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Abstract— In this paper, we propose a computationally ef-
ficient symbolic controller synthesis technique for multi-agent
systems. The paper focuses on synthesizing distributed con-
trollers enforcing local temporal logic specifications along with
global safety specifications for multi-agent systems. To solve
the problem in a computationally efficient way, we leverage the
concept of control barrier functions. In particular, we use a
three-step bottom-up approach: first, the symbolic controllers
for individual agents are synthesized to enforce local temporal
logic specifications, then we use a notion of control barrier
functions for symbolic models to compose controlled agent
systems by removing unsafe transitions, and finally, we synthe-
size controller for the reduced composed system to ensure the
satisfaction of local temporal logic specifications while ensuring
global safety specification. The effectiveness of our approach is
demonstrated on a multi-robot system by comparing it with
the conventional monolithic symbolic control approaches.

I. INTRODUCTION

Multi-agent systems (MAS) are made of components oper-
ating in the same environment to accomplish their respective
tasks. These systems must ensure that each agent accom-
plishes its task while making sure that it does not violate
global safety specifications. For example, a group of drones
picking up and dropping packages at designated places in
a warehouse while recharging at a common charging point
whenever their batteries are low. The drones have to visit
various locations in the warehouse while not colliding with
each other and no two drones can charge at the same time.
Such high-level complex specifications (usually represented
using Linear Temporal Logic (LTL)) can be reliably handled
by correct-by-construction symbolic control approaches [1]
that require state-space and input-space quantization. The
need for state space and input-space quantization results in
an exponential increase in computational complexity with
the dimension of state space in the concrete system, and,
hence, these techniques suffer severely from the issue of the
so-called curse of dimensionality, especially in the case of
systems with high-dimensional state space.

Controller synthesis for MAS is usually done in two ways
- top-down and bottom-up approaches. The top-down ap-
proach involves the decomposition of global tasks into local
ones. For example, [2], [3] decompose global controllers and
each agent solves a control problem for the decomposed
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strategy. The authors in [4] modified this approach by only
solving for a sub-group of the MAS, which has mutual
specifications. The authors in [5], [6] assign tasks to each
agent based on a global specification. These approaches
assume that the global specification is decomposable. A
similar strategy has been used in [7] using assume-guarantee
contracts. On the other hand, bottom-up approaches solve for
local specifications with some constraints [8] or synthesize
controllers after composing the system from individually
controlled agents [9], [10]. While these methods can solve lo-
cal and global specifications, they require some assumptions
on the system [9], [8] or on the specifications [10]. An incre-
mental approach was proposed in [11], where only a subset
of agents is incorporated in the synthesis procedure with
more agents added until the controller synthesis problem be-
comes infeasible. This approach only provides probabilistic
guarantees. The combination of the two approaches has also
been studied. The approach in [12] decomposes the system,
solves the local specification, and removes any conflicts after
recomposing the system. This process is repeated iteratively
without any convergence guarantees.

In the case of MAS, control barrier functions (CBFs)
have been used in controller synthesis [13]; however, the
control inputs are not bounded and can lead to infeasible
input values. The authors in [14] used barrier functions to
synthesize a least-intrusive controller limited to collision
avoidance. A combination of CBFs and symbolic control has
also been studied. The controller in [15] computes a discrete
plan and uses CBFs to ensure that the transitions are safe.
In [16], the authors generate a discrete plan and use CBFs
to execute the plan. Finally, [17], built on [14] by using a
nominal controller synthesized in a centralized manner and
projecting it onto each agent to satisfy LTL specification on
top of collision avoidance. This approach scales badly as
centralized controller synthesis is used.

