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Abstract— This study addresses a stochastic optimal control
problem for continuous-time systems aimed at steering a
probability distribution of the terminal state towards a desired
probability distribution. The problem formulation incorporates
the Wasserstein distance, a metric of the space of probability
measures, in the cost functional. We provide an optimality
condition for this optimal control problem in the form of
Pontryagin’s minimal principle. The condition is obtained by
carefully examining the properties of the Wasserstein distance.
Consequently, we obtain the optimality condition described
by a forward-backward stochastic differential equation and
a Kantorovich potential, which appears in optimal transport
theory.

I. INTRODUCTION

This study addresses optimality conditions in the
continuous-time stochastic optimal control problem with the
cost given by the Wasserstein distance.

Recently, the field of stochastic control theory has focused
on control problems that take into account of probability
distributions associated with systems [1], [2], [3], [4], [5],
[6], [7], [8], [9]. This trend has been invoked by the de-
velopments of the optimal transport theory [10], [11], [12],
[13] and mean-field game and control theory [14], [15],
[16]. The optimal transport theory enables analysis of the
space of probability measures geometrically and analytically.
Additionally, the mean-field control theory has developed
techniques to handle control problems that require explicit
considerations of probability distributions, such as control
problems of McKean-Vlasov stochastic differential equations
(SDEs) [16]. The integration of this trend with control theory
has led to the development of numerous control approaches
that handle explicitly probability distributions associated
with control systems [1], [2], [3], [4], [5], [6], [7]. These
methods enable not only the control of covariances, but also
the steering of a probability distribution towards a target
distribution.

The steering of probability distributions has the potential
for various applications. The applications can be found in the
control of the autonomous vehicle [17] and the operation
of car-sharing services [18]. Additionally, the control of
probability distributions is expected to contribute to deep
learning. A fundamental issue in deep learning is handling
data and its distributions. In particular, the fundamental
problem of generative modeling, exemplified by generative
adversarial networks [19], [20], normalizing flows [21],
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diffusion models [22], aims to construct probability distri-
butions to approximate data distributions. Accordingly, the
design of neural networks can be viewed as the optimization
of probability distributions associated with the networks.
Some studies investigate the generative models from the
perspective of stochastic control theory [23], [24], [25].

The steering problem of probability distributions can
be considered in various settings. In addition to the opti-
mal transport and mean-field control-based approaches, the
study [1] investigates the design of feedback controllers
to steer a distribution to a steady state distribution. The
study [2] also considers the optimal control of the Liouville
equation. Moreover, the studies [26], [3], [4], [5], [6], [27]
provide approaches to steer probability distributions based
on the optimal transport theory. In addition, the studies [17],
[7] address the covariance steering. Of these studies, the
study [4] addresses the finite-time horizon optimal control
problem for steering the terminal distribution of linear sys-
tems by introducing a metric of probability distributions,
the Wasserstein distance. The study [27] further explores
the control problem for discrete-time deterministic nonlinear
systems. Incorporating the Wasserstein distances in terminal
costs enables the evaluation of the proximity between the
probability distribution of a terminal state and a given desired
distribution. In deep learning, the Wasserstein distance is
used as a loss function and minimized in the learning [20].
Additionally, the network of generative modeling can be
implemented as a dynamical system, as demonstrated in the
study of neural ordinary differential equations [28]. In this
context, determining the weights of such a network can be
viewed as finding a control for a dynamical system. Conse-
quently, the minimization of the Wasserstein distance in the
deep learning problem can be viewed as the optimal control
with the Wasserstein distance. The optimal control with the
Wasserstein distance can be expected to provide theoretical
foundations for generative modeling. Recently, continuous-
time stochastic dynamical systems are increasingly employed
in the field [22], [23], [24], [25]. Therefore, it is desirable
to address the optimal control problem for continuous-time
stochastic systems as well as the nonlinearity. However,
the above-mentioned paper [27] do not address the optimal
control problem for the continuous-time nonlinear stochastic
systems.

