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Abstract— The proliferation of behind-the-meter (BTM) dis-
tributed energy resources (DER) within the electrical dis-
tribution network presents significant supply and demand
flexibilities, but also introduces operational challenges such as
voltage spikes and reverse power flows. In response, this paper
proposes a network-aware dynamic pricing framework tailored
for energy-sharing coalitions that aggregate small, but ubiqui-
tous, BTM DER downstream of a distribution system operator’s
(DSO) revenue meter that adopts a generic net energy metering
(NEM) tariff. By formulating a Stackelberg game between the
energy-sharing market leader and its prosumers, we show that
the dynamic pricing policy induces the prosumers toward a
network-safe operation and decentrally maximizes the energy-
sharing social welfare. The dynamic pricing mechanism involves
a combination of a locational ex-ante dynamic price and an
ex-post allocation, both of which are functions of the energy
sharing’s BTM DER. The ex-post allocation is proportionate
to the price differential between the DSO NEM price and
the energy-sharing locational price. Simulation results using
real DER data and the IEEE 13-bus test systems illustrate the
dynamic nature of network-aware pricing at each bus, and its
impact on voltage.

I. INTRODUCTION

W
HILE BTM DER are primarily adopted to provide pro-

sumer services such as bill savings and backup power,

they can also be leveraged, under proper consumer-centric

mechanism design, to provide various grid services such as

voltage control, system support during contingencies, and

new capacity deferrals [2]. Harnessing the flexibility of BTM

DER participation in grid services is usually challenged by

the DSO’s lack of visibility and controllability on BTM DER

alongside the absence of network-aware pricing mechanisms

that can induce favorable prosumer behaviors.

The rising notion of energy sharing of a group of pro-

sumers under the DSO’s tariff presents a compelling solution

to optimize DER utilization, comply with dynamic grid

constraints, and promote renewable energy integration. A

major barrier facing the practical implementation of energy-

sharing markets is the incorporation of network constraints

into their pricing, and aligning the objectives of the self-

interested energy-sharing prosumers with the global objective

of maximizing the coalition’s welfare.

Despite the voluminous literature on energy-sharing sys-

tems’ DER control and energy pricing, network constraints

are rarely considered due to the theoretical complexity they
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introduce. A short list of recent works on energy commu-

nities and energy sharing that neglected network constraints

can be found here [3], [4], [5], [6]. Some works considered

a coarse notion of network constraints by incorporating

operating envelopes (OEs) at the point of common coupling

between the energy-sharing system and the DSO [7], [8]

that limit the export and imports between the two entities.

Others considered OEs at the prosumer’s level [9], [10].

Few papers considered network-aware pricing mechanisms

in distribution networks, such as [11], [12], [13] and the

line of literature on distribution locational marginal prices

(dLMP), e.g. [14], [15].

Our work differs from the existing literature in two

important directions. Firstly, we consider network-aware

pricing under a generic DSO NEM tariff constraint that

charges the energy-sharing platform different prices based

on its aggregate net consumption. Secondly, the dynamic

network-aware pricing of a platform that is subject to the

DSO’s fixed and exogenous NEM price gives rise to a

market manager’s profit/deficit that needs to be re-allocated

to the coalition members. We shed light on a unique re-

allocation rule that makes the prosumers’ payment functions

uniform, even if they are located on different buses and the

network constraints are binding. Such a re-allocation rule is

highly relevant when charging end-users, as it avoids ‘undue

discrimination’, which is one of the key principles of rate

design outlined by Bonbright [16].

