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Abstract— This paper develops a novel strengthened convex
quadratic convex (QC) relaxation of the AC Optimal Power
Flow (AC-OPF) problem and presents an optimization-based
bound-tightening (OBBT) algorithm to compute tight, feasible
bounds on the voltage magnitude variables for each bus and the
phase angle difference variables for each branch in the network.
Theoretical properties of the strengthened QC relaxation, that
show its dominance over the other variants of the QC relaxation
studied in the literature, are also derived. The effectiveness of
the strengthened QC relaxation is corroborated via extensive
numerical results on benchmark AC-OPF test networks. In
particular, the results demonstrate that the proposed relaxation
consistently provides the tightest variable bounds and optimal-
ity gaps with negligible impacts on runtime performance.

I. INTRODUCTION

The AC Optimal Power Flow (AC-OPF) problem is one of
the most fundamental optimization problems for economic
and reliable operation of the electric transmission system.
Since its introduction in 1962 [1], efficient solution tech-
niques to solve the AC-OPF have garnered a lot of attention
from the research community. The objective of the AC-OPF
is to minimize the generation cost while satisfying the power
flow constraints and the network limits. The fundamental
difficultly with solving the AC-OPF arises due to the non-
linear and non-convex nature of the power flow constraints.
The literature with regards to AC-OPF can predominantly be
classified into the one of the following three groups: (i) de-
veloping fast algorithms to compute a local optimal solution
to the AC-OPF either using meta-heuristics or numeral tech-
niques like gradient descent [2] etc., (ii) developing convex
relaxations that convexify the feasible space defined by the
AC-OPF, and (iii) developing global optimization algorithms
for AC-OPF [3], [4]. The NP-hardness of AC-OPF [5] makes
guarantees on feasibility and global optimality very difficult
and hence, the past decade has seen a surge in the work
devoted towards developing convex relaxations of AC-OPF.
They include the Semi-Definite Programming (SDP) [6],
Second Order Cone (SOC) [7], the recent Quadratic Convex
(QC) [8] and Moment-Based [9] relaxations. In general,
convex relaxations of AC-OPF are appealing because they
can provide lower bounds to the AC-OPF objective value,
prove infeasibility of the AC-OPF, or can aid in proving
global optimality by producing a feasible solution in the
non-convex space defined by the AC-OPF. One major factor
that parameterizes the strength of the convex relaxation for
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the AC-OPF is the variable bounds. This dependence goes
both ways, i.e., tightened bounds can aid in providing tighter
convex relaxations and better convex relaxations can aid
in tightening the variable bounds even further [10], [11].
In this paper, we exploit this dependence between bound-
tightening and strong convex relaxations in two novel ways:
(i) we first present a strengthened QC relaxation that uses an
extreme-point representation and strictly dominates the state-
of-the-art QC relaxations in the literature [4], [8] and (ii)
we develop an optimality-based bound-tightening algorithm
(OBBT) that exploits the strengthened QC relaxations. These
two novel contributions are put together to obtain lower
bounds, that are better than the current known lower bounds,
for the benchmark AC-OPF problem instances. We also note
that variants of the bound-tightening algorithm presented in
this paper are used routinely in the mixed-integer nonlinear
programming literature [12], [13] and also in algorithmic
approaches used to tighten variable bounds in AC-OPF [10],
[14]. Furthermore, we show useful theoretical properties of
the strengthened QC relaxation, which also have a potential
to generalize to other variants of the AC-OPF relaxations,
such as in the inclusion of polynomial cycle constraints
[3]. Finally, we present extensive experimental results that
demonstrate the value of the convex relaxation applied in
conjunction with OBBT. In particular, we show that

1) The strengthened QC relaxation is able to obtain the
tightest voltage and phase angle difference bounds
for the AC-OPF problem compared to the other QC
relaxations in the literature.

2) When utilized in the context of global optimization
of AC-OPF with OBBT, on networks with less than
1000 buses, the strengthened QC relaxation results in
an optimality gap of ă 1% for 52 out of 57 networks.

NOMENCLATURE

Sets and Parameters
N - set of nodes (buses)
G - set of generators
Gi - set of generators at bus i
E - set of from edges (branches)
ER - set of to edges (branches)
c0, c1, c2 - generation cost coefficients
i - imaginary number constant
Zij “ rij ` ixij - impedance on branch ij
Yij “ gij ` ibij - admittance on branch ij
Sd
i “ pd

i ` iqd
i - Aggregated AC power demand at bus i

suij - apparent power limit on branch ij
θl
ij ,θ

u
ij - phase angle difference limits on branch ij
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Model 1 AC Optimal Power Flow (AC-OPF) problem

minimize:
ÿ

iPG

c2ipRpSg
i q2q ` c1iRpSg

i q ` c0i (1a)

subject to:
ÿ

kPGi

Sg
k ´ Sd

i “
ÿ

pi,jqPEYER

Sij @i P N (1b)

Sij “ Y ˚
ijWii ´ Y ˚

ijWij @pi, jq P E (1c)

