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Abstract— A finite-horizon nonlinear optimal control prob-
lem is considered. Stat-quad duality is used to generate an
equivalent problem with linear dynamics and a modification
term in the running cost and two auxiliary controls processes.
This problem form is used to obtain a representation of the
value function as a staticization problem over a set of quadratic
functions, where the coefficients of the quadratics consists of
the solution to a differential Riccati equation, a linear ODE and
an integral. This representation allows the value function to be
evaluated independently at any time and any point in the state
space. A specialized numerical method is proposed for solving
the resulting staticization problem, which is able to leverage the
low dimensionality of nonlinearity. A numerical example with
five-dimensional state space is included.

I. INTRODUCTION

The most common approach to the solution of continuous-
time/continuous-space nonlinear optimal control problems is
dynamic programming. This converts the control problem
into an associated nonlinear Hamilton-Jacobi partial differen-
tial equation (HJ PDE) problem. In the case of a deterministic
model, the HJ PDE is first-order. Classical methods for
solution of the HJ PDE problem are subject to the curse
of dimensionality. Although this difficulty has been greatly
reduced in recent years through a variety of approaches
[1], [3], [5], [7], [14], [15], [16], there still remains a very
serious problem for the computational solution when the
system state is of moderate dimension. On the other hand,
in a wide variety of cases, the system dynamics might be
largely linear, with only a few nonlinearities. (This notion
will be rigorously defined in Section II.) Nonetheless, the
dimension of the HJ PDE is that of the overall state space.
Here, we present an approach where, in such cases, one can
reduce the nonlinear problem to that of the “dimension” of
the nonlinearity. In the specific approach here, we apply
a method in the vein of a Pontryagin maximum principle
approach to the resulting low-dimensional problem. This
allows for a point-wise solution method that does not require
solution over the entire space.

We now provide a bit more detail regarding the techniques
developed herein. As suggested by the title, staticization is
a critical element of the development. Staticization will be
properly defined in Section III, but it is sufficient here to
indicate that it maps functions to their values at stationary
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points (i.e., critical points); see [10], [11], [12] for the general
theory and connections to extremization problems [6]. Its
development is motivated by the study of conservative and
quantum systems, where stationary trajectories of the action
functional play a fundamental role, c.f. [8]. Subsequently,
staticization has demonstrated utility in the development of
tools for nonlinear control. In regard to this last item, the
effort here represents a substantial extension to the results
presented in [5], where the applicability was restricted by the
use of minimization. Stat-quad duality (defined in Theorem
2) will be used to formulate an equivalent problem, where
new auxiliary control inputs are introduced. The auxiliary
controls come about due to relaxation, i.e., replacing the
primal with the dual of the dual, which is exact if the primal
is in the domain of the stat-quad transform. It might be noted
that stat-quad duality is analogous to stat-duality [11] in a
manner similar to that of the relationship between semi-
convex duality and convex duality. The resulting problem
has linear dynamics, and a running cost that is quadratic
in the state and non-quadratic in the newly introduced
control variables. One obtains the value function as the
sum of a purely quadratic term and a nonlinear/nonquadratic
term. The quadratic-term growth coefficient is obtained from
solution of a differential Riccati equation (DRE), where
the DRE is independent of these newly introduced con-
trols. The nonlinear term is obtained through staticization
over control-indexed affine functions. The linear terms in
the affine functions are obtained from (control-dependent)
linear ODEs, while the zeroth-order terms are obtained from
integrals where the integrands contain a nonlinear function of
the newly introduced controls. The dimension of the newly
introduced controls is, roughly speaking, that of the low-
dimensional nonlinearities, where, again, this dimensionality
will be clarified in Section II. An efficient numerical method
for solving the equivalent problem is proposed, exploiting the
low dimensionality of the nonlinearity. Although the methods
of dynamic programming are a major tool in the analysis
herein, the resulting “low-dimensional” algorithm is such that
the value function may be evaluated at any point in the state
space independently. This is a key to the applicability of the
specific numerical method generated below.