The present work aims to address the finite horizon
optimal control problem for continuous-time stochastic sys-
tems using the terminal costs given by the Wasserstein
distance. To consider the stochasticity and nonlinearity of
dynamical systems in the control problem, we focus on the
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control system described by a nonlinear SDE. As the main
contribution, this study provides the optimality condition
in this problem. We provide the condition for stochastic
systems using Pontryagin’s minimum principle. In contrast,
the previous study [27] has only addressed the problem
for deterministic discrete-time systems. In standard deter-
ministic optimal control problems, Pontryagin’s minimum
principle offers the optimality condition as Hamiltonian sys-
tems, a forward-backward differential equation. For standard
stochastic optimal control problems, the stochastic Pontrya-
gin’s minimum principle has been established based on
forward-backward SDEs (FBSDEs) [29]. This study provides
the optimality condition for the optimal control problem with
the Wasserstein distance based on the stochastic Pontryagin’s
minimum principle. To obtain the condition for this problem
as a form of the stochastic Pontryagin’s minimum principle,
it is necessary to carefully examine the Wasserstein distance
in the terminal costs. Investigating this metric allows us to
derive the optimal condition. The minimum principle gener-
ally provides foundations for developing numerical methods
of optimal control or receding-horizon control strategies. We
expect that the minimum principle presented in this study
also provides foundations for developing numerical methods
for the optimal control of distributions. Moreover, given the
connection between the control problem and deep generative
modeling, the optimal control of probability distributions can
suggest insights into the learnability of generative models.

The rest of this paper is constructed as follows. The
following section provides mathematical preliminaries, such
as the definition of the Wasserstein distance. Then, section III
states the problem of the optimal control using the Wasser-
stein distance. The following section provides the optimality
condition for the optimal control problem and the proof.
Finally, we conclude the paper with discussions.

II. MATHEMATICAL PRELIMINARIES: WASSERSTEIN
DISTANCE

A. Notations

This section provides notations used in this paper and
mathematical preliminaries on the Wasserstein distance.

Throughout this paper, N denotes the set of natural num-
bers, and we denote by R and Rn the set of real numbers
and the n-dimensional Euclidean space, respectively. The
notation ∥ · ∥ denotes the Euclidean norm. The σ-algebra
of Rn is denoted by B(Rn), which comprises a measurable
space (Rn,B(Rn)). Given a sample space Ω, a σ-algebra
F of Ω, the probability measure on the measurable space
(Ω,F), the triplet (Ω,F ,P) denotes the probability space.
Given the space Ω, we denote the probability measure on
the space by P(Ω). In particular, P(Rn) denotes the set of
probability measures on (Rn,B(Rn)). For a real-valued or
vector-valued random variable X defined on the probability
space, the notation E [X] denotes the mathematical expecta-
tion of X . When considering stochastic processes, we denote
the time variable as t ∈ R+ := [0,∞), and given a filtration
{Ft}t∈R+

, the quadruplets
(
Ω,F ,P, {Ft}t∈R+

)
denotes the

filtered probability space. Additionally, for a differentiable

function f(x, y) with respect to x and y, ∂xf(x, y) denotes
the partial derivative of f with respect to x. When f is a
vector-valued function, ∂xf(x, y) denotes the Jacobian of f .

B. Wasserstein Distance

As stated in the next section, this study explores the
optimal control problem for a continuous-time stochastic
control system, intending to steer a probability distribu-
tion of the terminal state of a control system to a target
distribution. To this end, we formulate the problem as an
optimal control problem to minimize the proximity between
the controlled and desired distributions by introducing a
metric of probability distributions. This study employs the
Wasserstein distance in the problem, which builds on the
optimal transport theory [10], [12]. The following definition
considers the metric on the space of probability measures.

Definition 1 (2-Wasserstein distance): For the probability
measures µ, ν ∈ P(Rn), the following functional W2 of µ
and ν is the Wasserstein distance between µ and ν:

W2(µ, ν) = inf
π∈Π(µ,ν)

[∫
Rn×Rn

d(x, y)2dπ(x, y)

]1/2
, (1)

where d(x, y) = ∥x − y∥ and Π(µ, ν) is the set of the
coupling of µ and ν defined as the set of probability measures
on Rn × Rn whose marginals are µ and ν, respectively. In
other words, for π ∈ Π(µ, ν),

π(A× Rn) = µ(A), π(Rn ×A) = ν(A) (2)

holds for any A ∈ B(Rn).
The metric can be intuitively interpreted as the cost of
transporting the mass of µ into that of ν, where the coupling
π ∈ Π(µ, ν) determines the transport plan between µ and ν.
The metric is defined as the minimum transportation costs
between µ and ν over all possible couplings of µ and ν.
The Wasserstein distance is known as a metric on the space
of probability measures, meaning that it satisfies the axiom
of metric. In other words, the metric endows the space of
probability measures with a metric structure, referred to as
the Wasserstein space.