Sji “ Y ˚
ijWjj ´ Y ˚

ijW
˚
ij @pi, jq P E (1d)

Wii “ |Vi|
2 @i P N (1e)

Wij “ ViV
˚
j @pi, jq P E (1f)

θl
ij ď θij ď θu

ij @pi, jq P E (1g)

pvl
iq

2 ď Wii ď pvu
i q2 @i P N (1h)

Sgl
i ď Sg

i ď Sgu
i @i P G (1i)

|Sij | ď suij @pi, jq P E Y ER (1j)

θm
ij - maxp|θl

ij |, |θu
ij |q on branch ij

vl
i ,v

u
i - voltage magnitude limit at bus i

Sgl
i , Sgu

i - power generation limit at bus i
Rp¨q - real part of a complex number
Ip¨q - imaginary part of a complex number
p¨q˚ - hermitian conjugate of a complex number
| ¨ |,=¨ - magnitude, angle of a complex number

Continuous variables
Vi “ vie

iθi - AC voltage at bus i
θij “ =Vi ´ =Vj - phase angle difference on branch ij
Wij - AC voltage product on branch ij, i.e., ViV

˚
j

Sij “ pij ` iqij - AC power flow on branch ij
Sg
i “ pgi ` iqgi - AC power generation at bus i

lij - current magnitude squared on branch ij

Notation In this paper, constants are typeset in bold face.
In the AC power flow equations, the primitives, Vi, Sij , Sg

i ,
Sd
i and Yij are complex quantities. Given any two complex

numbers (variables/constants) z1 and z2, z1 ě z2 implies
Rpz1q ě Rpz2q and Ipz1q ě Ipz2q. | ¨ | represents absolute
value when applied to a real number.

II. THE STRENGTHENED QC RELAXATION

This section presents an overview of the mathematical
formulation of the AC-OPF and its state-of-the-art QC re-
laxation and develops the strengthened QC relaxation for the
AC-OPF.

A. AC Optimal Power Flow

We start by presenting the mathematical formulation of the
AC-OPF problem in Model 1 with additional Wij and Wii

variables for each branch and bus, respectively. The optimal
solution to the AC-OPF problem minimizes generation costs
for a specified demand and satisfies engineering constraints
and power flow physics.

The convex quadratic objective (1a) minimizes total gen-
eration cost. Constraint (1b) enforces nodal power balance at
each bus. Constraints (1c) through (1f) model the AC power
flow on each branch. Constraint (1g) limits the phase angle
difference on each branch. Constraint (1h) limits the voltage
magnitude square at each bus. Constraint (1i) restricts the
apparent power output of each generator. Finally, constraint
(1j) restricts the apparent power transmitted on each branch.
For simplicity, we omit the details of constant bus shunt
injections, transformer taps, phase shifts, and line charging,
though we include them in the computational studies. The
AC-OPF is a hard, non-convex problem [15], with non-
convexities arising from the constraints (1e) and (1f).

B. QC Relaxation using Recursive McCormick Envelopes

The quadratic convex relaxation of the AC-OPF, proposed
in [8], [16], is inspired by an arithmetic analysis of (1e)
and (1f) in polar coordinates (i.e., Vi “ vi =θi @i P N)
with the goal of preserving stronger links between the
voltage variables. Rewriting Eq. (1e) and (1f) using the polar
voltage variables, the non-convexities reduce to the following
equations:

Wii “ v2i @i P N (2a)
RpWijq “ vivj cospθijq @pi, jq P E (2b)
IpWijq “ vivj sinpθijq @pi, jq P E (2c)

Each of the above non-convex equations are then relaxed
by composing convex envelopes of the non-convex sub-
expressions using the bounds on vi, vj , θij variables. For the
square and product of variables, the QC relaxation uses the
well-known McCormick envelopes [17], given by (T-CONV)
and (M-CONV), respectively, as follows:

xx2yT ”

#

qx ě x2

qx ď pxu ` xlqx ´ xuxl
(T-CONV)

xxyyM ”

$

’

’

’

&

’

’

’

%

|xy ě xly ` ylx ´ xlyl

|xy ě xuy ` yux ´ xuyu

|xy ď xly ` yux ´ xlyu

|xy ď xuy ` ylx ´ xuyl

(M-CONV)

The above convex envelopes are parameterized by the vari-
able bounds (i.e., xl,xu,yl,yu). The convex envelopes for
the cosine (C-CONV) and sine (S-CONV) functions, under
the assumption that the phase angle difference bound satisfies
´π{2 ď θl

ij ď θu
ij ď π{2 [18], are given by

xcospxqyC ”

#

qcs ď 1 ´
1´cospxm

q

pxmq2
x2

qcs ě
cospxl

q´cospxu
q

pxl´xuq
px ´ xlq ` cospxlq

xsinpxqyS ”

$

’

’

’

’

’

&

’

’

’

’

’

