement 1, Theorem 1: It suffices to show

that V (x) = 1
2‖x−µ‖

2 is a Lyapunov function [1] for the DI
in (5) with respect to {µ}. Clearly, V (x) = 0 if and only if
x = µ. Further, for any x 6= µ and θ ≡ 1

p

∑p
i=1 aiλi ∈ h(x),

∇V (x)T θ

=
1

p

p∑
i=1

λia
T
i (x− µ)

=
1

p

[
−
∑
i∈Mc

|aTi (x− µ)|+
∑
i∈M

λia
T
i (x− µ)

]
(6)

≤ 1

p

[
−
∑
i∈Mc

|aTi (x− µ)|+
∑
i∈M
|aTi (x− µ)|

]
(7)

< 0, (8)

where (6) holds since λia
T
i (x − µ) = −|aTi (x − µ)| for

i ∈ M c, (7) is true because r ≤ |r| for any r ∈ R and
|λi| ≤ 1, while (8) follows from (3) since |M | ≤ m.

The claim now follows from [1, Proposition 3.25].

C. Almost Sure Boundedness of (xn)

We use martingale and stopping time theory to show that
(xn) obtained using (1) is almost surely bounded.

Our proof needs a few intermediate results. In relation to
(xn) and (yn) in (1), define the following. For n ≥ 0, let

bn =
1

p

∑
i∈Mc

ai[sign(yn(i)− aTi xn)

− sign(E[Y ](i)− aTi xn)], (9)

g(xn, yn) =
1

p

∑
i∈Mc

aisign(E[Y ](i)− aTi xn)

+
1

p

∑
i∈M

aisign(yn(i)− aTi xn),

and

Mn+1 = aTin+1
[sign(yn(in+1)− aTin+1

xn]

− g(xn, yn)− bn. (10)

In the above terms, the update rule in (1) can be written as

xn+1 = xn + αn[g(xn, yn) + bn +Mn+1]. (11)

Note that g(xn, yn) ∈ h(xn). Therefore, one can view
g(xn, yn) as the update direction that is prescribed by (5),
bn as a perturbation that arises since, for i ∈ M c, yn(i) 6=
E[Y (i)] a.s. for any finite n, and Mn+1 as the noise.

Lemma 2. The following statements are true.
1) For x ∈ Rd, let φ(x) = 1

p

∑
i∈Mc

|aTi x| − 1
p

∑
i∈M
|aTi x|.

Then there exists η > 0 such that φ(x) ≥ η‖x‖ ∀x.
2) |(xn − µ)T bn| ≤

2
√
|Mc|
p ‖yn − E[Y ]‖Mc .

3) (x− µ)T θ ≤ −η‖x− µ‖ for any θ ∈ h(x).
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4) Let CM := sup1≤i≤p ‖ai‖. Then, for any n ≥ 0,

‖xn+1 − µ‖2 ≤ ‖x0 − µ‖2 +

n∑
k=0

αk(xk − µ)TMk+1

+
2

p

n∑
k=0

αk‖yk − E[Y ]‖Mc + C2
M

n∑
k=0

α2
k.

Proof: The first statement is trivially true for x = 0.
Hence, suppose x 6= 0. It suffices to show that ∃ η > 0 such
that φ(x) ≥ η for any x with unit norm. However, this holds
since (a) φ is continuous and {x ∈ Rd : ‖x‖ = 1} is a
compact set: thus, φ attains its minimum; and (b) φ(x) > 0
for any x 6= µ on account of (3).