In this paper, we present a network-aware and welfare-

maximizing pricing policy for energy-sharing coalitions that

aggregate DER downstream of a DSO’s revenue meter that

charges the energy-sharing platform based on a generic NEM

tariff. The pricing policy announces an ex-ante locational,

threshold-based, and dynamic price to induce a collective

prosumer response that decentrally maximizes the social

welfare, while abiding by the network voltage constraints. An

ex-post charge/reward is then used to ensure the market oper-

ator’s profit neutrality. We show that the market mechanism

achieves an equilibrium to the Stackelberg game between the

energy-sharing market operator and its prosumers. Although

network constraints couple the decisions of the energy-

sharing prosumers, which give rise to locational marginal

prices (LMP), we show that by adopting a unique pro-

portional re-allocation rule, the payment function becomes

uniform for all prosumers, even if they are located at different

buses in the energy-sharing network. Numerical simulations

using the IEEE 13-bus test feeder and real BTM DER

data shed more light on how the pricing policy influences

prosumers’ response to ensure safe network operation.
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This paper extends our work on Dynamic NEM (D-NEM)

without OEs [4] and with OEs [10] by incorporating network

constraints, which add substantial complexity, primarily due

to coupling of the DER decisions across network buses.

For the column vector x, [x]+, and [x]− represent its

positive and negative elements. The notation [x]xx represents

the projection of x into the closed and convex set [x, x] as

per the rule [x]xx := max{x,min{x, x}}. The notation is also

used for vectors, i.e., [x]xx.

II. PROPOSED FRAMEWORK AND NETWORK MODEL

We consider the problem of designing a welfare-

maximizing and network-aware pricing policy for an energy

sharing system that bidirectionally transacts energy and

money with the DSO under a general NEM tariff. Under

NEM, the energy sharing platform imports from the DSO at

an import rate if it is net-consuming, and collectively exports

from the DSO at the export rate if it is net-producing. A

budget-balanced market operator is responsible for announc-

ing the market’s pricing policy. The market operator uses

spatially varying pricing signals to adhere to its network’s

operational constraints communicated by the DSO.1 We

assume that the timescale of community members’ decision

is equivalent to that of the NEM netting period [17], which

allows us to adopt a single time step formulation.

A radial low voltage distribution network flow model is

used to model the network power flow [18], [19]. Consider

a radial distribution network described by G = (B,L),
with B = {1, . . . , B} as the set of energy sharing buses,

excluding bus 0, and L = {(i, j)} ⊂ B × B as the set of

distribution lines between the buses, with i, j as bus indices.

The root bus 0 represents the secondary of the transformer

and is referred to as the slack bus (substation bus). The

natural radial network orientation is considered, with each

distribution line pointing away from bus 0.

For each bus i ∈ B, denote by Li ⊆ L the set of lines on

the unique path from buses 0 to i, and by Zi, qi the active

and reactive power consumptions of bus i, respectively. The

magnitude of the complex voltage at bus i is denoted by vi,
and we denote the fixed and known voltage at the slack bus

by v0. For each line (i, j) ∈ L, denote by rij and xij its

resistance and reactance. For each line, (i, j) ∈ L, denote

by Pij and Qij the real and reactive power from buses i to

j, respectively. Let ℓij denote the squared magnitude of the

complex branch current from i to j.
We adopt the distribution flow (DistFlow) model, intro-

duced in [18], to model steady state power flow in a radial

distribution network, as

Pij = −Zj +
∑

k:(j,k)∈L

Pjk + rijℓij (1a)

Qij = −qj +
∑

k:(j,k)∈L

Qjk + xijℓij (1b)

v2j = v2i − 2 (rijPij + xijQij) +
(
r2ij + x2ij

)
ℓij , (1c)

1We posit that such DER aggregation schemes are informed by the
DSO about their networks’ information, including OEs, line thermal limits,
voltage limits, among others.

where ℓij = (P 2
ij +Q2

ij)/v
2
i is the line losses, (1a)-(1b) are

the active and reactive power balance equations, and (1c)

is the voltage drop. We exploit a linear approximation of

the DistFlow model above that ignores line losses, given

that in practice ℓij ≈ 0 for all (i, j) ∈ L. Therefore, the

linearized Distflow (LinDistFlow) equations are given by re-

writing (1a)-(1c) to

Pij = −
∑

k∈O(j)