The subsequent sections of this paper are structured as
follows. The optimal control problem of interest is specified
in Section II, along with some notational conventions. The
equivalent problem with linear dynamics is presented in
Section III. This is reduced to a pointwise-in-space nonlinear
integral equation in Section IV. A numerical method is pro-
posed in Section V. That method is subsequently employed
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in the example that appears in Section VI.

II. OPTIMAL CONTROL PROBLEM

Let 0 ≤ t < T < ∞, x ∈ Rn and U(t, T ) .
=

L2((t, T );Rj). We consider a control problem with state
process given by

ξ̇s = Aξs + L0f(M0ξs) + σus, ξt = x ∈ Rn, (1)

for s ∈ (t, T ), where A ∈ Rn×n, σ ∈ Rn×j , L0 ∈ Rn×l,
f ∈ C2(Rk;Rl), ℓ ∈ C3(Rk;R≥0), M0 ∈ Rk×n, k, l ≤ n,
u ∈ U(t, T ) denotes the control process, and in the interests
of space, the time argument will often be indicated with
subscript notation. The cost function is given by

Jt(x, u)
.
=

∫ T

t

ℓ(M0ξs) +
1
2ξ

′
sCξs +

1
2 |us|

2 ds ∀x ∈ Rn,

where C is a symmetric positive definite matrix.

Assumption 1: f and ℓ have bounded first and second
derivatives.

We consider the value function

W̃t(x)
.
= inf

u∈U(t,T )
Jt(x, u). (2)

The associated HJ PDE is given by{
0 = −∂sUs(x) + H̃(x,∇xUs(x)), (s, x) ∈ (t, T )× Rn,
UT (x) = 0,

(3)
where

H̃(x, p) = −{

.
=Q̃(x,p)︷ ︸︸ ︷

1
2x

′Cx+ p′Ax− 1
2p

′σσ′p

+ ℓ(M0x) + [(L0)′p]′f(M0x)︸ ︷︷ ︸
.
=Ñ(M0x,(L0)′p)

}.

By standard results (cf., [2]), the value function W̃ is the
unique viscosity solution of (3).

III. STATICIZATION AND STAT-QUAD REPRESENTATIONS

We begin by recalling some definitions regarding staticiza-
tion [11]. Let V denote a normed vector space and A ⊂ V .
Let G : A→ R. We say ū ∈ arg statu∈AG(u) if ū ∈ A and

either lim sup
u→ū,u∈A\{ū}

|G(u)−G(ū)|
u− ū

= 0 or ū is isolated.

If arg statu∈AG(u) ̸= ∅, we define the set-valued staticiza-
tion operator as follows:

stat
u∈A

sG(u)
.
= {G(ū)|ū ∈ arg stat

u∈A
G(u)}.

Otherwise the statsu∈AG(u) is undefined.
If statsu∈AG(u) = {a} for some a ∈ R, we define the

single-valued stat operator as statu∈AG(u) = a; otherwise
it is undefined.

We have the following result regarding staticization in
Banach spaces.

Theorem 1: Suppose V is a Banach space and A ⊂ V
is open. If G is Fréchet differentiable at ū ∈ A. Then ū ∈
arg statu∈AG(u) iff the Fréchet derivative at ū is zero.

Let

Q0(y0, y1, a, b)
.
= − c1

2 |y
0 − a|2 − c2

2 |y
1 − b|2

= −1
2

(
y′ − (a′, b′)

)
Ĉ
(
y − (a′, b′)′

)
,

where y′ .= ((y0)′, (y1)′) and

Ĉ
.
=

(
c1Ik 0k,l
0l,k c2Il

)
, (4)

in which c1, c2 ̸= 0, and let Im generically denote an m-
dimensional identity matrix, and 0m,j generically denote an
m× j zero matrix.