%

|sn ď cos
´

xm

2

¯ ´

x ´ xm

2

¯

` sin
´

xm

2

¯

|sn ě cos
´

xm

2

¯ ´

x ` xm

2

¯

´ sin
´

xm

2

¯

|sn ě
sinpxl

q´sinpxu
q

pxl´xuq
px´xlq`sinpxlq if xl ě0

|sn ď
sinpxl

q´sinpxu
q

pxl´xuq
px´xlq`sinpxlq if xu ď0
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Model 2 Original QC Relaxation (QC-RM).

minimize:
ÿ

iPG

c2ipRpSg
i q2q ` c1iRpSg

i q ` c0i (3a)

subject to: (1b) – (1d), (1g) – (1j), (5a) – (5b)

Wii “ xv2i yT i P N (3b)

ℜpWijq “ xxvivjyM xcospθijqyCyM @pi, jq P E (3c)

ℑpWijq “ xxvivjyM xsinpθijqySyM @pi, jq P E (3d)
Sij ` Sji “ Zij lij @pi, jq P E (3e)

|Sij |2 ď Wiilij @pi, jq P E (3f)

@pi, jqPE

vσ
i v

σ
j pwR

ij cospϕijq`wI
ij sinpϕijqq´vu

j cospδijqvσ
j wi

´vu
i cospδijqvσ

i wj ě vu
i v

u
j cospδijqpvl

iv
l
j ´ vu

i v
u
j q

(5a)

vσ
i v

σ
j pwR

ij cospϕijq`wI
ij sinpϕijqq´vl

j cospδijqvσ
j wi

´vl
i cospδijqvσ

i wj ě vl
iv

l
j cospδijqpvu

i v
u
j ´ vl

iv
l
jq

(5b)

respectively, where xm “ maxp|xl|, |xu|q. The QC relax-
ation of the equations (2) is now obtained composing the
convex envelopes for square, sine, cosine, and the product
of two variables; the complete relaxation is shown in Model
2. In Model 2 and the models that follow, we abuse notation
and let xfp¨qyC denote the variable on the left-hand side of
the convex envelope, C, for the function fp¨q. When such an
expression is used inside an equation, the constraints xfp¨qyC

are also added to the model. Eq. (3e) and (3f) in Model
2 are convex constraints that connect apparent power flow
on branches (Sij) with current magnitude squared variables
(lij). It is important to highlight that Model 2 includes
the “Lifted Nonlinear Cuts” (LNCs) of [18], which further
improve the version presented in [8], [16]. The LNCs are
formulated using the following constants that are based on
variable bounds, i.e.:

vσ
i “ vl

i ` vu
i @i P N (4a)

ϕij “ pθu
ij ` θl

ijq{2 @pi, jq P E (4b)

δij “ pθu
ij ´ θl

ijq{2 @pi, jq P E. (4c)

The LNCs are then given by (5a)-(5b), and are linear in
the wi :“ Wii, wj :“ Wjj , w

R
ij :“ ℜpWijq, wI

ij :“ IpWijq

variables.

C. QC Relaxation using Extreme Point Representation

We now present an alternate QC relaxation that uses
an extreme-point representation, instead of applying the
McCormick constraints recursively, to express the convex
envelope of RpWijq and IpWijq in Eq. (2). After the
introduction of lifted variables qcsij and |snij for the cosine
and sine functions, respectively, for each branch pi, jq P E,

the non-convex constraints in Eq. (2b) and Eq. (2c) become
trilinear term of the form vivj qcsij and vivj|snij , respectively.
This version of the QC relaxation uses the extreme-point
representation to obtain the convex envelope of these trilinear
terms. It is known in the literature that the extreme-point
representation captures the convex hull of a given, single
multilinear term [19] and that it is tighter than the recursive
McCormick envelopes in Eq. (3c) and (3e) [20], [21]. We
also note that the feasible region of this representation is
identical to that of the facet characterization of the convex
hull of a single trilinear term from [22]. Nevertheless, though
we capture the term-wise convex hull, we lose a potential
connection between the voltage products in Eq. (2b) and
Eq. (2c) that is captured in Model 2 using the shared
lifted variable, }vivj , to capture xvivjyM in Eq. (3c) and
Eq. (3d). Hence, no clear dominance between the original
QC relaxation in Model 2 and the QC relaxation using an
extreme point representation in the forthcoming Model 3 can
be established. This is also depicted in the Venn diagram in
Figure 1 and later observed in the computational results as
well.

We now define an extreme point before describing the
convex envelope. Given a set X , a point p P X is extreme
if there does not exist two other distinct points p1, p2 P X
and a non-negative multiplier λ P r0, 1s such that p “ λp1 `

p1 ´ λqp2. To that end, let φpx1, x2, x3q “ x1x2x3 denote
a trilinear term with variable bounds xl

i ď xi ď xu
i for all

i “ 1, 2, 3. Also, let ξ “ xξ1, . . . , ξ8y denote the vector of
eight extreme points of rxl

1,x
u
1 s ˆ rxl

2,x
u
2 s ˆ rxl

3,x
u
3 s and

we use ξik to denote the ith coordinate of ξk. The extreme
points in ξ are given by