Zk, Qij = −
∑

k∈O(j)

qk

v2j = v2i − 2 (rijPij + xijQij) ,

where O(j) represent the set node j’s descendants, including

node j, i.e., O(j) := {i : Lj ⊆ Li}. This gives a solution for

v2i in terms of v20 , as

v20 − v2i = −2
∑

j∈B

R̃ijZj − 2
∑

j∈B

X̃ijqj ,

where

R̃ij :=
∑

(h,k)∈Li∩Lj

rhk, X̃ij :=
∑

(h,k)∈Li∩Lj

xhk (3)

The LinDistFlow can be compactly written as,

v = −RZ −Xq + v201, (4)

where v := (v21 , . . . , v
2
B),Z := (Z1, . . . , ZB), q :=

(q1, . . . , qB), and R := [2R̃ij ]B×B and X := [2X̃ij ]B×B

are the resistance and reactance matrices, respectively. We

treat the reactive power q as given constants rather than

decision variables, which allows us to write (3) as

v = −RZ + v̂, (5)

where v̂ := −Xq+v201. The voltage magnitude vector above

is constrained as

vmin � v � vmax, (6)

where vmin := v2min1 and vmax := v2max1. Given that the

second term in (5) is fixed, we re-write (6) to

v � v � v, (7)

where v := vmax − v̂ and v := v̂−vmin. We will impose (7)

on the operation of the energy-sharing market.

III. ENERGY SHARING MATHEMATICAL MODEL

Let N := {1, . . . , N} denote the set of energy-sharing

system’s prosumers. Every prosumer n is connected to one

of the B buses in the considered radial network through its

revenue meter that measures the prosumer’s net consumption

and BTM generation. Figure 1 shows an example 4-bus

energy-sharing platform. We denote the set of prosumers

connected to bus i ∈ B by Ni, hence, N =
⋃

i∈B Ni. In this

section, we model prosumers’ DER in §III-A, and payment

and surplus functions in §III-B, followed by a formulation

of the proposed bi-level program in §III-C.
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Fig. 1. A 4-bus energy-sharing platform. Z0, Zi, zn ∈ R are the net
consumption of the whole energy sharing platform, net consumption of bus
i, and net consumption of prosumer n, respectively. zn ≥ 0 and z

n
≤ 0

are the prosumer’s import and export OEs, respectively.

A. DER Modeling

Prosumers’ DER consists of BTM renewable distributed

generation (DG) and flexible loads (decision variables). The

random renewable DG output of every prosumer n ∈ N is

denoted by gn ∈ R+. The vector of prosumers’ DG output is

denoted by g := (g1, . . . , gN ), and the aggregate DG output

in the energy-sharing platform is defined by G0 =
∑

n∈N gn.

The flexible loads’ energy consumption vector is denoted

by dn ∈ R
K
+ , where K := {1, . . . ,K} is the load (device)

bundle. The devices are subject to their flexibility limits, as

dn ∈ Dn := [dn,dn], ∀n ∈ N , (8)

where dn and dn are the device bundle’s lower and upper

consumption limits of prosumer n ∈ N , respectively.

The net consumption zn ∈ R of each prosumer is the dif-

ference between its gross consumption and BTM generation,

hence zn = 1
⊤dn − gn.2 The aggregate energy-sharing net

consumption is therefore Z0 =
∑

n∈N zn =
∑

i∈B Zi.

B. Payment, Surplus, and Profit Neutrality

The energy sharing operator designs a pricing policy

χ for its members, which specifies the payment function

for each prosumer n ∈ N under χ, denoted by Cχn (zn).
Energy-sharing prosumers are assumed to be rational and

self-interested. Therefore, they schedule their DER based on

surplus maximization. Prosumer surplus is given by

Sχn(dn, gn) := Un(dn)− Cχn (zn), zn = 1
⊤dn − gn, (9)

where for every n ∈ N , the utility function of the consump-

tion bundle Un(dn) is assumed to be non-decreasing, addi-

tive, strictly concave, and continuously differentiable with a

marginal utility function Ln := ∇Un = (Ln1, . . . , LnK).
Denote the inverse marginal utility vector by fn :=
(fn1, . . . , fnK) with fnk := L−1

nk , ∀n ∈ N , k ∈ K.