The definition (1) of the Wasserstein distance can be
viewed as an infinite-dimensional linear optimization prob-
lem, which leads to a dual problem. The following is used
to derive the optimal condition in this study and is com-
monly referred to as the Kantorovich duality theorem [16,
Proposition 5.3].

Theorem 1 ([16]): Given µ, ν ∈ P(Rn), the Wasserstein
distance (1) between µ and ν can be expressed as

W2(µ, ν)
2

= sup
(φ,ψ)∈Ψd2

{∫
Rn

φ(x)dµ(x) +

∫
Rn

ψ(y)dν(y)

}
,

(3)

where Ψd2 denotes the set of pairs of bounded continuous
functions φ and ψ such that φ(x) + ψ(y) ≤ d(x, y)2 for
(x, y) ∈ Rn×Rn. Moreover, let π∗ be an element of Π(µ, ν)
that attains the infimum of (1). Then, there exists φ and ψ
such that

φ(x) + ψ(y) = d(x, y)2 (4)
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for x, y ∈ spt(π∗) almost everywhere with respect to π∗,
where spt(π∗) denotes the support of π∗

III. PROBLEM STATEMENT: FINITE HORIZON OPTIMAL
CONTROL PROBLEM OF PROBABILITY DISTRIBUTIONS

This section presents the problem statement of this study,
which focuses on a control problem of continuous-time
stochastic systems. The problem is formulated as the optimal
control with the costs given by the Wasserstein distance,
which is made for the steering problem of a probability
distribution of the terminal state.

The problem of this study concerns a continuous-time
stochastic control system given by the Itô SDE:

dxt = f(xt, ut)dt+ σ(xt)dWt, x0 = x ∼ µ0, (5)

where xt ∈ Rn is the state, ut ∈ U ⊆ Rm is a control input,
f : Rn × U , σ : Rn → Rn×d, and Wt is a d-dimensional
standard Wiener process. To formulate the problem of this
study, we assume that the initial value x0 is a random
variable and the distribution is given by µ0 ∈ P(Rn). In the
following, we denote the probability distribution of the state
xt at time t by µt. Additionally, to simplify the notation, we
denote {xt}t∈R+

as x = {xt}t∈R+
in the following, when

no confusion may arise. Similar notations are used for the
control u = {ut}t∈R+

and other processes. Moreover, we
assume that u is progressively measurable.

We consider the finite-horizon optimal control problem
for the system (5). The problem aims to steer the terminal
distribution of the system state to a desired probability
distribution µd ∈ P(Rn). The cost of the optimal control
problem takes the form:

J(u) = E

[∫ T

0

L(xs, us)ds

]
+W2(µT , µd)

2, (6)

where L : Rn × U → R+ and W2 is the Wasserstein
distance. Since the Wasserstein distance is non-negative,
J(u) is bounded from below. That is, the objective is to
minimize the squared Wasserstein distance at the terminal
time as well as the running cost by L. Consequently, the
following problem is posed:

Problem 1: Given the initial distribution µ0 of the initial
state and the desired distribution µd of the state at the
terminal time T , consider

inf
u∈A

J(u), (7)

where A denotes the set of admissible controls.
This form of the problem was first introduced in [4] for
continuous-time stochastic linear systems. Additionally, the
previous study by the author [27] discussed the problem
of nonlinear discrete-time deterministic systems. This study
focuses on the problem of nonlinear continuous-time stochas-
tic systems of (5). The study [27] discussed the control
problem for nonlinear systems. However, the dynamics of
systems are assumed to be deterministic and discrete time.
We extend the results in [27] for continuous-time nonlinear
stochastic systems. Additionally, the study [27] considers

only the terminal cost of the Wasserstein distance, while this
study considers the running and terminal costs.