ξ1 “ pxl
1,x

l
2,x

l
3q, ξ2 “ pxl

1,x
l
2,x

u
3 q, ξ3 “ pxl

1,x
u
2 ,x

l
3q,

ξ4 “ pxl
1,x

u
2 ,x

u
3 q, ξ5 “ pxu

1 ,x
l
2,x

l
3q, ξ6 “ pxu

1 ,x
l
2,x

u
3 q,

ξ7 “ pxu
1 ,x

u
2 ,x

l
3q, and ξ8 “ pxu

1 ,x
u
2 ,x

u
3 q. (6)

Then, the tightest convex envelope of the trilinear term
x1x2x3 (TRI-CONV) is given by

xx1x2x3yλ ”

$

’

&

’

%

qx “
ř8

k“1 λk φpξ1k, ξ
2
k, ξ

3
kq

xi “
ř8

k“1 λk ξ
i
k @i “ 1, 2, 3

ř8
k“1 λk “ 1, λk ě 0 @k “ 1, . . . , 8

(7)
Notice, that the lifted variable qx represents the trilinear term
i.e., it will replace the right-hand side of Eq. (8b) and (8c).
Using the convex envelope for the trilinear term results in the
QC relaxation given by Model 3. In Model 3, the constraints
defining the lifted variables qcsij and |snij , for each branch
pi, jq P E, are included in Eq. (8b) and (8c), respectively.
We also remark that distinct multiplier variables λc

ij and λs
ij

are used for capturing the convex envelopes in Eq. (8b) and
(8c), respectively.

D. A Strengthened QC Relaxation

This section presents additional constraints to strengthen
Model 3. The fundamental idea used to develop these
strengthening constraints lies in the observation that different
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Model 3 λ-based QC relaxation (QC-LM).

minimize:
ÿ

iPG

c2ipRpSg
i q2q ` c1iRpSg

i q ` c0i (8a)

subject to: (1b) – (1d), (1g) – (1j), (3b),
(3e) – (3f), (5a) – (5b)

ℜpWijq “ xvivj qcsijyλ
c
ij @pi, jq P E (8b)

ℑpWijq “ xvivj|snijyλ
s
ij @pi, jq P E (8c)

sets of multiplier variables λc
ij and λs

ij are used for capturing
the convex envelopes in Eq. (8b) and (8c), respectively.
There are no constraints that link λc

ij and λs
ij directly

despite sharing two out of three variables in the trilinear
term. Adding such a linking constraint intuitively leads to
strengthening the relaxation in Model 3. We first state the
linking constraint for every branch pi, jq P E, as follows:

¨

˚

˚

˝

λc
ij,1 ` λc

ij,2 ´ λs
ij,1 ´ λs

ij,2

λc
ij,3 ` λc

ij,4 ´ λs
ij,3 ´ λs

ij,4

λc
ij,5 ` λc

ij,6 ´ λs
ij,5 ´ λs

ij,6

λc
ij,7 ` λc

ij,8 ´ λs
ij,7 ´ λs

ij,8

˛

‹

‹

‚

T ¨

˚

˚

˝

vl
i ¨ vl

j

vl
i ¨ vu

j

vu
i ¨ vl

j

vu
i ¨ vu

j

˛

‹

‹

‚

“ 0 (9)

This constraint enforces, for each branch pi, jq P E, the value
of the voltage product vivj to take the same value in Eq.
(8b) and (8c). The resulting strengthened QC relaxation is
summarized in Model 4.

Model 4 Tighter λ-based QC Relaxation (QC-TLM).

minimize:
ÿ

iPG

c2ipRpSg
i q2q ` c1iRpSg

i q ` c0i (10a)

subject to: (1b) – (1d), (1g) – (1j), (3b), (3e) – (3f),
(5a) – (5b), (8b) – (8c), (9)

In the following subsection, we detail the theoretical
properties of Model 4 and show that it is tighter than the
QC relaxations in Model 2 and 3.

E. Theoretical Properties of the QC-TLM Relaxation

Before presenting the theoretical properties of the strength-
ened QC relaxation, we first expand constraints in Eq. (1c),
(1e), and (1f) for a branch pi, jq P E as follows:

pij “ gijv
2
i ´ gijvivj cos θij ´ bijvivj sin θij (11a)

qij “ ´bijv
2
i ´ gijvivj cos θij ` bijvivj sin θij (11b)

After applying the convex envelopes (C-CONV) and (S-
CONV) for the cosine and sine terms, respectively, the Eq.
(11) reduce to

pij “ gijv
2
i ´ gijvivj qcsij ´ bijvivj|snij (12a)

qij “ ´bijv
2
i ´ gijvivj qcsij ` bijvivj|snij (12b)

Given Eq. (12), the strengthened QC relaxation has the
following properties

Theorem 1: The strengthened QC relaxation in Model 4
captures the convex hull of the nonlinear, non-convex term
p´gijvivj qcsij ´ bijvivj|snijq in Eq. (12a).

Proof: See Sec. II-F.
Theorem 2: The strengthened QC relaxation in Model 4

captures the convex hull of the nonlinear, non-convex term
p´gijvivj qcsij ` bijvivj|snijq in Eq. (12b).