1) Energy Sharing Payment: The operator transacts with

the DSO under the NEM X tariff, introduced in [20], which

charges the energy sharing coalition based on whether it is

2The proposed pricing policy can be generalized to incorporate OEs with
only little mathematical complication. We show this in the appendix.

net-importing (Z0 > 0) or net-exporting (Z0 < 0) as

πNEM(Z0) =

{

π+, Z0 ≥ 0

π−, Z0 < 0
, CNEM(Z0) = πNEM(Z0) · Z0,

(10)

where (π+, π−) ∈ R+ are the buy (retail) and sell (export)

rates, respectively. We assume π+ ≥ π−, in accordance with

NEM practice [17], which also eliminates risk-free price

arbitrage. The operator of the energy sharing regime is profit-

neutral; a term we define next.

Definition 1 (Profit neutrality): The operator is profit-

neutral if its pricing achieves the following
∑

n∈N

Cχn (zn) = CNEM(
∑

n∈N

zn).

The challenging question we ask is how can the operator

design a payment Cχn , for every n ∈ N , to achieve network-

awareness, profit neutrality and equilibrium to the energy-

sharing market, which we define next.

C. Energy Sharing Stackelberg Game

We formulate this game as a bi-level mathematical pro-

gram with the upper-level optimization being the operator’s

pricing problem, and the lower-level optimizations represent-

ing prosumers’ optimal decisions.

Denote the consumption policy of the nth prosumer, given

the pricing policy χ, by ψn,χ. Formally,

ψn,χ : R+ → Dn, gn
Cχ

n7→ ψn,χ(gn),

with ψχ := {ψ1,χ, . . . , ψN,χ} as the vector of prosumers’

policies. The operator strives to design a network-aware and

welfare-maximizing pricing policy χ♯ψ (given ψ), where χ♯ψ :

R
N
+ → R

N , g 7→ Cχ := (Cχ1 , . . . , C
χ
N ), and the welfare is

defined as the sum of total prosumers’ surplus, as

Wχ,ψχ :=
∑

n∈N

Sχn(ψn,χ(gn), gn),

The bi-level program can be compactly formulated as

maximize
C(·)

(

Wχψ =
∑

n∈N

Un(d
ψ♯

χ
n )− CNEM(Z

ψ♯
χ

0 )

)

(11a)

subject to
∑

n∈N

Cχn (z
ψ♯

χ
n ) = CNEM(Z

ψ♯
χ

0 ) (11b)

Z
ψ♯

χ

0 =
∑

n∈N

(
1
⊤d

ψ♯
χ

n − gn
)

(11c)

(η,η) v � −RZψ
♯
χ � v (11d)

for all n ∈ N (11e)

d
ψ♯

χ
n := argmax

dn∈Dn

Sχn(dn, gn):= Un(dn)− Cχn (zn)

(11f)

subject to zn = 1
⊤dn − gn, (11g)

where

Zψ
♯
χ := (

∑

n∈N1

1
⊤d

ψ♯
χ

n − gn, . . . ,
∑

n∈NB

1
⊤d

ψ♯
χ

n − gn).
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In the following, we will assume that problem (11) is

feasible, i.e., a solution meeting all the constraints exists.

The program in (11) defines the Stackelberg strategy.

Specifically, (χ∗,ψ∗) is a Stackelberg equilibrium since

(a) for all χ ∈ X and n ∈ N , Sχn(ψ
∗
n(gn), gn) ≥

Sχn(ψn(gn), gn) for all ψ ∈ Ψ; (b) for all ψ ∈ Ψ,Wχ∗,ψ∗

≥
∑

n S
χ
n(ψ

∗
n(gn), gn).

IV. NETWORK-AWARE PRICING AND EQUILIBRIUM

At the beginning of each pricing period, the operator

communicates the price to each prosumer. Given the price,

prosumers simultaneously move to solve their own surplus

maximization problem. At the end of the netting period, and

given the resulting Z0, the DSO charges the energy sharing

operator based on the NEM X tariff in (10). We propose

the network-aware pricing policy and delineate its structure

in §IV-A, followed by solving the optimal response of

prosumers in §IV-B. We discuss the operator’s profit/deficit

redistribution in §IV-C and §IV-E. In §IV-D, we establish the

market equilibrium result.