In this paper, we introduce a bottom-up symbolic con-
troller synthesis technique for MAS that is more computa-
tionally efficient than the conventional controller synthesis
technique. We synthesize the controller in three steps. We
first synthesize a controller for each agent in parallel, each
ensuring that the controlled agent satisfies the correspond-
ing local specification expressed in Linear Temporal Logic
(LTL), using the concept of symbolic control. We then use a
notion of control barrier functions (CBFs) defined over the
symbolic model that provides safety guarantees for the con-
crete system to compose the individually controlled agents.
These CBFs are used as certificates to remove any unsafe
transitions in the composed MAS. The local specifications
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may be violated during this process. Thus, we synthesize a
controller for the reduced composed MAS that enforces the
local specifications while providing global safety guarantees.
We then implement our approach on a MAS for local reach-
avoid specification and global safety specification to show
the behaviour of the system in a cluttered environment. We
also compare our approach with the classical monolithic
approach and show its benefits in terms of the computation
time required for controller synthesis.

II. PRELIMINARIES AND PROBLEM DEFINITION

Notations: For x P Rn, xq represents the qth element of
the vector x P Rn, where q P t1, . . . , nu and the infinity
norm of x is ∥x∥ :“ maxqPt1,...nu|xq|. For a, b P pR Y
t´8,8uqn, where a ď b component-wise, the closed hyper-
interval is denoted by Ja, bK :“ RnXpra1, b1sˆ¨ ¨ ¨ˆran, bnsq.
A relation R Ď AˆB can be defined as a map R : AÑ 2B

as follows: b P Rpaq iff pa, bq P R. The relation R is strict
if Rpaq ‰ H, @a P A. The inverse of the relation is defined
as R´1 :“ tpb, aq P B ˆ A|pa, bq P Ru and can be written
as a P R´1pbq. Given a set S, IntpSq and BS represent
the interior and the boundary of S, respectively. Consider
N sets Ai, i P t1, . . . , Nu, the Cartesian product of sets is
given by A “

ś

iPt1,...,Nu Ai :“ tpa1, . . . , aN q|ai P Ai, i P
t1, . . . , Nuu. Given N functions fi : Xi Ñ Ai, the Cartesian
product of functions is f : X Ñ A :“

ś

iPt1,...,Nu fi “
pf1px1q, . . . , fN pxN qq. The composition of two maps H and
R is H ˝Rpxq :“ HpRpxqq. A function α : R`

0 Ñ R`
0 is of

class K if αp0q “ 0, and it is strictly increasing. If α P K is
unbounded, it is of class K8.

A. Discrete-time Multi-Agent Systems
Consider a collection of N P N agents and let I “

t1, . . . , Nu. Each agent’s state evolution is given by the
following discrete-time control system:

xipk ` 1q “ fipxipkq, uipkqq, i P I, k P N0, (1)

where xipkq P Xi Ă Rni is the state of the ith agent and
uipkq P Ui Ă Rmi is the input to the agent.
The state evolution of the multi-agent system is given by:

xpk ` 1q “ fpxpkq, upkqq, k P N0, xp0q P X
0, (2)

where X0 is the set of initial states, xpkq P X :“ ΠiPIXi Ă

Rn is the state of the multi-agent system, n “ ΣiPIni,
upkq P U :“ ΠiPIUi Ă Rm is the input to the system and
m “ ΣiPImi. The function f is given by f : X ˆ U Ñ X
and fpxpkq, upkqq :“ ΠiPI fipxipkq, uipkqq. The trajectory of
system (2) starting from a state x P X0 under the input
signal u is given by xxu and xxupkq gives the value of the
state of the system at sampling instance k.

The reachable set of system (2) from a set X Ď X under
an input u P U is given by ReachpX , uq :“

Ť

xPX fpx, uq,
which is the set of all states that the system ”reaches” when
an input u is applied at all the states in X in a one-time
step. This reachable set is difficult to compute, so we use
the over-approximated reachable set, Reachpx, uq. Several
approaches are available in the literature for computing this
over-approximated set; for example, [18], [19] and [20].

B. Transition Systems

We now introduce the notion of transition systems [1]
which will serve as a unified representation for discrete-time
control systems and their corresponding symbolic models.