Proof: See Sec. II-F.

QC-RM

QC-LM
QC-TLM

AC

QC-RM

QC-LM
QC-TLM

AC

Fig. 1: A Venn diagram representing the feasible sets of QC
relaxation with various trilinear term relaxations (set sizes in
this illustration are not to scale).

The theoretical properties of the QC relaxations considered
here are summarized in Figure 1. To the best of our knowl-
edge, the theoretical results connecting the summation of
multilinear terms presented in this paper are new and novel in
the global optimization literature. The computational impact
of Theorems 1 and 2 are presented in Section IV.

Before, we present the proof of Theorems 1 and 2, we
present some results of a computational experiment compar-
ing the three relaxations namely the Recursive-McCormick
(RM), the λ-based formulation (LM), and the tightened
λ-based formulation (TLM) applied to the sum of two
multilinear terms ϕpx1, x2, x3, x4q “ x1x2x3 ` x1x2x4

defined on xi P r0, 1s for every i P t1, 2, 3, 4u. To that
end, we randomly generate 5000 points uniformly in the
domain r0, 1s4 and for each point xk, calculate the difference
between the upper and lower bounds of ϕpx1, x2, x3, x4q as
defined by RM, LM, and TLM formulations. We denote these
differences by RMgappxkq, LMgappxkq, and TLMgappxkq,
respectively. We then construct two scatter plots, shown
in Figure 2, of the points pLMgappxkq,RMgappxkqq and
pTLMgappxkq,RMgappxkqq for all k “ 1, . . . , 5000, respec-
tively.

The points in scatter plot shown in Fig. 2a, lie above or
below the line of unit slope indicating that there are instances
where either relaxation i.e., RM or LM, can be stronger than
the other. In contrast, all the points in Fig. 2b lie above
the line of unit slope indicating that the TLM relaxation is
always better than RM. Between LM and TLM relaxations,
it is clear from the definition of these relaxations that TLM
is stronger than LM. In the next section, we present a proof
that TLM indeed captures the convex hull of the sum of
trilinear terms with two shared variables.

F. Proof of Theorem 1 and Theorem 2

To keep the proof general, we present it for the sum of
trilinear terms ϕpx1, x2, x3, x4q “ αcx1x2x3 ` αsx1x2x4
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(a) Recursive McCormick (RM) gap vs. LM gap

(b) Recursive McCormick (RM) gap vs. TLM gap

Fig. 2: Scatter plots of the gaps obtained using the three
relaxations for the sum of trilinear terms ϕpx1, x2, x3, x4q in
the domain r0, 1s4.

where αc,αs P R and xl
i ď xi ď xu

i , i “ 1, .., 4. Let
K “ t1, . . . , 16u. The convex hull of z “ ϕpx1, x2, x3, x4q

is given by

S “

!

z, x1, .., x4, λ1, .., λ16 : z “
ÿ

kPK

λkϕpγkq,
ÿ

kPK

λk “ 1,

xi “
ÿ

kPK

λk γ
i
k @i “ 1, .., 4, λk ě 0 @k P K

)

. (13)

Let γc “ xγc
1, . . . ,γ

c
8y and γs “ xγs

1, . . . ,γ
s
1y and

γ “ xγ1, . . . ,γ16y denote the extreme points of rxl
1,x

u
1 s ˆ

rxl
2,x

u
2 s ˆ rxl

3,x
u
3 s and rxl

1,x
u
1 s ˆ rxl

2,x
u
2 s ˆ rxl

4,x
u
4 s,

and rxl
1,x

u
1 s ˆ rxl

2,x
u
2 s ˆ rxl

3,x
u
3 s ˆ rxl

4,x
u
4 s, respectively.

The extreme points in γc, γs and γ are ordered similar
to the extreme points in Eq. (6), i.e., in dictionary order.
The strengthened QC relaxation represents the term z “

ϕpx1, x2, x3, x4q by using the following equations:

SQC “

!

z, zc, zs, x1, .., x4, λ
c
1, .., λ

c
8, λ

s
1, .., λ

s
8 :

zc “ xx1x2x3yλ
c

, zs “ xx1x2x4yλ
s

, (14)

z “ αczc ` αszs, Eq. (9) with x1 ” vi, x2 ” vj

)

.

We show that the projection of (14), PpSQCq, on to the
pz, x1, x2, x3, x4q space is identical to its convex hull given

in (13). First, we set

λc
1 “ λ1 ` λ2 λs

1 “ λ1 ` λ3 (15a)
λc
2 “ λ3 ` λ4 λs

2 “ λ2 ` λ4 (15b)
λc
3 “ λ5 ` λ6 λs

3 “ λ5 ` λ7 (15c)
λc
4 “ λ7 ` λ8 λs

4 “ λ6 ` λ8 (15d)
λc
5 “ λ9 ` λ10 λs

5 “ λ9 ` λ11 (15e)
λc
6 “ λ11 ` λ12 λs

6 “ λ10 ` λ12 (15f)
λc
7 “ λ13 ` λ14 λs

7 “ λ13 ` λ15 (15g)
λc
8 “ λ15 ` λ16 λs

8 “ λ14 ` λ16. (15h)

With the above assignment, it is easy to check that λc
i , λ

s
i ě

0,
ř

i λ
c
i “

ř

i λ
s
i “ 1 and αc

ř

i λ
c
iγ

c
i ` αs

ř

i λ
s
iγ

s
i “

ř

i λiγi. This shows that pz, x1, x2, x3, x4q P PpSQCq and
hence that S Ď PpSQCq.

