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Periodic Event-Triggered Boundary Control of Neuron Growth with
Actuation at Soma
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Abstract— Exploring novel strategies for regulating axon
growth, we introduce a periodic event-triggered control (PETC)
to enhance the practical implementation of the associated PDE
backstepping control law. Neurological injuries may impair
neuronal function, but therapies like Chondroitinase ABC
(ChABC) have shown promise in improving axon elongation
by influencing the extracellular matrix. This matrix, composed
of macromolecules and minerals, regulates tubulin concentra-
tion, potentially aiding neuronal recovery. The concentration
and spatial distribution of tubulin influence axon elongation
dynamics. Recent research explores feedback control strategies
for this model, leading to the development of an event-triggering
control (CETC). In this approach, the control law updates when
the triggering condition is met, reducing actuation resource
consumption. Through redesigning the triggering mechanism,
we introduce PETC, updating control inputs at intervals but
evaluating the event-trigger periodically, making it ideal for
time-sliced actuators like ChABC. PETC is a step forward
in designing feasible feedback laws for neuron growth. This
strategy sets an upper bound on event triggers between periodic
checks, ensuring convergence and preventing Zeno behavior.
Through Lyapunov analysis, we demonstrate local exponential
convergence of the system with PETC in the L%-norm. Numer-
ical examples confirm the theoretical findings.

I. INTRODUCTION

Neurons, as fundamental components of neural networks,
play a key role in sensory processing by transmitting elec-
trical signals through their axons, which act like cellular
wires. These axons contain tubulin proteins, essential for this
communication process [30]. The dynamics of these proteins
facilitate the elongation of axons, allowing them to reach the
target neuron, establish synaptic connections, and complete
the transmission process. However, neurological diseases or
injuries can disrupt or completely halt this transmission such
as Alzheimer’s disease [23] and spinal cord injuries [22].
In such complications, neurons may degenerate, leading to
axonal shrinkage or an inability to reach target neurons
for signal transmission. Until recently, the prevailing belief
was that injured neurons could not regenerate to complete
the transmission process [16]. Recent research shows that
regeneration is possible under certain conditions. Chondroiti-
nase ABC therapy has demonstrated promising potential for
stimulating neuron elongation [3].

Advancements in ChABC and other therapies may sup-
port neuron regeneration, but a key factor is the degree
of neuronal elongation, controlled by tubulin dynamics.
This process is modeled mathematically [12], [33], with a
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comprehensive model in [24] featuring a diffusion-reaction-
advection PDE for tubulin evolution along the axon, paired
with an ODE for tubulin at the growth cone and axon length.
This model is a Stefan-type PDE, widely studied in the
literature [13].

Partial differential equation (PDE) systems have attracted
significant attention in control engineering. A pioneering
research direction in this domain is boundary control of
PDE systems which is based on the work [21]. Researchers
have broadened their focus to include backstepping-based
boundary control of various types of PDEs, systems that
combine PDEs with ODEs, as well as systems that involve
multiple interacting PDEs [20], [31], [32]. While previous
studies focus on constant domain size in time, there are
significant works on the global results of moving domains in
time [8], [17]. This line of work has been extended to derive
local stability results for moving boundary nonlinear hyper-
bolic PDEs [2], [4], [34]. Achieving stability for nonlinear
parabolic PDEs with moving boundaries, especially without
using the maximum principle, has been challenging until our
recent study on axonal growth [5], [6].

While the control methods discussed operate continuously,
some technologies require interventions only when necessary
due to constraints in energy, communication, and computa-
tion [14]. This leads to event-triggered control, where actions
are executed as needed to optimize resource usage. The
concept was first developed for linear systems in [1], [15]
and later extended to nonlinear systems in [18]. Building
on these foundations, event-triggered boundary control for
infinite-dimensional systems was proposed in [11]. Static
and dynamic triggering mechanisms have been developed
for ODEs and various classes of PDEs, specifically, for
Stefan problem in [25], [26]. PETC and self-triggered control
are proposed in [28] and [29], respectively, for a class of
reaction-diffusion PDEs. Additionally, this method ensures
safety and convergence to the set point of Stefan problems
with actuator dynamics, as discussed in [19].