Assumption 2: Assume c2 ∈ R is such that Γ̃
.
= σσ′ +

c2L
0(L0)′ is positive definite.

Adapting [11, Theorem 4] to the current context, one has the
following general result, which is an example of stat-quad
duality.

Theorem 2: Let B ⊆ Rk+l be open and η̃ : Rk+l → Rk+l,
be given by η̃(y)

.
= ∇Ñ(y) − ((c1y

0)′, (c2y
1)′)′. Suppose

η̃−1 ∈ C1(B;Rk+l) and onto Rk+l. Then

Ñ(y0, y1) = stat
(a,b)∈B

{
Θ̃(a, b) +Q0(y0, y1, a, b)

}
∀(y0, y1) ∈ Rk+l, (5)

Θ̃(a, b) = stat
(y0,y1)∈Rk+l

{
Ñ(y0, y1)−Q0(y0, y1, a, b)

}
∀(a, b) ∈ B. (6)

A case of special interest here is where there exists cÑ <
∞ such that |∇yyÑ(y)| < cÑ for all y ∈ Rk+l. In this case,
one obtains (cf., [11], [13], [5]) the following.

Lemma 3: There exists stat-quad duality (5)–(6) where in
particular, B .

= Rk+l, and each of the two associated argstat
values is unique. Further, |∇(a,b)(a,b)Θ̃(a, b)| ≤ 2cÑ for all
(a, b) ∈ Rk+l, and if Ñ ∈ Cj(Rk+l), then Θ̃ ∈ Cj(Rk+l).

We immediately obtain the following extension that ap-
plies stat-quad duality to the specific problem structure here.

Lemma 4: For all (x, p) ∈ R2n, (a, b) ∈ Rk+l

Ñ(M0x, (L0)′p) = stat
(a,b)∈Rk+l

{
Θ̃(a, b) +Q1(x, p, a, b)

}
(7)

Θ̃(a, b) = stat
(x,p)∈R2n

{
Ñ(M0x, (L0)′p)−Q1(x, p, a, b)

}
(8)

Q1(x, p, a, b)
.
= Q0(M0x, (L0)′p, a, b).

Applying Lemma 4 to (3) yields the equivalent HJ PDE:

0= −
{
∂sUs(x) + Q̃(x,∇Us(x))

+ stat
(a,b)∈Rk+l

[Θ̃(a, b) +Q0(M0x, (L0)′∇Us(x), a, b)]
}

= −
{
∂sUs(x) +

1
2x

′Cx+ (∇Us(x))
′Ax
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− 1
2 (∇Us(x))

′Γ̃(∇Us(x))

+ stat
(a,b)∈Rk+l

[
Θ̃(a, b)− c1

2 |M
0x− a|2 (9)

− c2
2 |b|

2 + c2(∇Us(x))
′L0b

]}
.

Then, by Assumption 2, there exists positive definite sym-
metric B̃ such that B̃′B̃ = Γ̃, and thus,

− 1
2p

′Γ̃p = − 1
2 (B̃p)

′(B̃p) = stat
v∈Rn

{p′B̃v + 1
2 |v|

2} ∀ p ∈ Rn.

Equation (9) can now be further rearranged as follows:

0 = −
{
∂sUs(x) +

1
2x

′Cx+∇Us(x)
′Ax (10)

+ stat
v∈Rn

{∇Us(x)
′B̃v + 1

2 |v|
2}+

+ stat
(a,b)∈Rk+l

[
Θ̃(a, b)− c1

2 |M
0x− a|2

− c2
2 |b|

2 + c2∇Us(x)
′L0b

]}
,

Observe that (10), along with the original boundary condition
UT ≡ 0 is the attendant HJ PDE problem corresponding to
a control problem with linear dynamics

ζ̇s = Aζs + B̃νs + c2L
0βs, ζt = x ∈ Rn, (11)

and cost function

J̆t(x, ν, α, β)
.
=

∫ T

t

1
2ζ

′
sCζs +

1
2 |νs|

2 + Θ̃(αs, βs)