A. Network-Aware Dynamic Pricing

The operator uses the renewable DG vector g to dynam-

ically set the price taking into account network constraints.

That is, the dynamic price is used to satisfy network con-

straints in a decentralized way by internalizing them into

prosumers’ private decisions.

Network-aware pricing policy 1: For every bus i ∈ B, the

operator charges the prosumers based on a two-part pricing

χ∗ : g 7→ Cχ
∗

n (zn) = π∗
i (g)
︸ ︷︷ ︸

ex-ante price

·zn − A∗
n

︸︷︷︸

ex-post allocation

, ∀n ∈ Ni,

(12)

where the ex-ante bus price π∗
i (g) abides by a two-threshold

policy with thresholds

σ1(g) =
∑

i∈B

∑

n∈Ni

1
⊤[fn(1χ

+
i (g))]

dn

dn
,

σ2(g) =
∑

i∈B

∑

n∈Ni

1
⊤[fn(1χ

−
i (g))]

dn

dn
≥ σ1(g),

(13)

as

π∗
i (g) =







χ+
i (g) , G0 < σ1(g)

χzi (g) , G0 ∈ [σ1(g), σ2(g)]

χ−
i (g) , G0 > σ2(g),

(14)

and the price χκi , where κ := {+,−, z}, is given by

χκi = πκ −
B∑

j=1

Rji(η
∗
j − η∗

j
) (15)

where η∗j and η∗
j

are the dual variables of the upper and lower

voltage limits in (11d), respectively, and the price πz := µ∗

is the solution of

∑

i∈B

∑

n∈Ni

1
⊤[fn(1µ− 1

B∑

j=1

Rji(η
∗
j − η∗

j
))]dn

dn
= G0. (16)

The two pricing policy parts are composed of a locational

dynamic price that is announced ex-ante and a charge (re-

ward) that is distributed ex-post. For every bus i ∈ B, the

prosumer’s ex-post charge/reward is denoted by A∗
n, which

we delineate in §IV-C and §IV-E.

The locational ex-ante price π∗
i (g) for every i ∈ B

is used to induce a collective prosumer response at each

bus so that the network constraints are satisfied and the

energy sharing social welfare is maximized. The energy-

sharing price has a similar structure to the celebrated LMP

in wholesale markets [21] in the sense that it takes into

account demand, generation, location, and network physical

limits. Also, like congestionless LMP, the energy-sharing

price is uniform across all buses if the network constraints

are nonbinding, as described in (15).

Similar to D-NEM without network constraints [4], the

price obeys a two-threshold policy and it is a monotonically

decreasing function of the system’s renewables g. As shown

in (15), the thresholds partition G0, and the price at each

bus is the D-NEM price adjusted by the shadow prices

of violating voltage limits. When G0 ∈ [σ1(g), σ2(g)] the

platform is energy-balanced, and the price χzi (g) is the sum

of the dual variables for energy balance and voltage limits.

The thresholds and locational prices can be computed

while preserving prosumers’ privacy. The operator do not

need the functional form of prosumers’ utilities or marginal

utilities but rather asks the prosumers to submit a value for

every device k at a given price.

B. Optimal Prosumer Decisions

After the network-aware price is announced, consumers

simultaneously move to solve their own surplus maximiza-

tion problem by determining their optimal decision policy

ψ∗
n,χ∗ : R+ → Dn, gn

Cχ∗

n7→ dψ
∗

n := ψ∗
n(gn), ∀n ∈ N .

Therefore, from the surplus definition in (9), each prosumer

solves

dψ
∗

n =argmax
dn∈Dn

Sχ
∗

n (dn, gn) := Un (dn)− π∗
i (g) · zn

subject to zn = 1
⊤dn − rn, (17)

where A∗
n was omitted because it is announced after con-

sumption decisions are exercised.