To address the neuron growth problem, a dynamic event-
triggering mechanism for a coupled PDE-nonlinear ODE
with a moving boundary is introduced in [7]. Given the
feasibility challenges of real-time implementation in biolog-
ical systems, we modify the continuous-time event-triggered
control (CETC) by incorporating a periodic sampling rule.
This introduces a dynamic periodic event-triggering control
(PETC) approach, where the triggering function is only
checked periodically while the control input is updated ape-
riodically. The PETC enhances the practical implementation
of the control law by enabling its application to time-sliced
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Fig. 1: Schematic of neuron and state variables

actuators like ChABC for axon growth. The strategy derives
a new triggering condition and sets an upper bound on
the event trigger between periodic checks, defined as the
sampling period. Our study differs from [27], which used
observer-based PETC for the one-phase Stefan problem.
While the outcome in [27] pertains to a system exhibiting
geometric nonlinearity, the neuron growth process involves
both geometrical and analytical nonlinearities leading to
a local convergence result. The PETC boundary controller
guarantees L2 local exponential convergence in closed-loop.

The paper is structured as follows: Section II details the
axon growth model, reference error analysis, and control law.
Section III reviews the event-triggering mechanism and prior
results. Section IV introduces a new periodic event-triggering
control, and Section V presents simulations.

II. TUBULIN-DRIVEN AXON GROWTH MODELING AND
CONTROL

This section presents the tubulin-driven axonal growth
model and a boundary control law.
A. Understanding axon growth

1) A model with a moving boundary PDE: Tubulin, a
group of proteins, drives the development of a newly formed
axon. Assuming unattached tubulin molecules along the axon
are negligible and that only tubulin contributes to axon
growth, the evolution of this process in time and space can
be modeled as follows [9], [10].

ci(x,t) = Degg(x,t) — ace(z,t) — ge(z, t), (D
CI(O, t) + C(Oa t) = _QS(t)v )
c(l(t),t) = ce(t), 3)
Ce(t) = ace(t) = Beg(I(1), 1) = K2 (1) + CooTyg, (4)
i(t) = rglce(t) — coo) (5)

where the constants in (4) are
=S g, f=T k=T ©

In this model, c(;:, t) is the tubulin concentration in the axon,
varying with space x time ¢, while ¢ represents the combined
tubulin flux and concentration at soma. The axon length is
denoted [(t), which is the distance between the soma and the
growth cone. The subscripts s and c are used for the soma
and the growth cone, respectively, as shown in Fig. 1. The
parameters, D, a, and g are tubulin diffusivity, velocity, and
degradation constants, respectively. The parameters in (4)
and (5) include [ representing the growth ratio, 7, denoting
the reaction rate of the microtubules production process, oo
as the equilibrium of tubulin concentration in the cone, and
rg serving as a lumped parameter. Detailed descriptions and
derivations of 7, and other parameters are available in [10].
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2) The steady-state solution and reference error system:
We derive a steady-state solution for the concentration,
corresponding to a desired axon length l5. The steady-state
spatially distributed steady-state tubulin concentration is

Ceal) = oo (K4 @) 4 MG )
where
a++/a?+4Dg 1 a — 24l
>\ =, K = = :l: ) (8)
- 2D - 2y/a? + 4Dg

and the steady-state input for the combination of tubulin
flux and concentration in the soma is

@ = —coo (K+(1 FA)e M K (14 Al)e )
The reference error system relative to (1)-(5) is given by
the dynamics of errors given below

ls

up(x,t) = Dugy(z,t) — aug(z,t) — gu(z, t), (10)
U (0,t) +u(0,t) = U(t), (11D
u(l(t),t) = h*(X (1)), (12)
X(t) = AX(t) + f(X (1) + Bua (U(1). 1), (13)

where the reference error states, u(x,t), z1(t) and 29(t),
and the reference error input U (t) are defined as

u(@,t) =c(z,1) = ceq(@), U(t) = =(g:(t) —g5)  (14)
z21(t) =ce(t) — ooy 22(t) = 1(t) — Is. (15)
X is a state vector in R?, given as X (t) = [z1(t) 22(¢)]T.