Definition 2.1: A transition system is a tuple Σ “

pX,X0, U, F q, where X is the set of states (possibly in-
finite), X0 Ď X is the set of initial states, U is the set of
inputs (possibly infinite), and the map F : X ˆ U Ñ X is
the transition relation.
The set of admissible inputs for x P X is denoted by
Uapxq :“ tu P U | F px, uq ‰ Hu. We use x1 P F px, uq
to represent the u-successor of state x.
Consider the discrete-time control system of agent i as given
in (1). The transition system representation of the ith agent is
given by the tuple Σi “ pXi, X

0
i , Ui, Fiq, where Xi Ă Rni

is the set of the states of agent i, X0
i Ď Xi is the set of

initial states, Ui Ă Rmi is the set of inputs for agent i and
for xi P Xi, ui P Ui, Fipxi, uiq :“ fipxi, uiq.
The composition of the N transition systems, which repre-
sents the multi-agent system (2) is given by definition below.

Definition 2.2: Given a collection of N P N agents
represented as tΣiuiPI , where I “ t1, . . . , Nu, the composed
transition system is Σ “

`

X,X0, U, F
˘

, where
‚ X “

ś

iPI Xi, X0 Ď X , U “
ś

iPI Ui,
‚ for x P X and u P U , F px, uq “

ś

iPI Fi pxi, uiq.

C. Problem Formulation

Next, we formally state the problem considered here:
Problem 2.3: Given N agents with dynamics as in (1),

local specifications ψi expressed as LTL formulas [21] for
each agent and global safety specification Φ over the MAS
(2); design a controller for the MAS that enforces global
safety specification and the local LTL specifications.

One can solve Problem 2.3 for a MAS monolithically
using symbolic control techniques (as discussed in Section
III) for satisfying the global and local specifications φ “

Ψ^Φ, where Ψ “
Ź

iPI ψi, but scalability and computational
efficiency are stringent issues for controller synthesis.

To deal with the scalability issue and, as a consequence,
to reduce computational complexity, we propose to use a
bottom-up approach consisting of three steps:

1) We construct a symbolic controller for each of the
N agents Σi to satisfy the corresponding local LTL
specification ψi, where i P t1, . . . , Nu, as explained in
Section III. Using the symbolic controller, we construct
the individual controlled agents.

2) For the composed controlled MAS, resulting from
the composition of the controlled agents obtained in
step p1q, we construct a barrier function [22] that
enforces the global safety specification Φ. We use a
notion of barrier functions (introduced in Section IV)
as certificates to remove transitions that violate the
safety specification in the composed system.

3) Since the local specifications may be violated due to
the safety-enforcing barrier functions, we synthesize a
controller for the controlled system obtained in step
p2q to achieve the specification Ψ “

Ź

iPI ψi.
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The proposed controller ensures that the MAS satisfies the
local specification Ψ and the global specification Φ.

III. SYMBOLIC CONTROL

In this section, we will briefly discuss symbolic control
and how it can be used to synthesize controllers to satisfy
a given specification. In order to relate the discrete-time
control system and its symbolic model, we use the notion
of feedback refinement relation [20].

A. Feedback Refinement Relation

Definition 3.1: Consider two transition systems Σ “

pX,X0, U, F q and Σ̂ “ pX̂, X̂0, Û , F̂ q. A strict relation
Q Ď X ˆ X̂ is said to be a feedback refinement relation
from Σ to Σ̂, denoted by Σ ĺQ Σ̂, if for each px, x̂q P Q
the following conditions hold:

‚ Ûapx̂q Ď Uapxq,
‚ u P Ûapx̂q ùñ QpF px, uqq Ď F̂ px̂, uq.

The feedback refinement relation Q allows to transform a
controller for the abstraction Σ̂ into a controller for the
original system Σ.

B. Construction of Symbolic Models

In order to synthesize controllers for the concrete system
Σ, we need to construct its symbolic model Σ̂, which
is related to the original system Σ through the feedback
refinement relation.