Let pλc
odd, λ

s
oddq and pλc

even, λ
s
evenq represent pλc, λsq

multipliers with odd (t1, 3, 5, 7u) and even (t2, 4, 6, 8u) in-
dices, respectively. Let

λ1|4 “ λs
odd ´ λc

even ` maxtλc
even ´ λs

odd, 0u (16a)
λ2|4 “ λs

even ´ maxtλc
even ´ λs

odd, 0u (16b)
λ3|4 “ λc

even ´ maxtλc
even ´ λs

odd, 0u (16c)
λ4|4 “ 0 ` maxtλc

even ´ λs
odd, 0u (16d)

where, λi|4 “ pλi, λi`4, λi`8, λi`12q. By construction, the
above assignment of λ satisfies the system of equations in
(15). As a result, we have αc

ř

i λ
c
iγ

c
i ` αs

ř

i λ
s
iγ

s
i “

ř

i λiγi. Further,
ř

i λi “
ř

i λ
s
i “ 1. What is left is to

show that λi ě 0 @i. We can rewrite (16) as

λ1|4 “ maxtλs
odd ´ λc

even, 0u (17a)
λ2|4 “ mintλs

even ` λs
odd ´ λc

even, λ
s
evenu (17b)

λ3|4 “ mintλs
odd, λ

c
evenu (17c)

λ4|4 “ maxtλc
even ´ λs

odd, 0u. (17d)

We observe that the expressions on the RHS of Equa-
tions (17a),(17c) and (17d) are non-negative. To show that
λ2|4 in (17b) is also non-negative, we need the following
additional result.

Lemma 3: The multipliers λc and λs satisfy

λc
even ` λc

odd “ λs
even ` λs

odd. (18)
Using Lemma 3, we see that λs

even `λs
odd ´λc

even “ λc
odd, and

thus λ2|4 “ mintλc
odd, λ

s
evenu ě 0, and hence that PpSQCq Ď

S. With this, proof of the theorem is complete.
1) Proof of Lemma 3: Using Eq (7) and the coupling con-

straint in (9), we conclude that λc, λs satisfy the following
constraint.

¨

˚

˚

˝

xl
1 xl

2 xl
1x

l
2

xl
1 xu

2 xl
1x

u
2

xu
1 xl

2 xu
1 x

l
2

xu
1 xu

2 xu
1 x

u
2

˛

‹

‹

‚

`

λc
odd ` λc

even ´ λs
odd ´ λs

even

˘

“ 0.

(19)

Since the four extreme points in the rows of the matrix in
LHS of (19) are assumed to be distinct, the matrix is full
rank (3) and we must have λc

odd ` λc
even ´ λs

odd ´ λs
even “ 0.
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III. OPTIMIZATION-BASED BOUND TIGHTENING

We now present an Optimization-Based Bound Tightening
(OBBT) algorithm that can be applied to any convex relax-
ation of the AC-OPF problem with voltage magnitude and
phase angle difference variables and is aimed at tightening
the bounds on these variables. It has been observed in [10],
[14] that the SDP and QC relaxations of AC-OPF benefit
substantially with tight variable bounds. The algorithm pro-
ceeds as follows: Let Ω denote the feasible set of any one
of the QC relaxations of the AC-OPF problem presented in
this paper. Then, two optimization problems, one for each
variable in the set V “ tvi @i P N, θij @pi, jq P Eu are
solved to find the maximum and minimum value of the
variable subject to the constraints in Ω. Observe that each
optimization problem is convex and upon computing tighter
variable bounds for each variable in the set V, a new, tighter
QC relaxation is constructed, if any bound has changed. This
process is repeated until a fixed point is reached, i.e., none
of the variable bounds change between subsequent iterations.
A pseudo-code of this procedure is given in Algorithm 1.

Algorithm 1 The OBBT Algorithm

Input: A QC Relaxation (Model 2/3/4) to construct Ω
Output: vl, vu, θl, θu

1: repeat
2: vl0,vu0,θl0,θu0 Ð vl,vu,θl,θu

3: Ω Ð QC relaxation given vl0,vu0,θl0,θu0

4: for all i P N do
5: vl

i Ð mintvi : Ωu

6: vu
i Ð maxtvi : Ωu

7: for all pi, jq P E do
8: θl

ij Ð mintθij : Ωu

9: θu
ij Ð maxtθij : Ωu

10: until vl0,vu0,θl0,θu0 “ vl,vu,θl,θu

A. OBBT for Global Optimization

The value of using the OBBT algorithm for characterizing
the AC-OPF feasibility set was originally highlighted in [10].
However, if the primary goal is to improve the objective
lower bound of the AC-OPF problem, then adding the
following additional, convex, upper bound constraint to Ω
can vastly improve the algorithm:

ÿ

iPG

c2ipRpSg
i q2q ` c1iRpSg

i q ` c0i ď f˚ (20)

where, f˚ denotes the cost of any feasible AC-OPF so-
lution or in particular, a local optimal AC-OPF solution.
This additional constraint provides a significant advantage
in reducing the search space for each convex optimization
problem solved during the OBBT algorithm and is routinely
used in the global optimization literature [12], [23], [24]. We
refer to the version of Algorithm 1 that includes constraint
(20) as GO-OBBT.