The parameters and the functions in (10)-(13) are defined

A:Hgl 7/6(12}’ B:{})ﬁ}v (16)
F(X (1) = =25 (t) + Bf1(22(2)), an
R (X) = 21(t) + oo — Coo (K122 4 K_A-220)  (18)
iz = coo (N K+ + X K_), (19)

fi1(22(t)) = *CooK+)\+e>‘+22( — e K_A_er-22®
Tz (t) + e ST, 20)

B. Control Law Design

1) Linearization of the finite-dimensional part of the cas-
cade system : We begin by linearizing the nonlinear ODEs
defined in (13) around zero states:

ut(x,t) =Dugy(z,t) — au(z, t) — gu(z,t), (21)
ug (0, ) + u(0,t) =U(t), (22)
u(l(®),t) =H ' X (1), (23)
X(t) =A1 X (t) + Bu, (I(1), 1), 24)

where the ~vect0~1r H € R? is defined as .
Al{‘;; %ﬂ,H{l 77@—%&)% . (25)

2 —
where 3 = %

stepping transformation
ut)
we.t) =u(w.t) ~ [ ke w)uly, dy

— bl —1(1) " X(1), (26)
we can map the linearized reference error system to a desired
target system which is

. By applying the following back-

wi(x,t) = Dwgy(z,t) — awy(x,t) — gw(x,t)
—I(t)F(x, X (t)), 27
w4 (0, 1) +w(0,t) = 1 (H —¢)" Bu(0,1), (28)

D



w(l(t),t) =€ X(t), (29)

X(t) = (A1 + BK)X(t) + Bw,(I(t),t), (30)

with the redundant nonlinear term is described as

F(z,X(t) = (¢’(m —1(t)T — k(x, l(t))CT) X (t) where
K € R? is chosen as _

k1 > ﬂ, ko >

B

to make A; + BK Hurwitz and € € R? will be chosen in
the stability analysis.

The approach for obtaining gain kernels in (26), namely
k(x,y) and ¢(x), is detailed in [5]. Simply, k(z, y) and ¢(x)
are obtained as:

Koy = 5o —) B,

$z)"

where the matrix N; € R*** is defined as

as

€1V

(32)

(H—¢)" KT"—LHTBHT]eM” H , (33)

q.

The inverse transformation is given in [7] and detailed
solutions for the gain kernels are provided in [5].

2) Continuous-time and sampled-data control law: By
taking the spatial derivative of the transformation and substi-
tuting « = 0 into both the backstepping transformation and
its spatial derivative, and setting boundary condition (28), the
control law is derived as

G
U) ‘BA p(2) Bu(a, t)dz + p(I(1) X (1), (35)

where

0 5(¢gI+A+HBHT

M= + (BHT +al)

(34)

p(x) =¢'(—2)" +o(—x)".

The system outlined in (1)-(5), with the continuous-time
controller input (35), is locally exponentially stable in the L?-
norm sense, as demonstrated in [7]. To develop the periodic
event-triggered control mechanism, the CTC input is sampled
at discrete intervals, which holds it constant between events.
This approach yields the following sampled-data control.

(36)

Ui (t) == U(tF), 37
where is employed at
uz(0,1) + u(0,t) = U (). (38)

for Vt € [t¢,t7, 1), k¥ € N with the increasing time
sequence, I* = {t¥ }ren, where t§ = 0 and w = {“¢”, “p” }.
The notations “c” and “p” represent CETC and PETC,
respectively. The control input is sampled from (35) at each
sampling time, emulating the continuous-time controller with

a Zero-Order Hold.

III. CONTINUOUS-TIME EVENT TRIGGERED CONTROL

In this section, we provide a summary of a CETC design
detailed in [7].

Definition 1: Continuous-time event-triggering consists of
two stages: the occurrence of the event and the application
of the control signal when the event occurs. Detection of the
time is defined as

th, =inf{t € Rt > tu ANd*(t) > —ym(t)}  (39)
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for all ¢ € [tg, 5, ), d(t) is given as

d(t) = U(t) — Ug(t) (40)
and m(t) satisfies the ODE
m(t) = —nm(t) + pd(t)* — fLX(1)* = B2 X (1)*
— B3 X ()% — Baw(0,) > — Bs||w(z, t)||>.  (41)

The event-triggering design parameters are o € (0,1),
v > 0,n >0, and §; and p are selected according to the
specifications outlined in [7] as

> d% ﬁ o (673
P=9p ""Tia—o)
Remark 1: The triggering mechanism defined by (39) and
(41) has the property of d?(t) < ym(t) and m(t) > 0,
V t € [0,sup{I°}) as detailed in [7].

(42)

Remark 2: Considering the increasing set of event-times
{t{ }ren with ty = 0, the following bound is obtained for
the time derivative of the input holding error
d2(t) <prd®(t) + o X (8)? + o X ()" + s X ()8
+ aqw(0, ) + asjw(z, t)| [, (43)
where the parameters, p1, a1, a2, a3, 4, a5 are given in [7],
equations (50)-(57).