− c1
2 |M

0ζs − αs|2 − c2
2 |βs|

2 ds, (12)

where we staticize rather than minimize the cost in the value
function given by

W̆t(x)
.
= stat

(ν,α,β)∈L2((t,T );Rn+k+l)
J̆t(x, ν, α, β). (13)

Staticization problem (11)–(13) belongs to the more gen-
eral problem class given by

˙̂
ξs

.
= Âξ̂s + B̂νs + g1(s), ξ̂t = x̂ ∈ Rn, (14)

L̄(s, x, û)
.
= 1

2

[
x
û

]′
C̆

[
x
û

]
+ ℓ̄(û) + g2(s)

′x+ g3(s),

J̄t(x̂, û)
.
=

∫ T

t

L̄(s, ξ̂s, ûs) ds+ ψ̄(ξ̂T ),

W̄t(x̂)
.
= stat

û∈U(t,T )
J̄t(x̂, û),

Under Assumption 1, the following verification theorem for
staticizing optimal control problems will be used to establish
the equivalence of between W̆ and W̃ .

Theorem 5: Let Â ∈ Rn×n, B̂ ∈ Rn×m, C̆ ∈
R(m+n)×(m+n) be constant matrices. Let ℓ̄ : Rm → R. Let
g1, g2, g3 ∈ L2([t, T ]). Denote the bottom right m×m block
of C̆ by C̆2,2. Suppose there exists some K ∈ R+ such that

|ℓ̄(v̂2)− ℓ̄(v̂1)| ≤ K(1 + |v̂1|+ |v̂2|)|v̂2 − v̂1|,

and that η : v̂ 7→ C̆2,2v+∇v ℓ̄(v) admits a globally Lipschitz
inverse. If W ∈ C1 satisfies

0 = −∂sWs(x̂)− stat
v̂∈Rn

{(∇x̂Ws(x̂))
′f̄(s, x̂, v̂) + L̄(s, x̂, v̂)}

for all s ∈ [t, T ], x̂ ∈ Rn, WT (·) = ψ̄, and there exists K2 ∈
R≥0 such that |∇x̂Ws(x̂)| ≤ K2(1+|x̂|) on [t, T ]×Rn. Then
W = W̄ on [t, T ]×Rn. Further, for (s, x̂) ∈ [t, T ]×Rn, let

H̄0(s, x, v)
.
= ∇x̂Ws(x̂)

′f̄(s, x̂, v) + L̄(s, x̂, v),

v̂∗(s, x̂) ∈ arg stat
v̂∈Rm

H̄0(s, x̂, v̂).

Then, letting ξ̂∗ denote the trajectory generated by (14) with
feedback v̂∗(s, ξ̂∗s ) and ṽ∗·

.
= v̂∗(·, ξ̂∗· ), one has ṽ∗ ∈ U(t, T ).

We note that the HJ PDEs (3), (9) and (10) are equivalent.
Hence, Theorem 5 implies that W̆ = W̃ .

The domain of staticization in (13) consists of three control
processes, whereas we expect from the derivation of W̆ that
the staticization over ν may be performed independently
from that of α, β. In order to achieve this, we first express J̆
in a semi-quadratic form (in particular, where J̆ is quadratic
in ν with coefficients dependent on µ), and extend the results
from [12] regarding the exchange of the order of staticization.

As the dynamics (11) is linear, the trajectory is given by

ζs = [Fx]s + [Gν]s + c2[G̃β]s (15)

.
= Φs,tx+

∫ s

t

Φs,τ B̃ντ dτ + c2

∫ s

t

Φs,τL
0βτ dτ,

where [Fx]s
.
= Φs,tx and Φs,t denotes the state transition

matrix corresponding to A, and for s ∈ [t, T ], G and G̃ are
given by

[Gν]s
.
=

∫ s

t

Φs,τ B̃ντ dτ, [G̃β]s
.
=

∫ s

t

Φs,τL
0βτ dτ.