There are two primary motivations for considering Prob-
lem 1 with the Wasserstein distance. First, solving Problem 1
enables the approximation of the probability distribution µd,
with samples of xT serving as approximations of samples
from µd. As previously stated, this problem is fundamental
in deep learning. Second, Problem 1 aims to contribute to the
controllability analysis with respect to probability distribu-
tions. In other words, the problem is that we consider if there
is a control u of the system (5) that steers the distribution
of the state sufficiently close to a given distribution µd
at time t = T . In Problem 1, other functionals, such as
the Kullback-Leibler (KL) divergence, may be employed
to measure the proximity between distributions instead of
the Wasserstein distance. However, the divergence does not
provide a metric on the space of probability distributions.
The controllability of a Fokker-Planck equation, a partial
differential equation describing the evolution of a probability
distribution of stochastic systems, for a class of system is ad-
dressed in [30]. However, further investigation is necessary.
The Wasserstein distance provides a metric on the space
of probability distributions. This indicates that measuring
the proximity of distributions by the Wasserstein distance
would be suitable for the controllability analysis because the
metric is expected to play roles similar to the Euclidean
metric for finite-dimensional systems. The particular case
of L ≡ 0 in (6) yields the problem of obtaining the best
approximation of the desired distribution by controlling the
terminal distribution in terms of the metric, which can serve
as a form of controllability analysis.

IV. MAIN RESULTS: OPTIMALITY CONDITIONS

A. Statement of Main Results

This section presents an optimality condition for Prob-
lem 1 in the form of Pontryagin’s maximum principle for
continuous-time stochastic control systems.

To discuss the optimality condition, we make the following
assumptions.

Assumption 1: We assume that for control system (5) and
cost (6), the elements of functions f : Rn × U → Rn,
σ : Rn → Rn×d, L : Rn × U → R+ are continuously
differentiable in (x, u), x, (x, u), respectively. Additionally,
their derivatives ∂xf(x, u), ∂uf(x, u), ∂xσ(x), ∂xL(x, u),
and ∂uL(x, u) are continuous and bounded for x ∈ Rn and
U . Furthermore, the set of admissible values of control U
is convex, and the set of admissible control A is given by
the set of u = {ut} satisfying ut ∈ U for t ∈ [0, T ] almost
surely. The support of µd is Rn.

The main result of this study provides the optimality con-
dition for the continuous-time stochastic control system with
the control cost (6). This result extends the optimality condi-
tion in [27] for deterministic discrete-time nonlinear systems
to the continuous-time nonlinear stochastic system (5). In the
following theorem, function H : Rn × Rn × Rn × U → R
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is given by

H(x, y, z, u) = yT f(x, u) + L(x, u) + zTσ(x), (8)

which is commonly referred to as the Hamiltonian.
Theorem 2: Assume that Assumption 1 holds. Addition-

ally, assume that there exists a control u∗ = {u∗t }0≤t≤T ∈ A
that attains the minimum of control cost J(u) of (6) in
a probability space (Ω,B(Ω),P,Ft). Then, there exist Ft-
adapted processes x∗ = {x∗t }0≤t≤T , y∗ = {y∗t }0≤t≤T ,
z∗ = {z∗t }0≤t≤T , and a Lipschitz continuous function φ :
Rn → R such that the following forward-backward SDE and
conditions hold:

dx∗t = f (x∗t , u
∗
t ) dt+ σ (x∗t ) dWt, (9a)

dy∗t = −∂xH (x∗t , y
∗
t , z

∗
t , u

∗
t ) dt+ z∗t dWt, (9b)

∂uH (x∗t , y
∗
t , z

∗
t , u

∗
t ) (v − u∗t ) ≥ 0 (9c)

for any v ∈ U a.s. and

x∗0 ∼ µ0, y∗T = ∂xφ (x∗T ) a.s. (10)
The condition in (9) demonstrates that this result is a varia-
tion of Pontryagin’s maximum principle. The variable y∗t is
commonly referred to as the adjoint variable. The terminal
condition in (10) for the adjoint variable is determined by
the function φ and x∗T . As shown in the following proof,
the function φ is obtained from the Kantorovich duality
theorem of the Wasserstein distance, indicating that φ is the
Kantorovich potential of W2(µ

∗
T , µd) where µ∗

T denotes the
distribution of x∗T . While this result can be seen as a special
case of the optimality conditions for general mean-field
control problems, for example, [31], this study delves into
the specific case where the Wasserstein distance determines
the terminal cost. Consequently, this study shows that the
gradient of the Kantorovich potential gives the terminal
condition of the BSDE.