Theorem 1: [7] For the event-triggered mechanism described
in (37)-(39), the set of event-times {t{, }rcn ensures that the
function I'“(¢) := d(t)? —~ym(t) remains non-positive for all
t € [t} t5.,,), where k € N.

The proof of this theorem and the following results are
given in [7] and the following hold:

1) The set of event-times {t} }en with triggering mech-
anism (37)-(39) and with the design parameters speci-
fied in [7], ensures that Zeno behavior does not occur.
This is because there exists a minimal dwell-time,
T > 0, between two execution times, given by

1
1
T :/ — s, 44)
o 018° +azs+as
where
a1 = poy > 0, 45)
as=1+4+2p1+(l—0)p+n>0, (46)
1—0
a3 =(1+p1+7(1=0o)p+n——2>0. (47

2) Given an initial condition m(0) < 0, the variable m(t)
governed by (41), satisfies m(t) < 0 for all ¢ > 0.

The closed-loop system (1)-(5), along with the event-
triggered mechanism (37), locally exponentially con-

verges to the desired axon length in the L2-sense.

3)

In the next section, we propose a periodic event-triggering
mechanism.

IV. PERIODIC EVENT TRIGGERING MECHANISM

In this section, we propose a periodic event-triggering
mechanism for axonal growth.

Definition 2: Consider the event-triggering function I'P(¢),
which undergoes periodic evaluation with a period of A > 0.
The PETC that generates the events are characterized by two
parts. The event-trigger mechanism which is a periodic event-



trigger that determines the event times

thyr = inf{t € Ry |t > 17, TP(t) > 0, t = nh,
h >0, n €N}, (48)
with th = 0 where h is sampling period and
IP(t) = vy d?(t) — vam(t) (49)

where v; > 0 and vy > 0. The feedback control law that is
derived as

=5 [ p

P 4P
b b

x)Bu(z, t})dz + p(L(t)) X (t})

(50)

for all t € [t} ) for k € N.

Note that periodicity in the triggering conditions (48),
allows us to monitor the triggering function periodically
and update the control laws aperiodically, removing the
continuous monitoring of the PDE-ODE state variables.
Then, the boundary condition (11) becomes

ug(0,t) +u(0,t) = U(t}). (51)
A. Design of the periodic event triggering function T'P(t)

Selection of the sampling period. The sampling period,
denoted as h, represents the unit of time during which the
control input is updated. Let the periodic event-triggered
function given by (48), along with the boundary condition
in (51) and the plant dynamics from (1)-(5), satisfy the
condition I'P(t) < 0 for all £ within the interval ¢ € [}, 1} )
for k € N. Hence, it follows that m(t) < 0 for all ¢ > 0.
The parameter £ is selected to satisfy

0<h<m, (52)
where the upper bound, 7, is the minimum inter-event time
of the CETC design defined in (44)-(47).
Proposition 1: Under the definition of the periodic event-
triggered boundary control (51), with the sampling period
h < 7, it holds that

1
re(t) < q(a+7p)d2(nh)6q(t mh) — qde(nh)

1
+ —gym(nh)e 1) - (53)
q
for all t € [nh, (n+1)h) and any n € [t} /h, 1, ,/h) CN,
where ¢ = 1+ + p; and T¢(t) = d?(t) — ym(t) for v > 0.

Proof. Taking the time derivative of I'°(¢) in ¢ € [nh, (n +
1)h) and n € [ti/h ths1/h) CN, one can show that

Lo(t) < d2(t) + d>(t) —yain2). (54)
Since m(t) satisfies Remark 1 and (1)-(5) with the event-
triggered control law (37) is locally exponentially conver-
gent, (54) exhibit smooth behavior in the interval ¢t €
[nh, (n + 1)h) and for any n € [t} /h, 1}, ,/h) C N. Using
Lemma 1 and the definition of I'“(¢), we establish the exis-
tence of a non-negative function «(t) € CO((t},t,,);Ry)
such that:

Le(t) =(1+ pr +7p)L(t) = (781 — a1) X (¢)°
= (182 — a2) X(1)* = (75 — a3) X (1)°
— (781 — aa) u(0,8)* — (765 — as) [Ju(z, 1)||?
+ (L4 p1+9p) v +17) m(t) — (b), (55)
for all t € [nh, (n+1)h) and for any n € [t} /h,t} ,/h) C
N. Moreover, through the substitution of d*(t) = T'°(t) +
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ym(t), we can use the dynamics of m(¢) and obtain the
solution of m(t) and I'°(¢) system of ODEs. Since we have
the following relationship