For the second statement, note that

|sign(r1 − r0)− sign(r2 − r0)| ≤ 2δ|r1−r2|≥|r0−r2|

for any r0, r1, r2 ∈ R, where δ denotes the indicator function.
Combining this with the fact that E[Y (i)] = aTi µ, for i ∈
M c, gives

|(xn − µ)T bn|

≤ 2

p

∑
i∈Mc

|aTi (xn − µ)|δ|yn(i)−E[Y (i)]|≥|aTi xn−aTi µ|

≤ 2

p

∑
i∈Mc

|yn(i)− E[Y (i)]|δ|yn(i)−E[Y (i)]|≥|aTi xn−aTi µ|

≤ 2

p

∑
i∈Mc

|yn(i)− EY (i)|

≤
2
√
|M c|
p

‖yn − E[Y ]‖Mc ,

as desired.
We now discuss the third statement. Let θ ∈ h(x) be

arbitrary. Then,

(x−µ)T θ

≤ 1

p

[
−
∑
i∈Mc

|aTi (x− µ)|+
∑
i∈M
|aTi (x− µ)|

]
≤ − φ(x− µ),

where the first relation follows as in (7), and the second
relation holds from φ’s definition. The claim now follows
from our first statement above.

Finally, we derive the fourth statement. From (11),

‖xn+1−µ‖2 = ‖xn−µ‖2+α2
n‖g(xn, yn)+bn+Mn+1‖2

+ 2αn(xn − µ)T [g(xn, yn) + bn +Mn+1].

Statement 3 along with the fact that g(xn, yn) ∈ h(xn)
shows (xn−µ)T g(xn, yn) ≤ −η‖xn−µ‖, while Statement
2 gives the bound on (xn−µ)T bn. Separately, ‖g(xn, yn) +
bn +Mn+1‖ = ‖ain+1

‖ ≤ CM . It now follows that

‖xn+1 − µ‖2 ≤ ‖xn − µ‖2 − αnη‖xn − µ‖

+
2
√
|M c|αn
p

‖yn−E[Y ]‖Mc+αn(xn−µ)TMn+1+C2
Mα

2
n.

The desired claim is now easy to see.
Presuming Statement 2 in Theorem 1 holds, we are now

ready to show that (xn) is bounded almost surely,

Proposition 1. sup
n≥0
‖xn‖ <∞ a.s.

Proof: Let (γn) be as in Theorem 1. Fix an arbitrary

integer r ≥ 1, and let Cr :=
2r
√
|Mc|
p

∑∞
k=0 αkγk +

C2
M

∑∞
k=0 α

2
k < ∞, and T (r) be the stopping time

inf
{
n ≥ 0 : 1

γn
‖yn − E[Y ]‖Mc > r

}
. Next, for n ≥ 0, let

Sn = ‖x0 − µ‖2 + 2

n−1∑
k=0

αk(xk − µ)TMk+1 + Cr.

Clearly, (Sn) and, hence, (Srn) ≡ (Sn∧T (r)) is a martingale.
Let (xrn) ≡ (xn∧T (r)). Then Statement 4 of Lemma 2

shows ‖xrn − µ‖2 ≤ Srn ∀n ≥ 0. This implies (Srn) is a
non-negative martingale and, hence, converges almost surely.
Therefore, (xrn) is bounded almost surely.

Finally, note that

E :=

{
sup
n≥0
‖xn‖ =∞

}
∩

[ ∞⋃
r=1

{
sup
n≥0

‖yn − E[Y ]‖Mc

γn
≤ r
}]

=

∞⋃
r=1

{
sup
n≥0
‖xrn‖ =∞, sup

n≥0

‖yn − E[Y ]‖Mc

γn
≤ r
}
(12)

⊆
∞⋃
r=1

{
sup
n≥0
‖xrn‖ =∞

}
,

where (12) follows from the fact that supn≥0
‖yn−E[Y ]‖Mc

γn
≤

r implies xn = xrn for all n. Since (xrn) is almost surely
bounded for any r ≥ 1, we get P(E) = 0. From Statement 2
in Theorem 1, we also have that

P

( ∞⋃
r=1

{
sup
n≥0

‖yn − E[Y ]‖Mc

γn
≤ r
})

= 1.

The desired claim now follows since, for any events E1 and
E2, P(E1) = 1 and P(Ec2 ∩ E1) = 0 imply P(E2) = 1.