B. Proof of Theorem 2

This subsection proves Theorem 2. The proof is obtained
by integrating Pontryagin’s maximum principle for stochastic
control problems and the Kantorovich duality theorem. Al-
though the idea is based on the proof of stochastic Pontrya-
gin’s principle, the proof requires handling the Wasserstein
distance to obtain the terminal condition (10). This study
handles this by utilizing the Kantorovich duality theorem.

We first introduce notations before providing the proof.
The optimal control u∗ = {u∗t }0≤t≤T determines the
distribution µ∗

T of the terminal state x∗T and the squared
Wasserstein distance W2(µ

∗
T , µd)

2 in the cost functional (6).
According to Theorem 1, there exist Kantorovich potentials
φ∗ and ψ∗ such that the following holds:

W2(µ
∗
T , µd)

2 =

∫
Rn

φ∗dµ∗
T +

∫
Rn

ψ∗dµd. (11)

Note that, as we assume the support of µd to be Rn in
Assumption 1, we can establish the uniqueness of the Kan-
torovich potentials up to additive constants by applying [12,
Proposition 7.18] with minor modifications and that the
uniqueness is used in the following proofs. Additionally, we

can conclude ∂xφ in Theorem 2 is unique. For an optimal
control input u∗ and for another control û = {ût}0≤t≤T ∈
A, we denote δut = ût − u∗t and δu = {δut}0≤t≤T .

To provide the proof, we utilize the following lemma [32,
Lemma 4.7].

Lemma 1 ([32]): Given the control u∗, consider the Ft-
adapted process V = {Vt}0≤t≤T satisfying the SDE

dVt = {∂xf(x∗t , u∗t )Vt + ∂uf(x
∗
t , u

∗
t )δut} dt

+ ∂xσ(x
∗
t )VtdWt

(12)

where Wt is the same Wiener process with that in (5) and
V0 = 0 a.s. Then, SDE (12) possesses the unique solution,
and E

[
sup0≤t≤T |Vt|p

]
<∞ holds for any p ≥ 1. Moreover,

it follows that

lim
ϵ→0

E sup
0≤t≤T

|V ϵt |
2
= 0, (13)

where V ϵt is given by

V ϵt =
xϵt − xt

ϵ
− Vt for ϵ > 0, (14)

where xϵt is a solution of (5) with uϵ = {u∗t + ϵδut}0≤t≤T .
This lemma shows that V yields a variation process of x∗

in the mean square sense.
The next key lemma provides an expression of the Gâteaux

derivative of the terminal cost of the Wasserstein distance at
u∗ with δu.

Lemma 2: Consider the state processes x∗ given by (9a)
and xϵ = {xϵt}0≤t≤T obtained by (5) with uϵ = {u∗t +
ϵδut}0≤t≤T . Then, given the Kantorovich potential φ∗

in (11), there exists a derivative ∂xφ
∗ almost everywhere

on Rn. Moreover,

d

dϵ
W2(µ

ϵ
T , µd)

2 |ϵ=0= E [∂xφ
∗(x∗T )VT ] (15)

holds where µϵT denotes the distribution of the terminal state
of xϵT .

Proof: We show the almost everywhere existence of
∂xφ

∗. First, Theorem 1 ensures the existence of functions
φ∗ and ψ∗ such that (11) holds. As seen in the proof of [12,
Theorem 1.17], φ∗ and ψ∗ are Lipschitz functions. Addition-
ally, Rademacher’s theorem [33, Theorem 3.1] implies that
φ∗ and ψ∗ possess the derivatives almost everywhere on Rn.
Accordingly, ∂xφ∗ exists almost everywhere.