Lemma 1 (Prosumer optimal consumption): Under every

bus i ∈ B, given the pricing policy χ∗, the prosumer’s

optimal consumption is

dψ
∗

n (π∗
i ) = [fn(1π

∗
i )]
dn

dn
, ∀n ∈ Ni. (18)

By definition, the aggregate net consumption is

Zψ
∗

0 (π
∗(g))=

∑

i∈B

∑

n∈Ni







dψ
∗

n (χ+
i )− gn , G0 < σ1(g)

dψ
∗

n (χzi )− gn , G0 ∈ [σ1(g), σ2(g)]

dψ
∗

n (χ−
i )− gn , G0 > σ2(g),

(19)

where π∗ := (π∗
1 , . . . , π

∗
B), and Zψ

∗

0 (π∗(g)) > 0 if G0 <

σ1(g), Z
ψ∗

0 (π∗(g)) = 0 if G0 ∈ [σ1(g), σ2(g)], and

Zψ
∗

0 (π∗(g)) < 0 if G0 > σ2(g).
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Proof: We drop the prosumer subscript n for brevity.

The objective in (17) is strictly concave and differentiable.

The Lagrangian function of the surplus maximization prob-

lem, for a prosumer under bus i, is

L(d,γ,γ) = π∗
i (g) · z − U (d) + γ⊤(d− d)− γ⊤(d− d),

where γ ∈ R
K
+ and γ ∈ R

K
+ are the Lagrangian multipliers

of the upper and lower consumption limits. From the KKT

conditions we have

∇dL = 1π∗
i (g)−L(d

ψ∗

) + γ − γ = 0,

therefore, for each device k ∈ K, we have

dψ
∗

k =







fk(π
∗
i ) , γk = γ

k
= 0

dk , γk > 0, γ
k
= 0

dk , γk = 0, γ
k
> 0

=: [fk(π
∗
i )]

dk
dk
,

where fk := L−1
k .

Give the aggregate net consumption definition Z0 =
∑

n∈N (1⊤dn − gn) and the dynamic price in (14), one can

easily get (19). Finally, from (13), we can re-formulate (19)

as

Zψ
∗

0 (π∗(g)) =







σ1(g)−G0 , G0 < σ1(g)

0 , G0 ∈ [σ1(g), σ2(g)]

σ2(g)−G0 , G0 > σ2(g),

which proves the sign of Zψ
∗

0 (π∗(g)) under each piece.

C. Ex-Post Allocation

Unlike the ex-ante price, the ex-post allocation is dis-

tributed after the prosumers schedule their DER. The op-

erator may choose to accrue the ex-post charge amount

of each prosumer to be distributed after multiple netting

periods rather than at every netting period. The ex-post

fee is essentially levied to achieve profit neutrality. After

the price is announced and the transaction with the DSO

is settled, the profit/deficit that the operator accumulates

A∗(g) :=
∑

i∈B

∑

n∈Ni
A∗
n is, using Def.1,

∑

i∈B

∑

n∈Ni

Cχn (zn)− CNEM(
∑

n∈N

zn) = 0
(10),(12)
=⇒

∑

i∈B

∑

n∈Ni

(π∗
i (g) · zn −A∗

n − πNEM(Z0) · zn) = 0

∑

i∈B

∑

n∈Ni

(π∗
i (g) · zn − πNEM(Z0) · zn) =

∑

i∈B

∑

n∈Ni

A∗
n

∑

i∈B

∑

n∈Ni

(π∗
i (g)− πNEM(Z0)) · zn = A∗(g).

One can see that the larger the differential between the energy

sharing price and NEM price (π∗
i (g)−π

NEM(Z0), ∀i ∈ B), the

larger the profit/deficit. Note that if the network constraints

are non-binding, i.e., η∗i = η∗
i
= 0, ∀i ∈ B, then A∗(g) = 0,

and the pricing policy becomes one-part; see D-NEM in [4].

There might not be unique way to re-allocate the operator’s

profit/deficit A∗(g). A profit-sharing coalitional game can be

established to fairly re-allocate the operator’s profit/deficit. In

§IV-E, we propose a proportional allocation rule that makes

the payment function uniform for all prosumers.