Definition 3.2: The symbolic model of the system Σ is
given by Σ̂ “ pX̂, X̂0, Û , F̂ q, where

‚ X̂ is a cover over X whose elements are closed hyper-
intervals called cells. Let ¯̂

X Ď X̂ be a compact set of
congruent hyper-rectangles aligned on a uniform grid
parameterized with a quantization parameter η P pR`qn.
Each x̂ P ¯̂

X is given by cx̂`
q
´

η
2 ,

η
2

y
, where cx̂ P ηZn

and ηZn “ tc P Rn|DlPZn@qPt1,...,nucq “ lqηqu. The
cells in X̂z ¯̂X are called overflow cells,

‚ X̂0 “ X̂ XX0 and Û is a finite subset of U ,
‚ for x̂ P ¯̂

X and û P Û , a set A :“ tx̂1 P X̂|x̂1 X

Reachpx̂, ûq ‰ H}. If A Ď ¯̂
X and x̂1 R X̂z

¯̂
X , @x̂1 P A

then F̂ px̂, ûq “ A.
For a detailed procedure on constructing the symbolic model,
kindly refer to [23].

Theorem 3.3: [20, Theorem VIII.4] If Σ̂ is the symbolic
model of Σ constructed according to Definition 3.2 then the
relation Q Ď Xˆ X̂ defined by “ tpx, x̂q P Xˆ X̂ : x P x̂u
is feedback refinement relation from Σ to Σ̂.

C. Controller Synthesis using Symbolic Models

Consider the transition system Σ “ pX,X0, U, F q and
a memoryless controller C : X Ñ U , where for all x P
X , Cpxq Ď Uapxq. Let the domain of the controller be
dompCq :“ tx P X|Cpxq ‰ Hu.

Definition 3.4: Given a controller C and a transition sys-
tem Σ, the controlled system is given by the tuple Σ|C “

pXC , X
0
C , UC , FCq, where

‚ XC “ X X dompCq, X0
C Ď XC , UC “ U ,

‚ for xC P XC and uC P UC , x1
C P FCpxC , uCq iff

x1
C P F pxC , uCq and uC P CpxCq.

Let P be the set of atomic propositions that labels the
states in X Ă Rn through a labelling function L : X Ñ 2P

and φ be an LTL specification over P . The control inputs u
applied to the system according to C generates a trajectory
xxu from the initial state x. We say that the system Σ|C |ù
φ if Lpxxuq |ù φ. For more information on specification
satisfaction, refer [20, Definition VI.1].

Given the symbolic model Σ̂ and the relation Q Ď XˆX̂ ,
we first synthesize a controller Ĉ such that Σ̂|Ĉ |ù φ̂ using
graph theoretical approaches [1], where φ̂ is the symbolic
specification associated with Σ, Σ̂, Q and φ such that, if
Lpx̂q Ď φ̂ and px, x̂q P Q, then Lpxq Ď φ.

Theorem 3.5: [20, Theorem VI.3] If Σ ĺQ Σ̂ and Ĉ is
the symbolic controller such that Σ̂|Ĉ |ù φ̂, then Σ|C |ù φ,
where C :“ Ĉ ˝Q.

The controller Ĉ, synthesized for symbolic model Σ̂
satisfying global and local specifications, defined in Problem
2.3, can be refined for the concrete system Σ with the help of
relation Q. The controlled system Σ|C |ù φ, where φ :“ Ψ^
Φ is the combination of local and global specifications. Many
toolboxes are available for symbolic controller synthesis,
for example, [23], [24] and [25]. For scalability, we first
synthesize a controller that satisfies the local specification
ψi for the ith local symbolic model (ith agent) with Ψ “
Ź

iPI ψi and enforce global safety specification Φ on the
composed symbolic model with the notion of control barrier
functions, discussed in the next section.

IV. BARRIER CERTIFICATE FOR SYMBOLIC MODELS

To deal with global safety specification Φ, we leverage the
concept of control barrier function [26]. Consider a discrete-
time system as defined in (2). Let the safe set S Ď X Ă Rn

be defined as the superlevel set of a continuous function
B : Rn Ñ R and is given by:

S “ tx P X|Bpxq ě 0u, (3)
IntpSq “ tx P X|Bpxq ą 0u, (4)

BS “ tx P X|Bpxq “ 0u. (5)

Definition 4.1: Given the transition system Σ “

pX,X0, U, F q in Definition 2.1 and a set S Ď X . The set S
is said to be controlled invariant for the transition system Σ
if for all x P S, there exists u P U satisfying F px, uq Ď S.