We next show the equation (15). First, we consider the
Wasserstein distance between µϵT and µd, where µϵT is the
distribution of xϵT with the solution xϵ of (5) with the
control uϵ = {u∗t + ϵδut}0≤t≤T . It follows from Theorem 1
that, likewise the Kantorovich potentials φ∗ and ψ∗ for
the optimal state process x∗t , we obtain the Kantorovich
potentials φϵ and ψϵ for the Wasserstein distance between
µϵT and µd such that

W2(µ
ϵ
T , µd)

2 =

∫
Rn

φϵdµϵT +

∫
Rn

ψϵdµd. (16)
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In the following, we show that the derivative of (15) is
obtained by showing

lim inf
ϵ→0

W2(µ
ϵ
T , µd)

2 −W2(µ
∗
T , µd)

2

ϵ

= lim sup
ϵ→0

W2(µ
ϵ
T , µd)

2 −W2(µ
∗
T , µd)

2

ϵ
.

(17)

We first evaluate the limit inferior in (17). Remembering that
φ∗ and ψ∗ are the Kantorovich potentials for W2(µ

∗
T , µd)

2,
which are obtained by taking the supremum over the func-
tions of φ and ψ, it follows from Theorem 1 that

W2(µ
ϵ
T , µd)

2 ≥
∫
Rn

φ∗dµϵT +

∫
Rn

ψ∗dµd. (18)

Recalling that µ∗
T and µϵT are distributions of x∗T and xϵT ,

respectively, and noting by xd the random variable whose
distribution is µd, we have

W2(µ
ϵ
T , µd)

2 −W2(µ
∗
T , µd)

2 ≥ {E [φ∗(xϵT )] + E [ψ∗(xd)]}
− {E [φ∗(x∗T )] + E [ψ∗(xd)]}
= E [φ∗(xϵT )− φ∗(x∗T )] .

(19)
Noting that xϵT = x∗T + ϵ (VT + V ϵT ) with VT and V ϵt given
by (12) and (14), respectively, we obtain that

E [φ∗(xϵT )− φ∗(x∗T )]

= E [φ∗(x∗T + ϵ(VT + V ϵT ))− φ∗(x∗T )]

= E
[∫ 1

0

d

dλ
φ∗(x∗T + λϵ(VT + V ϵT ))dλ

]
= ϵE

[∫ 1

0

∂xφ
∗(x∗T + λϵ(VT + V ϵT ))(VT + V ϵT )dλ

]
.

(20)
The second equality is obtained by the fundamental theorem
of calculus. The last equality is obtained because the Kan-
torovich potential φ∗ is differentiable almost everywhere, as
shown above and ∂xφ∗ is used in the integral. According to
equation (20),

lim
ϵ→0

1

ϵ
E [φ∗(xϵT )− φ∗(x∗T )] = E [∂xφ

∗(x∗T )VT ] , (21)

where the right-hand side of (21) is obtained by taking the
limit of ϵ → 0 in the last expression of (20) and using
the definition of V ϵt and its property (13). Therefore, (19)
and (21) imply that

lim inf
ϵ→0

W2(µ
ϵ
T , µd)

2 −W2(µ
∗
T , µd)

2

ϵ
≥ E [∂xφ

∗(x∗T )Vt] ,

(22)
which provides the evaluation of the limit inferior in (17).

We next evaluate the limit superior in (17). For the limit
inferior, there exists a sequence of {ϵn}n∈N such that ϵn → 0
as n→ ∞ and the following holds:

lim sup
ϵ→0

W2(µ
ϵ
T , µd)

2 −W2(µ
∗
T , µd)

2

ϵ

= lim
n→∞

W2(µ
ϵn
T , µd)

2 −W2(µ
∗
T , µd)

2

ϵn
.