D. Stackelberg Equilibrium

Under the solution (χ∗, ψ∗), with A∗(g) as in (IV-C) ,the

operator is profit-neutral.

We show next that the network-aware pricing achieves a

Nash equilibrium to the leader-follower game in $III-C.

Theorem 1: The solution (χ∗, ψ∗) is a Stackelberg equi-

librium that also achieves social optimality, i.e.,

(dψ
∗

1 , . . . ,dψ
∗

N ) = argmax
(d1,...,dN )

∑

i∈B

∑

n∈Ni

Un(dn)− CNEM(Z0)

subject to Z0 =
∑

n∈N

(
1
⊤dn − gn

)

dn ∈ Dn ∀n ∈ N

v � −RZ � v.

Proof: See the appendix in [1].

The proof of Theorem 1 solves an upper bound of (11) that

relaxes the profit-neutrality constraint (11b).

E. Energy Sharing Payment Uniformity

We propose here a unique way to allocate the operator’s

profit/deficit A∗(g). For every bus i ∈ B, the allocation to

every prosumer is given by

A∗
n(g) =

(

π∗
i (g)− πNEM(

∑

n∈N

zn)

)

· zn, ∀n ∈ Ni, (20)

which has three favourable features. First, it redistributes the

profit/deficit proportionally to the prosumers based on how

far their energy-sharing price from the DSO’s NEM price,

which reflects how much they paid (got paid) for voltage

correction. Second, it makes prosumer payment functions

Cχ
∗

n ∀n ∈ N uniform. Indeed, plugging (20) into (12) cancels

out the locational dynamic price π∗
i (g), and yields a simple,

uniform payment function that charges customers based on

the NEM price, i.e., for every bus i ∈ B,

Cχ
∗

n (zn) = πNEM(Z0) · zn, ∀n ∈ Ni.

Third, unlike the computationally expensive coalitional-

game-based profit allocation schemes such as the Shapley

value, the allocation rule in (20) is straightforward and

directly correlates the allocation to the energy-sharing price

and the prosumer’s net consumption. The decentralization

argument may not hold under the allocation in (20), as it

compensates prosumers explicitly based on their own net

consumption, which may influence their consumption deci-

sions resulting in deviations from the welfare-maximizing

decisions. It might be, however, too difficult for prosumers to

anticipate if the operator performs the re-allocation at every

multiple netting periods rather than at every single netting

period.

863



5

1

10

4 632

7 8 9 11

12 13

Fig. 2. The IEEE 13-bus test feeder.

2 3 4 5 6 7 8 9 10 11 12 13
Bus

0

0.2

0.4

0.6

P
o
w

er
 D

em
an

d
 [

M
W

]

Scenario 1

Scenario 2

Scenario 3

Scenario 4

2 3 4 5 6 7 8 9 10 11 12 13
Bus

0.95

1

1.05

V
o
lt

ag
e 

[p
.u

.]

Scenario 1

Scenario 2

Scenario 3

Scenario 4

2 3 4 5 6 7 8 9 10 11 12 13
Bus

0

-

+

E
n
er

g
y
 P

ri
ce

 [
$
/k

W
h
]

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Fig. 3. Summary of the numerical tests on the four considered scenarios.
The lower panel reports the ex-ante energy prices obtained after solving
the energy sharing platform optimization problem (11). The upper panel
shows the cumulative power demand at each bus obtained after the energy
sharing operator dispatched the energy prices. The middle panel reports the
resulting bus voltage magnitudes.

V. NUMERICAL STUDY

Our network-aware market mechanism was validated on

the IEEE 13-bus feeder converted to a single-phase equiva-

lent [22], see Figure 2. Bus 1 is the substation and represents

the network slack bus. Buses 2 to 13 instead host 23

prosumers. For every n ∈ N , the following utility function

was chosen

Un(dn) =

{
αndn − 1

2βnd
2
n, 0 ≤ dn ≤ αn

βn

α2

n

2βn
, dn >

αn

βn
,

(21)

where the parameters αn, βn were learned and calibrated

using historical retail prices3 and consumptions4 and by

assuming an elasticity of 0.21 taken from [23] (see appendix

D in [17]). The minimum demand was set to dn = 0 for

every n ∈ N , whereas the maximum demands dn and DER

generations were obtained using data from the PecanStreet

dataset. We set vmin = 0.95 p.u. and vmax = 1.05 p.u.