1+ n+7p(0)BI* > 0, (56)
Ascending order of triggering times that is the solution of
(44) is represented by

oq

)(g+7p) > ’

1
— (1
Ty ( T
where ¢ = 1+ 7 + p1. By using the solution of I'“(t), we
can derive the following expression for ¢ € [nh, (n+1)h):

(0 < 2 (- (nh) — T (nh)

+(q+7p) (L°(nh) +ym(nh) =) . (58)
Upon performing the substitution I'“(nh) into (58), we are

able to derive the inequality (53) which is valid for all ¢ €
[nh, (n + 1)h). This concludes the proof. O

(57

(g +yp)m

Building upon Lemma 2, the update time for the control
input can be determined by identifying when the subsequent
condition is met for any ¢ € [nh,(n + 1)h), thereby
challenging the positive definiteness of T'“(¢).

(q+p)d*(nh)e? ") — ypd®(nh) + gym(nh) > 0,

(59)
Thus, one can choose this condition as T'P(¢) such that
T?(t) = (g +yp)e™d*(t) — ypd®(t) + gym(t),  (60)
which completes the design process.

Theorem 2: Let the design parameters, p, p; and (; as
defined in [7], set the sampling rate in accordance with
(52), let v,n > 0 and o € (0,1). Let us consider the
periodic event-triggering mechanism (48)-(50) with the I'P(¢)
as defined in (60) which generates the increasing sequence
of times {t}}ren with ¢ = 0. Then, for I'°(t) and m(t)
with m(t) > 0, it holds that T'“(¢) < 0 and m(¢) > 0 for all
t>0.

Proof. Due to space constraints, we omit this proof, which
can be stated following the proof of Theorem 2 in [28]. [

B. Local exponential convergence under PETC

In order to prove that the closed-loop system (1)-(5)
with the control law (37) and the periodic event-triggering
mechanism (48) and (60), is locally exponentially conver-
gent, we first obtain the following target system by applying
transformation (26)

we(2,t) = Dwey () — awy (z,t) — gw(z, t) — () F(z, X (1))
—¢(@ —1(1) " f(X (1)) = G(x, 1(1)h" (X), (61)
wa (0,8) + w(0, ) = d(t) — 11) (H — )7 Bu(0,1), 62)
w(l(®),t) = " (X (1) +¢" X (1), (63)
X(t) = (A+ BE)X (1) + f(X(1)) + Bwa(I(1), 1), (64)
where G(z,1(t)) = (¢'(z —1(t)" %gb(a:fl( )NT)B.
Using the transformation below
w(z,t) = w(z,t) — h* (X (1)) (65)
converts (61)-(64) into
wi(x,t) = Dwyge (2, t) — aw,(z,t) — gw(z, t)
R = O () (K (8) Bma(E
— bl — 1) THX(E) — Gl L(E)R*(X)



— (X (®) (A+ BK)X (1) + f(X(1))), (66)
.(0,1) + (0, ) = d(t) — % (H— )T Bu(0,1)

+ h* (X (1)), (67)

w(l(t),t) =€ X(t), (68)

X(t)=(A+BK)X(t)+ f(X(t)) + Bw,(I(t),t). (69)

Below, we state the convergence result.
Theorem 3: Let the design parameters, p, p; and (; given
as defined in Theorem 2. Consider the periodic event-
triggering rule (48)-(50) with the periodic event-triggering
function (60) and sampling rate h defined in (52), which
generates an increasing event-times {t} },cn. Assuming the
well-posedness, the closed-loop system of (1)-(5) with the
boundary control law (60) and (36) is locally exponentially
convergent in L2-norm sense.
Proof. To demonstrate local convergence, we first establish
the system’s properties in a non-constant spatial interval, as
derived in [7]:

0 < I(t) li(t) <o (70)
for some [ > I > 0 an ﬁ. As demonstrated
in Theorem 2 of [7], m(t) < 0 for all ¢ € [t},t} ) where
k € N, implying T°(¢t) < 0 for ¢ € [t},t] ). Assuming
the well-posedness of the closed-loop system and following
the methodology outlined in [7], the subsequent Lyapunov
functional is considered