At this point, it becomes helpful to compress the no-
tation. Let µ .

= (α, β), Vt,T
.
= L2((t, T );Rn), At,T

.
=

L2((t, T );Rk), Bt,T
.
= L2((t, T );Rl) and Mt,T

.
= At,T ×

Bt,T . We also suppress the subscript t,T when there is no
risk of confusion. Using the explicit solution (15) in (12),
we obtain the following result.

Theorem 6: Given x ∈ Rn and t ≤ T , cost J̆t(x, ν, α, β)
of (12) has the equivalent explicit semi-quadratic form

J̆t(x, ν, µ) = f1(µ;x) + ⟨B̄2µ, ν⟩V + ⟨B̂2x, ν⟩V
+ 1

2 ⟨B̄3 ν, ν⟩V , (16)

for all x ∈ Rn, ν ∈ V , µ = (α, β) ∈ M, in which f1(µ;x),
B̄2, B̂2, B̄3 are given by

f1(µ;x)
.
= 1

2 ⟨x,F
′[C − c1(M

0)′M0]Fx⟩V
+ c2⟨β, G̃′[C − c1(M

0)′M0]Fx⟩B
+ c1⟨α,M0Fx⟩F + 1

2 ⟨µ, Ĉµ⟩V

+
c22
2
⟨β, G̃′[C − c1(M

0)′M0]G̃β⟩B

+ c1c2⟨α,M0G̃β⟩A +

∫ T

t

Θ̃(µs) ds,

B̄2
.
= G′[c1(M

0)′, (C − c1(M
0)′M0)c2G̃],

B̂2
.
= G′(C − c1(M

0)′M0)F ,
B̄3

.
= G′(C − c1(M

0)′M0)G + In.
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Moreover, B̄3 ∈ L(V;V), uniformly in t ∈ [0, T ].

We proceed by following the development of §4.2 in
[12]. The results there do not apply directly because of the
extra term ⟨B̂2x, ν⟩ in (16). Similar results hold nonetheless,
allowing one to split the staticization over V and M. We
note that [12] requires B̄3 be boundedly invertible, which is
required here. The inverse can be found explicitly by inter-
preting B̄3 as solving a two-point boundary value problem.

Lemma 7: y = B̄3v is given by

ys =
[
0n B̃′](η1s

η2s

)
+ νs,

where we recall that B̃ denotes a symmetric square-root of
symmetric diagonalizable Γ̃, and η is the unique solution to
the TPBVP

η̇s =

(
A 0n

c1(M
0)′M0 − C A′

)
ηs +

(
B̃
0n

)
νs,

η1t = 0 = η2T .

We make the following final assumption.

Assumption 3: Letting Φ̃s,t denote the state transition
matrix of the LTI system

d
ds Φ̃s,t =

(
A −Γ̃

c1(M
0)′M0 − C A′

)
Φ̃s,t,

assume that the bottom right n×n block of Φ̃s,t is invertible
for all 0 ≤ t ≤ s ≤ T , and that this inverse is bounded
uniformly in s, t ∈ [0, T ].

Assumption 3 ensures that B̄3 is boundedly invertible, which
leads to the following result, which is a variation of [12,
Theorem 4.11].

Theorem 8: Fix (t, x) ∈ [t, T ]× Rn. Let

M̆x
t,T

.
= {µ ∈ Mt,T | stat

ν∈Vt,T

J̆t(x, ν, µ) exists}.

Suppose stat(ν,µ)∈Vt,T×Mt,T
J̆t(x, ν, µ) exists. Then,

stat
µ∈M̆x

t,T

stat
ν∈Vt,T

J̆t(x, ν, µ) = stat
(ν,µ)∈Vt,T×Mt,T

J̆t(x, ν, µ).