In our simulations, we considered four scenarios, de-

scribed in the following, that differ in the DER generation

levels. For each scenario, we used the exact AC power

flow solver to obtain bus voltages, whereas we solved the

optimization problems relying on the power flow equation

linearization (4). The results are shown in Figure 3.

Scenario 1: the DER generation here is zero for each

prosumer. Hence, G0 = 0 and G0 < σ1(g). The energy-

sharing system is importing energy. In this case, the energy

sharing optimization problem solutions are such that η∗
i
6= 0,

i.e., some voltages are on the lower bound vmin. The resulting

prices are in general higher than π+.

Scenario 2: the DER generation G0 is non-zero but still

not enough to cover the demand, i.e., G0 < σ1(g). Hence,

the energy-sharing system is importing energy. However, the

optimum demands are such that all the voltages are within

the desired bounds and the energy prices are equal π+.

Scenario 3: the DER generation was further increased in

this scenario and σ1(g) ≤ G0 ≤ σ2(g). That is, the energy-

sharing platform did not exchange active power with the

external network. The energy sharing platform optimization

problem provides an energy price within π+ and π−; voltage

limits are satisfied at the optimal consumption.

Scenario 4: here, we increased the generation until G0 ≥
σ2(g). The platform exports power to the grid. The energy

sharing optimization problem solution is such that the volt-

ages in some locations are exactly vmax and the Lagrange

multipliers vector η∗ is different from zero. The energy

prices are smaller than π− and close to zero, i.e., consump-

tion is incentivized to take full advantage of generation.

Some observations are in order. In general, we observe that

increasing the DER generation G0 results in the decrease of

energy prices. The energy prices can in principle be greater

than π+, see Scenario 1. This is to ensure that the voltage

constraints are satisfied by decreasing the power demand.

3The retail prices were taken from Data.AustinTexas.gov historical resi-
dential rates in Austin, TX.

4For the historical consumption data, we used pre-2018 PecanStreet data
for households in Austin, TX.
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Finally, we note a slight difference between the true and

the expected (i.e., the ones computed by the energy-sharing

platform optimization problem) voltage magnitudes. Indeed,

we see that the voltages in Scenario 4 are all strictly lower

than vmax even though we obtained η∗i 6= 0, see the middle

panel of Figure 3. This can be explained by the fact that (11)

was solved relying on the linearized equations (4) rather

than on the true power flow equations. Note, however, that

using the true equation would result in a nonconvex energy

sharing optimization problem possibly displaying multiple

local minima.

VI. CONCLUSION

In this work, we propose a network-aware and welfare-

maximizing market mechanism for energy-sharing coalitions

that aggregate small but ubiquitous BTM DER downstream

of a DSO’s revenue meter, charging the energy-sharing sys-

tems using a generic NEM tariff. The proposed pricing policy

has ex-ante and ex-post pricing components. The ex-ante

locational and threshold-based price decreases as the energy-

sharing generation-to-demand ratio increases. The price is

used to induce a collective prosumer reaction that decentrally

maximizes social welfare while being network-cognizant. On

the other hand, the ex-post charge/reward is used to enforce

the market operator’s profit-neutrality condition. We show

that the market mechanism achieves an equilibrium to the

Stackelberg game between the operator and its prosumers.

We also show that a unique proportional rule to re-allocate

the operator’s profit/deficit can make the payment function

of all energy-sharing prosumers uniform, even when the net-

work constraints are binding. Our simulation results leverage

real DER data on an IEEE 13-bus test feeder system to show

how the dynamic pricing drives the energy sharing’s flexible

consumption to abide by the network voltage limits.
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