D. Rest of the Proof

In this section, we discuss the proofs of Statements 2 and
3 of Theorem 1.

Statement 2 follows from [11, Theorem 1], which provides
a law of iterated logarithm type result for generic stochastic
approximation algorithms. That work assumes that the iter-
ates almost surely converge, but this can be shown using the
results in [3, Chapters 2 and 3], as discussed in Section III-A.

To prove Statement 3, we rely on [16, Theorem 4], which
looks at convergence of generic two-timescale algorithms
with set-valued limiting dynamics. Specifically, this latter
result assumes (xn)’s limiting DI has a global attractor
(see A10 there), and states that, if ten other conditions
(labelled A1 - A9 and A11 there) hold, then xn converges
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to this global attractor a.s. These ten conditions concern the
behaviors of xn and yn’s driving functions, stepsizes, and
noise. Below we provide a brief commentary on why these
assumptions hold for (1). The reader should note that the role
of xn and yn is flipped in [16]: the changes in yn eventually
appear negligible compared to that of xn. The analysis there
also accounts for Markov noise, but it can ignored using the
approach suggested in Remark 3 there. Finally, for all of
(yn)’s analysis below, we ignore the evolution at adversarial
nodes: instead, we account for them directly in the definition
of the DI in (5).

Assumptions A1 and A2 of [16] hold when the limiting
DIs associated with xn and yn are Marchaud. For (1),
this can be established like in the proof of our Lemma 1.
Assumptions A3 and A4 concern Markov noise and, hence,
trivially hold true in our case. Assumption A5 is on stepsizes
and it holds in our case because we also assume those
conditions. Assumption A8 there holds if the (xn) and
(yn) iterates are bounded almost surely. Proposition 1 here
proves it for (xn), while, for (yn), it follows easily from [3,
Chapter 3, Theorem 7] due to its linear nature. Assumptions
A6 and A7 hold if the contributions of the additive noise
terms are eventually negligible. This can be established as
in [3, Chapter 2, (2.19)], which holds in our case because our
iterates are bounded a.s. and the noise growth rate condition
of (2.13) trivially holds in our context. Assumptions A9 and
A11 hold, if for each fixed x, the limiting DI for (yn) has
a unique GASE. As discussed in Section III-A, in our case,
the dynamics of (yn) is not influenced by the value of x
and {E[Y (i)] : i ∈ M c} is the global attractor for any x.
Finally, Assumption A10 requires that (xn)’s limiting DI has
a unique global attractor. We established this in Statement 1
of our Theorem 1.

IV. DISCUSSIONS AND FUTURE DIRECTIONS

In this work, we developed a fully-asynchronous algorithm
for mean estimation in the presence of adversaries. There-
after, we developed a novel DI-based two-timescale analysis
to rigorously show its a.s. convergence.

We now discuss some simple extensions of our work,
where we can relax certain assumptions.

Non-zero kernel: The condition (3) fails for all matrices
A with a non-zero kernel. Thus, Theorem 1 cannot be used
for fat matrices or tall matrices with non full rank. However,
we can obtain a similar result by relaxing condition (3) to
hold only for points outside the kernel of A. Note that in
this case, there are several x ∈ Rd such that Ax = EY .
Under this modified assumption, it can be shown that the
DI always converges to one such point. To see this, the
function 1

2‖x−µ‖
2
2, with µ as solution of Ax = EY , would

remain a Lyapunov function in this case. Applying a variant
of LaSalle’s invariance theorem would then give us that the
DI converges to an invariant subset of {x : Ax = EY }.

Perturbed samples: Suppose that, instead of being pro-
vided samples of Y (i) = aTi X , we only have access to sam-
ples of form Y (i) = aTi X+b(i), where b(i) is some random
or deterministic perturbation. The only condition imposed on

b(i) is that its magnitude remains bounded by some constant
B for each i. We can extend the result in Theorem 1 to this
setting using similar arguments as discussed in the previous
case. However, the Lyapunov function would need to be re-
defined and may have discontinuous derivatives.
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