As a corollary, we conclude that

W̃t(x) = W̆ (x) = stat
µ∈M̆x

t,T

stat
ν∈Vt,T

J̆t(x, ν, µ). (17)

IV. REDUCTION OF THE STATICIZATION PROBLEM

Consider the inner stat in (17). Given µ ∈ M̆x
t,T , let

Wµ
t (x)

.
= stat

ν∈Vt,T

J̆t(x, ν, µ).

Note that Wµ corresponds to the HJ PDE problem given by
letting the right-hand side of (9) be evaluated at the given
µ = (α, β). That is, Wµ corresponds to HJ PDE problem

0 = −
{
∂tWt(x) +

1
2x

′Cx+∇xWt(x)
′Ax

− 1
2∇xWt(x)

′ Γ̃∇xWt(x) + c2∇xWt(x)
′L0βt

+ Θ̃(µt)− c1
2 |M

0x− αt|2 − c2
2 |βt|

2
}
, (18)

WT (x) = 0, x ∈ Rn. (19)

HJ problem (18)–(19) corresponds to an LQR problem, for
which verification results are standard, implying existence of
a unique viscosity solution. Consequently, in (17),

M̆x
t,T ≡ Mt,T . (20)

The value function Wµ corresponding to this LQR problem
may be obtained as follows. The proof follows by substitu-
tion of the asserted form into the HJ PDE, and application
of the uniqueness of viscosity solutions.

Theorem 9: Given any µ ∈ Mt,T ,

Wµ
t (x) =

1
2x

′Ptx+ x′qµt + 1
2r

µ
t ∀(t, x) ∈ [0, T ]× Rn,

where P, qµ, rµ satisfy the following ODEs,

Ṗt = −(C − c1(M
0)′M0)−A′Pt − PtA+ PtΓ̃Pt, (21)

q̇µt = (Pµ
t Γ̃−A′)qµt − c1(M

0)′αt − c2PtL
0βt, (22)

ṙµt = (qµt )
′Γ̃qµt + µ′Ĉµ− 2[c2(q

µ
t )

′L0βt + Θ̃(µt)], (23)

with terminal condition PT = 0n×n, qµT = 0n×1 and rµT = 0,
and Ĉ as given in (4).

Applying Theorem 9 and (20), the value function W̃ of the
original optimal control problem (2) has the representation

W̃t(x) =
1
2x

′Ptx+ stat
µ∈Mt,T

{x′qµt + 1
2r

µ
t }. (24)

In order to find the stat in (24), it suffices to evaluate
the arg stat, which is where the Fréchet derivative of the
operand is zero. We remark that P is the solution to the
DRE (21), which is independent of µ, qµ is the solution to
an linear ODE, whereas rµ is simply an integral.

In the following discussion, we assume the solution P has
been found and we aim to evaluate W̃ at some given (t, x).
Observe that

qµs =

∫ T

s

Φ̄s,τ (c1(M
0)′ατ + c2PτL

0βτ ) dτ, (25)

rµs =−
∫ T

s

(qµτ )
′Γ̃qµτ + µ′

τ Ĉµτ− 2[c2(q
µ
τ )

′L0βτ+Θ̃(µτ )] dτ,

where Φ̄s,τ is the state transition matrix associated with the
linear ODE

d
ds Φ̄s,τ = (PsΓ̃−A′)Φ̄s,τ .

Since (25) is linear in µ, the Fréchet differentials associated
with rµt and x′qµt are given by〈drµt

dµ (µ),∆µ
〉
V

= −2

∫ T

t

[Ĉµs −∇(a,b)Θ̃(µs)− c2(L
0I2)′qµs ]

′∆µ
s ds

− 2

∫ T

t

[Γ̃qµs − c2L
0I2µs]

′
∫ T

s

Φ̄s,σD̄σĈ∆
µ
σ dσ ds,〈

d
dµ [x

′qµt ](µ),∆
µ
〉
V =

∫ T

t

x′Φ̄t,τ D̄τ Ĉ∆
µ
τ .
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for all ∆µ ∈ Mt,T , in which D̄s
.
= [(M0)′, PsL