Theorem 4.2: [26, Lemma 1] Given the discrete-time con-
trol system (2) and a safe set S Ď X Ă Rn as defined in (3)-
(5) as a superlevel set of a continuous function B : Rn Ñ R.
The set S is is a controlled invariant for the system in
(2) if there exists a K8 map α, satisfying αprq ă r,
for all r ą 0 and such that the following holds: for all
x P X , there exists u P U satisfying

Bpfpx, uqq ´Bpxq ě ´αpBpxqq. (6)
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To solve Problem 2.3 in a scalable way, we first define a
symbolic safe set Ŝ that is compatible with the symbolic
model using barrier function B (3)-(6) defining safe set S
for the original system (2). For this, we need the following
assumption over function B : X Ñ R.

Assumption 4.3: The barrier functions B : X Ñ R
defined in Theorem 4.2 satisfy the global Lipschitz continuity
condition: there exists a constant Lx P R`

0 such that
}Bpxq ´Bpyq} ď Lx}x´ y} for all x, y P X .

Given Assumption 4.3 and a symbolic model Σ̂ “

pX̂, X̂0, Û , F̂ q with a symbolic state given by x̂ :“ cx̂ `q
´

η
2 ,

η
2

y
P X̂ and state space discretization η “ pη1, . . . , ηnq

P pR`qn as defined in Definition 3.2, we define a symbolic
safe set Ŝ using barrier function B in Theorem 4.2 as:

Ŝ “ tx̂ P X̂|Bpcx̂q ´ Lx ηmax

2
ě 0u (7)

IntpŜq “ tx̂ P X̂|Bpcx̂q ´ Lx ηmax

2
ą 0u (8)

BŜ “ tx̂ P X̂|Bpcx̂q ´ Lx ηmax

2
“ 0u, (9)

where ηmax “maxjPt1,...,nuηj .
Theorem 4.4: Consider a system Σ “ pX,X0, U, F q,

its symbolic model Σ̂ “ pX̂, X̂0, Û , F̂ q constructed with
relation Q Ď Xˆ X̂ and state space quantization η P pR`qn

as defined in Definition 3.2, a safe set S as defined in (3)-(5),
and the symbolic safe set Ŝ as defined in (7)-(9). If for all
x̂ P Ŝ, there exists û P Ûapx̂q such that

minx̂1PF̂px̂,ûq
rBpcx̂1q ´Bpcx̂qs ě ´αpBpcx̂q ´ Lx ηmax

2
q,

where B : X Ñ R and α P K8 are defined in Theorem 4.2,
then Q´1pŜq Ă S and Ŝ is invariant for system Σ̂.

Proof: Let us first show that Q´1pŜq Ă S.
From Definition 3.2, we have x̂ :“ cx̂ `

q
´η
2 ,

η
2

y
P X̂ and

using the fact ηmax “ maxjPt1,...,nuηj , one obtains for all
px, x̂q P Q, ∥cx̂ ´ x∥ ď ηmax

2 . Using Lipschitz continuity of
B, @px, x̂q P Q, we get

Bpcx̂q ´Bpxq ď ∥Bpcx̂q ´Bpxq∥ ď Lx∥cx̂ ´ x∥ ď Lx ηmax

2
,

where Lx is the Lipschitz constant of the function B. Thus,

@px, x̂q P Q, Bpcx̂q ´ Lx ηmax

2
ď Bpxq. (10)

Thus, Bpcx̂q ´ Lx ηmax

2 ě 0 ùñ Bpxq ě 0, i.e., for all
x̂ P Ŝ, Q´1px̂q Ă S. Thus we have Q´1pŜq Ă S.
Now to show that Ŝ is invariant for Σ̂, we have that for all
x̂ P Ŝ there exists û P Ûapx̂q such that

minx̂1PF̂px̂,ûq
rBpcx̂1q ´Bpcx̂qs

“minx̂1PF̂px̂,ûq
rBpcx̂1q ´ Lx ηmax

2
´Bpcx̂q ` Lx ηmax

2
s

ě ´αpBpcx̂q ´ Lx ηmax

2
q.