<,
do =

V(t) = Vi(t) —m(t), (71)
where i 2 . )
V1(t) :dli/) W(.l?,t) dx + X(t) (d2P1 + §P2) X(t)
(72)

and dy > 0,dy > 0, P, > 0 and P > 0 are positive definite
and positive semidefinite matrices satisfying the Lyapunov
equations:

(A+ BK") P, +P(A+BK") = -Qx,

(A+ BK)T(PL+ P,) + (P + Py)(A+ BK ) = —Q
where

D61
P11 P12 —2p11 O
P = ’ o, = B ’ 73
! {Pm pz,J [ 0 0} (73)
where we pick € € R? as ¢; > 2lep1,1 and e = flcﬁ

for some positive definite matrices Q1 = 0 and Q2 = 0.
By taking the time derivative of (72), applying Poincaré’s,
Agmon’s, and Young’s inequalities, we derive the following
expression:
V<—a' VeV &V 16V 14V (74)
where o, ¢;, d; and dy are given in [7]. By following
Lemma 3, Lemma 4 and Lemma 5 in [7], one can conclude
Vi(t) —m(t) < etV (0) (75)
by applying the comparison principle one can obtain the
following norm estimate for the target system (ww, X):

1 1
s (@) >+ X (1) (Pl ; Ipz) X(1)
2
—art [ d 1
< (GI=OIF + X7 (Pt 51 ) X(0)
2
— e 'm(0) (76)
Using the invertibility of the transformation (65), we prove
the target system (w, X) is locally exponentially convergent.

Fig. 2: Comparison between periodic-event triggering control input U }f (),
continuous time event triggering control input Ug(t) and the continuous
control law U (t)

For the original system (u, X), the invertibility of the back-
stepping transformation (26) leads to the same conclusion
for the closed-loop system. This completes the proof. O

V. NUMERICAL SIMULATIONS

In this section, we simulate the system from equations (1)-
(5), employing the control law (35) along with the designed
periodic event-triggering mechanism (48) utilizing the trig-
gering function (60). The model parameters are detailed in
Table 1. Initial conditions are specified as cp(x) = 1.5¢s
for the tubulin concentration along the axon and [y = 1um
for the initial axon length. Control gain parameters are set
as k; = —0.001 and ks = 3 x 10'3. The event-triggering
parameters are set as follows m(0) = —0.5, 81 = 2.5 x 108,
Bo =8x10°, B3 = 1x 10, By = 4x 10!, B5 = 4.5 x 1011,
p=15x10"1,~=1,1n=2and o = 0.8. Moreover, the
sampling period for the periodic event-triggering mechanism
is selected as h = 0.5 ms which is smaller than the minimal
dwell time 7 ~ 0.54 ms.

Fig. 2 illustrates the evolution of the continuous-time
control input, U (t), the event-triggering control input, U (t),
as defined in (37) with the triggering mechanism given by
(39)-(41), and the periodic event-triggering control input,
UZ(t), as defined in (50) with the triggering condition in
(48) and triggering function in (60). While PETC closely
emulates the CETC control input behavior, both PETC
and CETC minimized the necessity of control law updates
by maintaining comparable performance. In Fig. 3, tubulin
concentration, c(x,t), and axon length, I(t), converge to the
steady-state solution. Note that tubulin concentration changes
more smoothly with the PETC mechanism compared to the
CETC mechanism, improving practical applicability.

VI. CONCLUSION

This paper proposes a periodic event-triggering control for
the axonal growth problem, modeled as coupled PDE and
nonlinear ODE. The approach uses sampled-data control,

TABLE I: Biological constants and control parameters

Parameter Value Parameter Value
D 10 x 107 12m? /s g 0.053
a 1x 107 8m/s v 10*
g 5x 1077 51 le dum
g 1.783 x 1072 m*/(mols) ls 12um
Coo 0.0119 mol/m3 lo lum




Axon length [

(a) Continous time control input.

(b) Event-triggered control input.

(c) Periodic event-triggered control input.

Fig. 3: The tubulin concentration, c¢(x, t), reaches steady-state, ceq(t), by about ¢ = 4.5 minutes for continuous control, CETC, and PETC. Axon length,

I(t), converges to the target, ls, by around ¢ = 4 minutes for all sampling methods.

requiring only periodic monitoring and aperiodic updates.
Future work will focus on adaptive control and parameter
estimation, with Batch Least Squares Identifiers (BaLSI)
offering potential for finite-time identification and local ex-
ponential convergence.
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