0] and I2 .
=

[0l×k, Il]. Consequently, by Theorem 1, we see that µ ∈
arg statµ∈Mt,T

{⟨x, qµt ⟩+ 1
2r

µ
t } iff for all ∆µ ∈ Mt,T ,

0 =

∫ T

t

[−Ĉµs +∇(a,b)Θ̃(µs) + c2(L
0I2)′qµs

+ Ĉ(Φ̄t,sD̄s)
′x]′∆µ

s ds

+

∫ T

t

[−Γ̃qµs + c2L
0I2µs]

′
∫ T

s

Φ̄s,σD̄σĈ∆
µ
σ dσ ds

which, by considering the Hilbert adjoint in the double
integral and rearranging, holds for all ∆µ ∈ Mt,T iff

0 =− Ĉµs +∇(a,b)Θ̃(µs) + c2(L
0I2)′qµs + Ĉ(Φ̄t,sD̄s)

′x

+

∫ s

t

Ĉ(Φ̄τ,sD̄s)
′(−Γ̃qµτ + c2L

0I2µτ ) dτ, (26)

a.e. s ∈ (t, T ).

V. A SPECIFIC NUMERICAL METHOD

We consider a reduced-complexity case for development
of the numerical approach. Specifically take L0 = 0, Γ̃ = In,
Ĉ = c1Ik and t = 0. Then, (26) reduces to

c1αs−∇Θ̃(αs) = c1M
0Φ̄′

0,sx−c1M0

∫ s

0

Φ̄′
τ,sq

µ
τ dτ. (27)

Denote η : Rk → Rk by η(α)
.
= α − 1

c1
∇Θ̃(α), σ ∧ s .

=
min(σ, s), and

D̄σ,s
.
=

∫ σ∧s

0

Φ̄′
τ,sΦ̄τ,σ dτ,

Using η, D̄ along with (25), we may now rewrite (27) as

η(αs) =M0Φ̄′
0,sx−M0

∫ s

0

Φ̄′
τ,sq

µ
τ dτ

=M0Φ̄′
0,sx− c1M

0

∫ s

0

Φ̄′
τ,s

∫ T

τ

Φ̄τ,σ(M
0)′ασ dσ dτ

=M0Φ̄′
0,sx− c1M

0

∫ T

0

D̄σ,s(M
0)′ασ dσ. (28)

For sufficiently short time horizons, α can be found using
fixed point iterations as follows. We state the following
regularity result regarding η without proof.

Theorem 10: η is invertible and Lipschitz continuous with
Lipschitz constant 2. The inverse of η is C1 with Lipschitz
constant 2. In particular, (∇η(µ))−1 is bounded by 2 and
Lipschitz in µ with Lipschitz constant 4.

We now rearrange (28) as a fixed point iteration:

α = η−1

(
M0Φ̄′

0,sx− c1M
0

∫ T

0

D̄σ,s(M
0)′ασ dσ

)
.

(29)
Theorem 11: For T > 0 sufficiently small that the norm of

the right-hand side of (29) is no greater than some Kα < 1,
there exists a unique solution α ∈ C1(0, T ) ⊂ A0,T to (29).

Proof: Define F : C([0, T ];Rk) → C([0, T ];Rk) by

F(α)
.
= η−1

(
M0Φ̄′

0,sx− c1M
0

∫ T

0

D̄σ,s(M
0)′ασ dσ

)
.

Then, for any α1, α2 ∈ C([0, T ];Rk), by Thm. 10,

∥F(α2 − α1)∥∞

≤ 4

∥∥∥∥∥c1M0

∫ T

0

D̄σ,s(M
0)′(α2

σ − α1
σ) dσ

∥∥∥∥∥
∞

≤ 4|c1||M0|2 sup
σ,s∈[0,T ]

|D̄σ,s|∥α2 − α2∥∞T.