IV. NUMERICAL RESULTS

This section highlights the computational differences of
the proposed QC relaxations (i.e. QC-RM, QC-LM, and QC-
TLM) via two detailed numerical studies. The first study
revisits the OBBT algorithm from [10] and demonstrates that
QC-TLM provides tighter voltage magnitudes and voltage
angle bounds with a negligible change in runtime. The
second study explores the effectiveness of the QC relaxations
for providing lower bounds on the AC-OPF both with and
without bound tightening.

A. Test Cases and Computational Setting

This study focuses on 57 networks from the IEEE PES
PGLib AC-OPF v18.08 benchmark library [25], which are
all under 1000 buses. All of QC relaxations and the OBBT
algorithms were implemented in Julia v0.6 using the op-
timization modeling layer JuMP.jl v0.18 [26]. All of the
implementations are available as part of the open-source
package PowerModels.jl v0.8, a Julia/JuMP package for
power network optimization [27]. Individual non-convex
AC-OPF problems and convex QC-OPF relaxations were
solved with Ipopt [28] using the HSL-MA27 linear algebra
solver. The convex relaxations in the OBBT algorithms were
solved with Gurobi v8.0 [29] for improved performance
and numerical accuracy. All solvers were set to optimality
tolerance of 10´6 and the OBBT algorithm was configured
with a minimum bound width and an average improvement
tolerance [27] of 10´4. Finally, all of the algorithms were
evaluated on HPE ProLiant XL170r servers with two Intel
2.10 GHz CPUs and 128 GB of memory.

B. OBBT runtimes

Figure 3 presents the distribution of OBBT runtimes for
the various QC relaxations presented in this paper, both
in terms of total runtime and an ideal parallel runtime.
These results highlight that there is no significant difference
in the runtime of the QC relaxations considered here. It
is also noteworthy to mention that although the proposed
strengthened QC relaxation introduces 24p|E|q additional λ
variables into the optimization problem, the runtimes remain
the same possibly due to the reduction in the size of the
feasible region captured by the convex hull relaxations.

C. Computing AC-OPF Lower Bounds

Table I presents AC-OPF optimality gaps provided by
the proposed QC relaxations both with and without bound
tightening, where the percentage gap is defined as 100 ˚

pACHeuristic´Relaxationq{ACHeuristic. For each net-
work considered, the table reports: (1) The AC objective
value from solving the non-convex problem with Ipopt;
(2) the optimally gap of each relaxation, without bound
tightening; (3) the optimally gap of each relaxation after
running GO-OBBT. In the interest of brevity, cases where
the base QC-RM gap is ă 1.0% are omitted. Bold text is
used to highlight the best result in each row of the table.

Again, the results in Table I highlight the theoretical
result showing that the QC-TLM relaxation dominates both
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TABLE I: The Quality of QC Relaxations for AC-OPF Lower Bounds.

Base Opt. Gap (%) GO-OBBT Opt. Gap (%)
Case |N | |E| AC Obj. RM LM TLM RM LM TLM

Typical Operating Conditions (TYP)
case3 lmbd 3 3 5.8126e+03 1.22 0.97 0.97 0.01 0.01 0.01

case5 pjm 5 6 1.7552e+04 14.55 14.55 14.55 6.01 6.14 5.80
case30 ieee 30 41 1.1974e+04 10.78 10.67 10.67 0.01 0.01 0.01

case118 ieee 118 186 1.1580e+05 2.20 2.18 2.18 0.02 0.02 0.02
case162 ieee dtc 162 284 1.2615e+05 7.54 7.54 7.54 0.05 0.03 0.04

case240 pserc 240 448 3.5700e+06 3.81 3.80 3.79 2.37 2.36 2.30
case300 ieee 300 411 6.6422e+05 2.56 2.54 2.54 0.06 0.06 0.07

case500 tamu 500 597 7.2578e+04 5.39 5.39 5.39 0.01 0.01 0.01
case588 sdet 588 686 3.8155e+05 1.68 1.68 1.68 0.33 0.35 0.30