Thus one has for all x̂ P Ŝ there exists û P Ûapx̂q such that

Bpcx̂1 q ´ Lx ηmax

2
´ Bpcx̂q ` Lx ηmax

2
ě ´αpBpcx̂q ´ Lx ηmax

2
q,

which implies that

Bpcx̂1 q ´ Lx ηmax

2
ě pId ´ αq ˝ pBpcx̂q ´ Lx ηmax

2
q

for all x̂1 P F̂ px̂, ûq. Since α P K8 one has that pId ´
αq P K8 which implies from condition (7) (i.e., Bpcx̂q ´
Lx ηmax

2 ě 0 for all x̂ P Ŝ) that for all x̂ P Ŝ we have
Bpcx̂1q ´ Lx ηmax

2 ě 0 ùñ x̂1 P Ŝ, @x̂1 P F̂ px̂, ûq. This
proves the invariance of the set Ŝ.

Remark 4.5: Since we know that Q´1pŜq Ă S (from
Theorem 4.4) and with Ŝ as invariant, the system does not
violate the safety specification Φ by staying inside S.

V. SCALABLE CONTROLLER SYNTHESIS FOR
MULTI-AGENT SYSTEMS

A. Controller Synthesis for Each Agent (Symbolic Model)

Consider the problem of controller synthesis for each
agent (1) represented by the transition system Σi “

pXi, X
0
i , Ui, Fiq given a local LTL specification ψi. Using

symbolic control, we first construct the symbolic model of
each agent Σi given by Σ̂i “ pX̂i, X̂

0
i , Ûi, F̂iq (as discussed

in Section III-B) such that Σi ĺQi
Σ̂i, where Qi Ď Xiˆ X̂i

is the strict feedback refinement relation. We then synthesize
a controller Ĉi such that Σ̂i|Ĉi |ù ψ̂i, where ψ̂i is the
symbolic specification for Σ̂i (related to ψi, Σi and Qi).
Theorem 3.5 shows that we can refine the controller Ĉi using
the feedback refinement relation Qi and the refined controller
Ci :“ Ĉi ˝Qi is such that Σi|Ci |ù ψi.

After controller synthesis, we obtain the controlled agents
Σ̂i|Ĉi “ pX̂Ci

, X̂0
Ci
, ÛCi

, F̂Ci
q, i P t1, 2, . . . , Nu, as shown

in Definition 3.4, where X̂Ci “ X̂iXdompĈiq, X̂0
Ci
Ď X̂Ci ,

ÛCi “ Ûi and for x̂ P X̂Ci , û P ÛCi , x̂
1 P F̂Cipx̂, ûq iff

x̂1 P F̂ipx̂, ûq and û P Ĉipx̂q.

B. Construction of the Composed System using Control
Barrier Certificates

We will now compose the individual symbolic models of
the controlled systems of each agent.

Given a collection of N pP Nq controlled systems
where each controlled system is given by Σ̂i|Ĉi “

pX̂Ci
, X̂0

Ci
, ÛCi

, F̂Ci
q and I “ t1, . . . , Nu, the composed

controlled system is given by Σ̂|Ĉ “ pX̂C , X̂
0
C , ÛC , F̂Cq

constructed based on Definition 2.2, where X̂C “
ś

iPI X̂Ci
,

X̂0
Ci
Ď X̂C , ÛC “

ś

iPI ÛCi
and for x̂ P X̂C and û P ÛC ,

F̂Cpx̂, ûq “
ś

iPI F̂Ci
px̂, ûq.