We see that the Lipschitz constant goes to zero as T ↓ 0. By
Banach fixed-point theorem, there exists some α such that
α = F [α]. Since the range of F is within C1([0, T ];Rk), it
follows that α ∈ C1([0, T ];Rk).

Although for longer time durations the fixed point it-
erations may not converge in general, we may use fixed
point iteration to obtain an estimate solution to (29), and
propagate the estimate to the true solution. Formally, suppose
one would like to solve (29) for some large T̄ . We index α
obtained by fixed point iteration by T and write αT . Each
αT is still defined on [0, T̄ ].

Differentiating (28) w.r.t. T yields

∇η(αT
s )

dαT
s

dT

= −c1M0D̄T,s(M
0)′αT

T − c1M
0

∫ T

0

D̄σ,s(M
0)′

dαT
σ

dT
dσ,

which may be rearranged to obtain

dαT
s

dT
+ c1[∇η(αT

s )]
−1M0

∫ T

0

D̄σ,s(M
0)′

dαT
σ

dT
dσ

= −c1[∇η(αT
s )]

−1M0D̄T,s(M
0)′αT

T . (30)

Define

K(g; c1, α)
.
= [∇η(αT

s )]
−1M0

∫ T

0

D̄σ,s(M
0)′g dσ.

We note that K depends on c1 through D̄ (ultimately through
P ), whereas K depends on α through ∇η, which is globally
bounded.

One may interpret (30) as an ODE with state variable α·,
as in

(I + c1K(·; c1, α))
dαT

dT
= −c1M0D̄T,s(M

0)′αT
T .

In particular, if c1 is sufficiently small such that
|c1| supα ∥K(·; c1, α)∥ < 1, then

dαT

dT
= −(I + c1K(·; c1, α))−1c1M

0D̄T,s(M
0)′αT

T . (31)

Once an initial condition α is obtained (from fixed-point
iteration for small T ), the solution may then be propagated
until the desired time T . Even though I + c1K is an linear
operator on functions, the inverse of which may not have
a closed form representation, its inversion is tractable in
practice if time is discretized. In particular, for small c1,
this simply requires inverting a diagonally dominant matrix
computationally.

Hence we obtain the following algorithm for evaluating
the value function at any point (t, x).

271



1) Discretize the time interval [t, T ]; denote the grid
points by (tk)

N
k=1;

2) Compute (analytically or computationally) η (or η−1)
as a function;

3) Precompute Φti,tj and D̄ti,tj for all i, j = 1, · · · , N ;
4) Choose some small integer i ≤ N . Initialize αi to be

the zero vector (or any vector) of length N ;
5) Iterate using αi = F(αi) with ti in place of T until

desired accuracy;
6) Propagate using (31) from ti to terminal time T with

initial condition αti = αi;
7) Compute q and r using (25);
8) Compute W (t, x) using (24).

VI. EXAMPLE

We briefly outline an example with state-space dimension
five. The system is linear/quadratic with the exception of a
one-dimensional nonlinearity in running cost. The dynamics
are given by

A =


0 1.5 0 1 0
−1 0 0 −0.5 0.5
1.5 0 0 −1 0
0 −1 0 −1 0
1 0 0 1 0


and σ = I5, and T − t = 0.5. The quadratic term in the
running cost is defined by C = 0.6I5. The nonlinearity
direction is specified by M0 = (0, 1, 0, 0, 0), and the stat-
quad dual of the nonlinearity is Θ̃(α) = 0.5 sin(2α), where
the dualizing coefficient is c1 = −3.

Using the approach described here, one may compute the
solution on any plane (using approximately 1500 grid points)
in under a minute with a typical laptop. This should be
compared with the extreme computational cost of solving
an HJ PDE over five-dimensional space. Figure 1 depicts
the value function over the first two axes. Figure 2 contains
the PDE back-substitution errors divided by the sum of the
absolute values of the terms in the PDE.

Fig. 1. Value function.

Fig. 2. Relative back-substitution errors.
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