Congested Operating Conditions (API)
case3 lmbd api 3 3 1.1242e+04 5.63 4.58 4.56 0.04 0.04 0.04
case5 pjm api 5 6 7.6377e+04 4.09 4.09 4.09 0.01 0.01 0.01

case14 ieee api 14 20 1.3311e+04 1.77 1.77 1.77 0.02 0.01 0.02
case24 ieee rts api 24 38 1.3495e+05 13.01 11.06 11.01 0.04 0.04 0.04

case30 as api 30 41 4.9962e+03 44.61 44.61 44.61 0.72 0.77 0.80
case30 fsr api 30 41 7.0115e+02 2.76 2.76 2.76 0.13 0.13 0.13

case30 ieee api 30 41 2.4032e+04 3.73 3.73 3.73 0.04 0.04 0.04
case39 epri api 39 46 2.5721e+05 1.57 1.57 1.57 0.02 0.02 0.02

case73 ieee rts api 73 120 4.2273e+05 11.07 9.56 9.51 0.41 0.41 0.46
case89 pegase api 89 210 1.4198e+05 8.13 8.13 8.13 1.69 1.50 1.31

case118 ieee api 118 186 3.1642e+05 28.63 28.62 28.51 4.27 3.64 3.32
case162 ieee dtc api 162 284 1.4351e+05 5.44 5.44 5.44 0.06 0.06 0.07

case179 goc api 179 263 2.1326e+06 7.18 7.21 7.10 0.03 0.02 0.02
Small Angle Difference Conditions (SAD)

case3 lmbd sad 3 3 5.9593e+03 1.42 1.38 1.38 0.03 0.03 0.03
case14 ieee sad 14 20 6.7834e+03 7.16 6.38 6.32 0.30 0.30 0.30

case24 ieee rts sad 24 38 7.6943e+04 2.93 2.77 2.74 0.23 0.23 0.23
case30 as sad 30 41 8.9749e+02 2.32 2.32 2.31 0.31 0.32 0.32

case30 ieee sad 30 41 1.1974e+04 3.42 3.28 3.24 0.01 0.01 0.01
case73 ieee rts sad 73 120 2.2775e+05 2.54 2.39 2.38 0.09 0.09 0.10

case118 ieee sad 118 186 1.2924e+05 9.48 9.31 9.30 0.24 0.25 0.26
case162 ieee dtc sad 162 284 1.2704e+05 8.02 7.98 7.97 0.08 0.08 0.08

case179 goc sad 179 263 8.3560e+05 1.05 1.04 1.04 0.02 0.02 0.02
case240 pserc sad 240 448 3.6565e+06 5.24 5.22 5.21 2.83 2.82 2.70

case300 ieee sad 300 411 6.6431e+05 2.36 2.30 2.29 0.04 0.04 0.04
case500 tamu sad 500 597 7.9234e+04 7.90 7.90 7.90 0.31 0.34 0.30
case588 sdet sad 588 686 4.0427e+05 6.26 6.28 6.21 0.25 0.26 0.24

the QC-RM and QC-LM relaxations. It also highlights two
interesting points: (1) In some cases the QC-TLM relax-
ation can provide benefits without bound tightening, e.g.
case24 ieee rts api, case73 ieee rts api and case14 ieee sad;
(2) the QC-TLM relaxation’s most significant benefits occur
in the most challenging GO-OBBT cases, e.g. case89 peg
ase api, case118 ieee api. It is important to note that small
discrepancies in the GO-OBBT optimality gaps are observed.
These are due to numerical challenges resulting from the
finite precision of floating point arithmetic and only occur in
cases where the optimality gap is close to zero.

V. CONCLUSIONS

In summary, this paper presents a novel strengthened ver-
sion of the QC relaxation and shows its theoretical tightness
and its effectiveness in computing better variable bounds and
reducing the optimality gap on a wide range of test networks,
when used in conjunction with bound-tightening techniques.
For numerous benchmark instances, the proposed QC re-
laxation provides non-trivial improvements in the optimality
gaps, both in the base relaxation and also when applied in
conjunction with the OBBT algorithm for obtaining near
global optimum solutions.
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Fig. 3: Runtime distributions of OBBT with various QC
relaxations. The lower and upper ends of the boxes reflect
the first and third quanrtiles, the lines inside the boxes denote
the median, and the circles are outliers.

Future work: Although the gap improvements for a few
instances may not seem very significant in Table I, the
proposed convex relaxations are fundamental in nature and
can be applied to other useful variants of the AC-OPF
relaxations in the literature, such as in the inclusion of cycle-
based constraints [3]. For example, for any 3-cycle (i´j´k)
in a network, the equality θij ` θjk ´ θik “ 0, leads to
the following constraints in the qcs-|sn space of variables by
applying to this equation, cos and sin, respectively:

qcsij qcsjk qcsik ` qcsij|snjk|snik ´ |snij|snjk qcsik ` |snij qcsjk|snik “ 1,

|snij qcsjk qcsik ` |snij|snjk|snik ` qcsij|snjk qcsik ´ qcsij qcsjk|snik “ 0.

It can be observed that the proposed extreme-point convex
hull relaxations with strengthened linking constraints can be
applied on shared bilinear terms such as qcsij qcsjk, qcsij|snik,
etc. Thus, future work includes extensions to account for
cycle-induced relaxations in the AC-OPF problem.
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