Definition 5.1: Let B : X Ñ R be the CBF that enforces
the safety specification Φ. We construct the safety controller
ĈS for the system Σ̂|Ĉ defined above, as follows:

‚ ĈSpx̂q “ Ûa
Cpx̂qXtû|minx̂1PF̂px̂,ûq

rBpcx̂1q´Bpcx̂qs ě
´αpBpcx̂q ´ Lx ηmax

2 qu and
‚ dompĈSq Ď XC X Ŝ.
We can now construct a controlled system pΣ̂|Ĉq|ĈS “

pX̂S , X̂
0
S , ÛS , F̂Sq as defined in Definition 3.4, where X̂S “

X̂C X dompĈSq, X̂0
S Ď X̂S , ÛS “ ÛC and for x̂ P X̂S and

û P ÛS , x̂1 P F̂Spx̂, ûq iff x̂1 P F̂Cpx̂, ûq and û P ĈSpx̂q.
Remark 5.2: Note that only the transitions that lead back

to the set Ŝ are included in the transition system pΣ̂|Ĉq|ĈS .
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At some x̂ P X̂S , Ûa
Spx̂q may be empty because there could

be no inputs in
ś

iPI Û
a
Ci
px̂iq that brings the system to Ŝ.

To restore the local specifications (violated due to the
safety-enforcing barrier certificate), it is necessary to syn-
thesize a controller ĈB for the composed symbolic model’s
specification given by Ψ̂ “ ΠiPI ψ̂i.

The following result shows that the combination of the
controllers CB , CS and Ci, i P t1, 2, . . . , Nu, designed
before makes it possible for the discrete-time control system
in (2) to satisfy the control objective defined in Problem 2.3.

Theorem 5.3: Given the controlled agents Σ̂i|Ĉi with
i P I “ t1, . . . , Nu, the strict relation Qi Ď Xi ˆ X̂i,
LTL specification Ψ :“

Ź

iPI ψi, symbolic specification Ψ̂
resulting from the concrete specification Ψ, the symbolic safe
set Ŝ defined in (7)-(9) and the safe set S defined in (3)-
(5), if ĈB is a controller such that ppΣ̂|Ĉq|ĈSq|ĈB |ù Ψ̂
then, ppΣ|Cq|CSq|CB |ù Ψ, where CB :“ ĈB ˝ Q and
the trajectories of the controlled MAS ppΣ|Cq|CSq|CB stays
inside the safe set S.

Proof: From [20, Theorem VI.3] and [20, Corollary
VI.5], we know that Σi|Ci ĺQi

Σ̂i|Ĉi since Σi ĺQi
Σ̂i by

construction and Ci :“ Ĉi ˝Qi.
By composing the controlled agents and since there is

no coupling between the agents, one gets Σ|C ĺQ Σ̂|Ĉ,
where Σ is the MAS resulting from the composition of
the agents Σi, i P t1, . . . , Nu, Σ̂ is the transition system
resulting from the composition of the local abstractions Σ̂i,
i P t1, . . . , Nu. The set of states for the composed MAS and
the composed local abstractions are given by X :“

ś

iPI Xi

and X̂ :“
ś

iPI X̂i, respectively. The controller C : X Ñ U
is defined for x “ px1, . . . , xN q P X as u “ pu1, . . . , uN q P
Cpxq if and only if ui P Cipxiq, for all i P t1, . . . , Nu.
Similarly the abstract controller Ĉ : X̂ Ñ Û is defined
for x̂ “ px̂1, . . . , x̂N q P X̂ as û “ pû1, . . . , ûN q P Ĉpx̂q
if and only if ûi P Ĉipx̂iq, for all i P t1, . . . , Nu. The
feedback refinement relation Q Ď X ˆ X̂ is defined as
Q “ tpx, x̂q P X ˆ X̂ | pxi, x̂iq P Qi, i P t1, . . . , Nuu.
We synthesize a safety controller ĈS as given in Definition
5.1 for the system Σ̂|Ĉ. By construction, this controller
ensures that the controlled system pΣ̂|Ĉq|ĈS never leaves
Ŝ. The refined controller CS :“ ĈS ˝ Q is such that,
pΣ|Cq|CS ĺQ pΣ̂|Ĉq|ĈS since Σ|C ĺQ Σ̂|Ĉ.

We now synthesize a controller ĈB such that
ppΣ̂|Ĉq|ĈSq|ĈB |ù Ψ̂ and since pΣ|Cq|CS ĺQ pΣ̂|Ĉq|ĈS ,
CB :“ ĈB ˝ Q is the refined controller such that
ppΣ|Cq|CSq|CB |ù Ψ due to Theorem 3.5.