(23)

Then, each ϵn determines the state process xϵn =
{xϵnt }0≤t≤T given similarly to xϵt and µϵnT given as the

distribution of the terminal state xϵnT . Like the above, there
exist Kantorovich potentials φϵn and ψϵn such that

W2(µ
ϵn
T , µd)

2 = E [φϵn(xϵnT )] + E [ψϵn(xd)] . (24)

Given the Kantorovich potentials φϵn and ψϵn for µϵnT and
µd, it follows from the dual expression in Theorem 1 that
for the optimal state process x∗,

W2(µ
∗
T , µd)

2 ≥ E [φϵn(x∗T )] + E [ψϵn(xd)] (25)

holds. Therefore, (24) and (25) imply that

W2(µ
ϵn
T , µd)

2 −W2(µ
∗
T , µd)

2

≤ E [φϵn(xϵnT )] + E [ψϵn(xd)]

− {E [φϵn(x∗T )] + E [ψϵn(xd)]}
= E [φϵn(xϵnT )]− E [φϵn(xd)] .

(26)

A similar discussion to obtain (21) shows

lim
n→0

1

ϵn
E [φϵn(xϵnT )− φϵn(x∗T )] = E [∂xφ

∗(x∗T )VT ] , (27)

which implies

lim
n→∞

W2(µ
ϵn
T , µd)

2 −W2(µ
∗
T , µd)

2

ϵ
≤ E [∂xφ

∗(x∗T )VT ] .

(28)
Finally, (22), (23), and (28) prove (17) and yield (15), which
completes the proof.

Finally, we provide the proof of Theorem 2. Using
Lemma 2, we can prove the theorem in a typical way of
standard stochastic optimal control problems [29], [32], [16].
Therefore, we show only the outline of the proof.

Proof: First, we show that the Gâteaux derivative of
the cost function becomes

lim
ϵ→0

J(u∗ + ϵδu)− J(u∗)

ϵ

= E

[∫ T

0

(∂xL(x
∗
s, u

∗
s)Vs + ∂uL(x

∗
s, u

∗
s)δus) ds

]
+ E [∂xφ

∗(x∗T )VT ] .

(29)

The first term on the right-hand side of (29) is obtained
similarly to [32, Lemma 4.8], and the second term is obtained
by Lemma 2. Then, given the optimal control u∗ and the
optimal process x∗, consider the backward stochastic differ-
ential equation (BSDE) of (9b). Under Assumption 1, this
BSDE possesses a unique solution thanks to [32, Theorem
2.2]. Observing that for the Hamiltonian of (8)

∂xH(x, y, z, u) = ∂xf(x, u)y+∂xL(x, u)+∂xσ(x)z, (30)

we express the BSDE (9b) as

dy∗t =− {∂xf(x∗t , u∗t )y∗t + ∂xL(xt, ut) + ∂xσ(x
∗
t )z

∗
t } dt

+ z∗t dWt

(31)
with y∗T = ∂xφ

∗(x∗T ) a.s. Then, using the duality relation of
the variational process V of (12) and the adjoint process y∗

T

as shown in [32, Lemma 4.10], y∗t and Vt satisfies

E [y∗TVT ] = E

[∫ T

0

(y∗s∂uL(x
∗
s, u

∗
s)δus − ∂xL(x

∗
s, u

∗
s)Vs) ds

]
(32)
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Noting that E [y∗TVT ] = E [∂xφ
∗(xT )VT ] due to the terminal

condition of (9b), we obtain from (29) and (32) that

lim
ϵ→0

J(u∗ + ϵδu)− J(u∗)

ϵ

= E

[∫ T

0

{∂uL(xs, us) + y∗s∂uf(x
∗
s, u

∗
s)} δusds

]

= E

[∫ T

0

∂uH(xs, ys, zs, us)δusds

]
.

(33)

The last equality follows from the definition of the Hamilto-
nian H in (8). The control u∗ is optimal, which implies
J(u∗ + ϵδu) ≥ J(u∗). This necessitates that (9c) holds
in (33). This completes the proof.

V. CONCLUSION

In this paper, we addressed a stochastic optimal control
problem for continuous-time systems with the terminal cost
of the Wasserstein distance. This extends the results of the
previous study [27] for discrete-time nonlinear deterministic
systems. We provide a necessary condition of the optimality
in the control problem in the form of Pontryagin’s minimum
principle. This was achieved by carefully examining the
differentiability of the Wasserstein distance.

Future work includes investigating the existence conditions
of the optimal control and developing efficient numerical
algorithms and its theoretical investigations. Additionally, we
will study the optimal control problem discussed in this study
from the perspective of the dynamic programming approach
in mean-field control theory [34].
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