With the composed controlled system we have,

ppΣ|Cq|CSq|CB ĺQ ppΣ̂|Ĉq|ĈSq|ĈB . (11)

Since ĈBpx̂q Ď ÛSpx̂q and dompĈBq Ď X̂S , all tra-
jectories of the system ppΣ̂|Ĉq|ĈSq|ĈB evolve within the
set Ŝ. From (11), it is clear that ppΣ|Cq|CSq|CB will also
remain in Ŝ, which implies from Theorem 4.4 that the
system ppΣ|Cq|CSq|CB always remains in S. Hence, the
combination of refined controllers C, CS and CB allows
to satisfy the specifications defined in Problem 2.3.

TABLE I: Computation time comparison

Number of Computation Time (secs)

Robots Monolithic Proposed Percent reduction

2 170.24 32.11 81.25
3 >4 weeks 85985.05 >96.5

VI. EXPERIMENTAL RESULTS

Fig. 1: Simulation for a multi-agent system with three agents

Fig. 2: Distance between two agents for MAS with Three
Agents. The grey line is lower bound on the safe distance.

We compare the proposed approach with a centralized
controller synthesis technique. We simulate a discrete system
where each agent is given by

xipk ` 1q “ xipkq ` uipkq, i P t1, . . . , Nu, k P N0,

where xipkq P X “ r0, 10s ˆ r0, 10s Ă R2

is the state of the system and uipkq P U “

tp´2, 0q, p´1, 0q, p1, 0q, p2, 0q, p0,´2q, p0,´1q, p0, 1q, p0, 2qu
Ă R2 is the input to the system. We ran two experiments
with N “ 2 and N “ 3. The global safety specification is
given by a set of pair-wise CBFs as

Bijpxq “ ∥xi ´ xj∥´ dij , @i, j P N and i ‰ j, (12)

where dij “ 3 is the distance between the agents i and
j. The local LTL specification for agent i is given by
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ψi “ ♢Targeti ^ pl␣pObs1 _ Obs2qq, where Targeti
is the target of agent i, Obs1 and Obs2 are the obstacles
in the state-space, l and ♢ represent temporal operators
always and eventually, respectively. We used a computer with
AMD Ryzen 9 5950x, 128 GB RAM, and NVIDIA RTX
3080Ti graphics card to perform simulations that were run
on MATLAB. The state quantization parameter is η “ r1, 1s.

Table I shows the synthesis time of the proposed technique
compared to that of the monolithic approach. For the 2
agent example, the proposed technique took 32.082 secs for
controller synthesis, an 81.25% reduction compared to the
monolithic approach that took 170.2421 secs. For 3 agents,
the proposed technique took 85985.05 secs for synthesis,
while the monolithic approach did not finish synthesizing
within 4 weeks, raising the reduction in time to more than
96.5%. The proposed technique gets progressively faster
compared to the monolithic approach with increased state-
space dimensions.

Figure 1 shows the simulation of a three-agent system
with a local specification of avoiding the obstacles, Obs 1
and Obs 2, and reaching the corresponding targets while
ensuring the global safety specification. One can see that
the MAS satisfies both local and global specifications. The
orange line shows the trajectory of agent 1; the purple line
shows the trajectory of agent 2; and the yellow line shows the
trajectory of agent 3. Figure 2 shows the distance between
the agents as they move in the arena. The grey horizontal
line shows the lower bound on the distance between agents.
The graph clearly shows that all three agents never get closer
than three units to each other, thereby satisfying the global
safety specification.

VII. CONCLUSION

We proposed a three-step bottom-up symbolic approach
for MAS by combining symbolic control and CBFs. We have
also provided a symbolic safe set defined over the symbolic
model that provides safety guarantees for the concrete system
and have used this notion of barrier functions to enforce
global safety specifications. We have proven the correctness
of our approach and have formally shown that the final
controlled multi-agent system satisfies both local and global
specifications. The experimental results show the benefits of
the proposed approach in terms of computation time.
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